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Enhanced random noise removal by inversion

Ray Abma1

ABSTRACT

Noise attenuation by prediction filtering breaks down in the presence of high-amplitude
noise when the prediction filter is corrupted by noise and the filter response to the noise
overwhelms the signal. Spurious events are generated and the amplitude of the signal
is reduced by prediction filtering under these circumstances. To reduce these undesired
effects, the separation of signal and noise is posed as an inversion problem. The inversion
process preserves signal amplitudes and attenuates spurious events.

INTRODUCTION

Prediction filtering techniques, such as t-x and f-x prediction filtering methods, break down in
the presence of high-amplitude noise. This breakdown is partially caused by the corruption of
the prediction filter by noise. The response of the filter to the noise can also contribute to the
breakdown when it overwhelms weak reflections. Both of these problems can be overcome by
posing the noise removal as an inversion problem. This inversion removes the filter response
from the calculated noise; plus, the inversion allows the filter to be recalculated without the
noise corruption. The recalculated filter allows improved signal prediction. In this paper, I will
show how the noise removal may be posed as an inversion problem and how the noise estimate
from prediction filtering is used to increase the accuracy and speed of the solver. The combina-
tion of the inversion and the recalculation of the filter will be shown to preserve the amplitude
of reflectors and to reduce spurious events generated by the prediction filtering(Abma, 1994).
The process is demonstrated on synthetic and real data.

SHORTCOMINGS OF PREDICTION FILTERING

High amplitude noise produces flaws in prediction filtering techniques such as t-x and f-x pre-
diction filtering. One flaw is the reduction of reflection amplitudes. Another is the generation
of spurious events(Abma, 1994). Both these errors are due to the corruption of the signal pre-
diction filter by the noise in the data from which the filter is calculated. Another, less obvious,
flaw in prediction filtering is that, even with a filter that perfectly predicts the signal, the output
of this filtering does not perfectly separate the signal and noise. To demonstrate this, taked as
the available data,s as the signal, andn as the noise. The relationship between the data, the
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signal, and the noise is assumed to bed = s+n. Although the prediction of the signal could be
stated otherwise, the prediction is done here with a signal annihilation filterS. The filterS is a
purely lateral 2- or 3-dimensional filter as discussed in Abma (1993). If this filter is perfect, it
completely removes the signal so thatSs= 0. In fact, only an approximate signal annihilation
filter is available so thatSs≈ 0, but to simplify the following discussion,Ss= 0 is assumed.
When the datad is filtered by the exact signal annihilation filter, the result isSd= Ss+ Sn,
which becomesSd= Sn, sinceSs= 0. Since prediction filtering defines the noise as approxi-
matelySd, a filtered version of the noiseSnis obtained from the prediction filtering instead of
the actual noisen. Prediction filtering makes the assumption that the noisen is unaffected by
the signal annihilation filterS. The difference betweenSnandn may also be seen as an incon-
sistency between definitions of the noise in the expressionsn = d −s andn = Sd (Soubaras,
1994). For weak noise and large filters, the assumption that the noisen is unaffected by the
signal annihilation filterS is reasonable. For strong noise and short filters, the response of the
noise to the filter is important. Although prediction filters may be made as large as desired, I
have shown in Abma (1993) and Abma (1994) that large filters allow more noise to pass into
the signal and that filters that are large along the time axis tend to create spurious events. This
is a special problem with f-x prediction, since the effective filter time length is as long as the
window length in time. For very high amplitude noises, the filter response is alway significant.
An example of the filter response to noise is shown in Figure 1. In the original data seen in this
figure, the signal is a flat event and the noise is the isolated spike. Since the prediction filter is
applied in two directions, the response of the signal annihilation filterS can be seen on both
sides of the spike’s position in the prediction filter result. The prediction filtering result also
shows a small amplitude loss in the flat event. The corruption of the signal annihilation filter
S by the spike caused this amplitude loss. Getting a more accurate calculation of the noise

Figure 1: The action of a prediction filter on a flat layer and a spike.ray1-respