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Multigrid nonlinear SeaBeam interpolation

Sean Crawley

ABSTRACT

A multigrid nonlinear algorithm was applied to the April 18 SeaBeam data set to fill in

the large regions of missing data, obtaining an image superior to those obtained with
linear methods, and more quickly than is possible with a normal, single grid nonlinear
interpolation. The model may be chosen to contain any number of points; here mopdels
with gradually increasing numbers of points are solved for in succession, each providing
the initial guess for the next. The algorithm is unstable in some cases, but in general
converges quickly to a detailed solution.

INTRODUCTION

Figure 1 displays a portion of a data set collected by SeaBeam, a system for recording water
depth below a ship and at some distance to either side. SeaBeam data is recorded by towing
sonar instruments, each transmitting a narrow beam and recording the travel time and angle of
the backscattered signal. A depth is determined for each signal using this travel time, angle,
and an assumed velocity for the signal in water. The data appear in sweeps, beginning at a wide
angle and sweeping through vertical to another wide angle on the opposite side of the ship.
The resulting data set is a track about fifteen points wide, following the course of the ship; each
data pointis anx, y, z) triplet. The data were collected over a mid-ocean ridge which is visible

in the plot of the raw data. In the more sparsely sampled areas are segments of ridges which we
may guess run parallel to the spreading center ridge. Intuitively we would like a missing data
inversion which will connect these segments, and which will give a detailed output where data
is more plentiful, as in the left portion of the survey area. This is accomplished by nonlinear
inverse interpolation. Claerbout (1994) has demonstrated its effectiveness on this data set.
I combine his method with multigrid to produce results with less computational effort. In
addition to being faster, the multigrid method produces a sharper image of the interpolated
topography. In this paper, | describe how inverse interpolation in general is formulated, and
the multigrid method employed here. | also offer what | feel are improved final results.

lemail: sean@sep.stanford.edu
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Figure 2: Closeup of SeaBeam ?.
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THEORY

Claerbout (1994) formulates the inversion for this type of problem as follows. The first re-
quirement for the output is that it should fit the input, the known data. This can be expressed
as the regression

d~Lm
whered is the datal is the linear interpolation operator that moves between model space and
data space, anuh is the model. This leads us to calculate a data resigual

rq=d—Lm

The second requirement is that the model should be consistent everywhere with the known
data. We can estimate a prediction error filter and require that the model fit the filter with a
regression of the form

0~ Am

wherem again represents the model aAds the prediction error filter. This leads us to write
the model residual:
rm=—Am

However, we must estimate the filter from the model, which is the thing that we are inverting
for. This means that we must find the model and the filter simultaneously. RewAteg
A+ AAandmasm+ Am, the regressions become
d—L(m+Am)~0
—(A+AA)(M+AM)~0
or
—Am~ AAm+ MAa

d—Lm~LAmM
The gradient directions for the filter and model are then
Am=Lrq+Ary
Aa= Mty
and the solution is obtained using conjugate gradients.

PREVIOUS WORK

Claerbout has used this method with a single grid (a model 160 points on a side) and achieved
a good result, which can be seen in Figure 3 . This result displays the qualities we would
like to see in the output model. That is, the ridge segments in the sparsely sampled right
portion of the survey area have been connected without smearing them terribly, and in the
more densely sampled part of the survey area, it is hard to tell where data is known and where
it is interpolated. Convergence, however, is slow. This result takes about 300 cpu minutes to
generate running on our HP 700. Also, we may wish for a model with more structure and less
smoothing away from the known data.
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The modelM can be chosen to have any number of points within the practical limitations

of the data. The multigrid approach taken here is to begin by inverting for a very coarse
model, with just 20 points on a side, and use the output as the initial guess for a more detailed
model (the 20 by 20 model is pixel zoomed to become a 40 by 40 model, each bin being
divided into four), and in this way gradually obtaining more detailed models. This serves
several purposes. First, information is propagated into large unknown areas more quickly;
the large unknown areas visible in Figure 1 correspond to only a few tens of model points
in the early stages of the problem. Second, because the filter isn’t scaled up or down with
the model, it operates on a range of spatial frequencies — the physical space occupied by the
filter decreases as the number of points in model space increases. Thus large scale features
and trends are resolved early in the inversion, and smaller scale features are overlaid. The
workings of this are well illustrated by results displayed in Figures 4 through 7. A further
potential benefit of the multigrid approach is the avoidance of local minima. The simpler, early
models should have smooth (low frequency) objective functions, enabling the solution to get
close to the global minimum without becoming trapped in a local minimum. The solution then
has a shorter distance to travel along the more convoluted and hazardous (higher frequency)
objective functions of the later, more complex models. Of course, nothing guarantees that this
leads to the true global minimum, but it should do at least as well or better than a normal
gradient method (Saleck, 1993).

Windowing

An important consideration in using multigrid for this type of problem is how to window the
measured data. The data residug),and the change in the data residual with each iteration
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are vectors the size of the data space, which for the entire data is 400,000 points. These vectors
are used by the conjugate gradient solver to calculate step lengths, making iterations computa-
tionally expensive even on small grids where convolutions are quick and easy. Luckily, with a
small number of bins in model space, a much reduced data set will suffice, and the early stages
of the multigrid inversion can be solved in a few minutes. Of course, windowing too severely
is dangerous. Obviously careless windowing creates the risk that important information in the
data may be thrown out. | also found that with too severe a windowing strategy the algorithm
actually became unstable and the residual exploded. This is important because it tells us the
disastrous results (which I haven’t bothered to display) are not the correct result to the wrong
problem; the overwindowed data actually breaks the solver. In my own cursory examination,
the critical number of data points has coincided with the number required to fill all the bins

in model space in areas where there is known data. In addition, particularly when inverting
for models with few and thus large bins, it is probably a good idea to include enough data
to place many points in each bin, since there are likely to be a wide range of values present
and a reasonable average is called for. For this report, the full data set was used for the final
model, mainly because windowing resulted in many empty bins near the edges of the areas
where data was collected. For smaller models, the data were windowed to every thirteenth
point. More severe windowing is of course possible. A more sophisticated approach, window-
ing more where several of the ship’s tracks cross and less or not at all where there is a single
track, would likely be an improvement in that it would make possible computationally easier
iterations without losing information where there is little to begin with.

NEW RESULTS

The multigrid interpolation scheme was run on the SeaBeam data, beginning with a 20 by 20
model, the number of model points on a side doubling periodically up to 160. Results at each
scale are displayed in Figures 4 through 7.
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Figure 5: Model output on a 40 by
40 point grid after 3000 iterations.
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Figure 6: Model output on a 80 by
80 point grid after 3000 iterations.
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EVALUATION

To evaluate the performance of the multigrid method we compare Figures 3 and 7, the first
done on a single grid and the second on multiple grids. The first observation is that the so-
lutions are not identical. Ultimately, the two solutions are found with the same optimization
criteria, the only difference being what we assume is a better starting guess in the multigrid
case. In a nonlinear problem such as this, the starting solution may affect the final answer. Fur-
ther, | believe that the multigrid method produced the more pleasing image. It appears more
geologic and does not damp as severely towards the edges of the model. Of course, accuracy
is hard to quantify because we are dealing with interpolated missing data. Still, the model
produced by the multigrid inversion more closely approximates what we imagine the real sea
floor to look like. There is a definite difference in convergence speed. Though a similar total
number of iterations was used in each case, multigridding allows most of the iterations to be
performed at lower cost, thanks both to judicious windowing of the data space (smaller vec-
tors in the solver), and fewer points in the model space to be convolved over. Convergence
for the single grid inversion, Figure 3, took over 300 cpu minutes, while the same size model
was solved for by the multigrid inversion in about one fifth the time, using the same machine
and adjusting for cpu usage. Plots of residual power as a function of iteration for the single
and multigrid inversions are displayed in Figure 8. The residual plots show some surprising
things. For instance, there is a spike in the residual of the single grid interpolation that does not
appear in the multigrid residual. This doesn’t prevent the single grid inversion from converg-
ing to a good solution in this case, but may point to better stability for the multigrid method.
More interesting is the speed with which the residual power appears to converge, particularly
in the single grid case. It has stabilized after fewer than 1000 iterations, yet plotting the out-
put after this many iterations, or even 3000 or 5000, yields a model that is a long way from
being fully interpolated. In other words, small changes in residual energy can represent large
changes to the model. Mathematically, this makes sense because the portion of the residual
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Figure 8: Total residual power as a function of iteration for a single grid interpolation (left)
and the final stage of a multigrid interpolation (right). Plots are clipped to a value of 1000 for
clarity. seanl-resconj@CR]

which represents the raw datg & d — L m) converges as soon as the model matches the raw
data, which does not take very long. The remainder of the residyagxists due to filter-

ing, and whether the bins are empty or contain interpolated values that fit the filter, this will
have little power. With the multigrid approach, stopping the inversion as soon as the residual
has stabilized yields an output with more information in the model space, particularly in the
sparsely covered right portion of the survey area. Comparing Figures 3 and 7 shows that the
interpolated ridges have more continuity away from the measured data in the multigrid case.
The model looks geological even close to its edges, where the single grid interpolation output
damps away to zero. | think this is the effect of interpolating at multiple spatial frequencies,
the larger scale features (the ridges) are better interpolated on a model with fewer points,
where the filter is large enough to deal with them. Interestingly, carrying the last stage of the
multigrid interpolation for several thousand iterations yields an image indistinguishable from
that produced by the single grid inversion after a similar number. Both methods will eventu-
ally smear the model severely. The fact that both inversions degrade the model after very long
runs points to a global minimum for our optimization criteria that is not really in line with our
desires for the model. It is possible that improvements might yet be made by modifying the
objective function for the problem.

CONCLUSIONS

There were several goals motivating the use of the multigrid approach in this problem. The first
was speed. Convergence for this problem without multigrid took at least 300 cpu minutes; with
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multigrid and judicious use of windowing to take full advantage of the ease of solving of early
grids with relatively few points in model space, about an hour. In this the method can be termed
a success. In addition, in cases where the data has different dominant frequencies, it appears
that the multigrid method is better at finding a good output model because it can separate
the frequencies. A possible further example and area for future work, is statics corrections
in an area where the weathering layer thickness exhibits multiple dominant frequencies: for
instance a general thickening trend as well as rapid local morphological variations. A second
goal is enhanced stability. The multigrid method has the potential to avoid local minima and
thus converge to a better solution than is possible on a single grid. In this case the problem
converged without real mishap on a single grid, so the greater robustness of the multigrid
method wasn'’t tested.
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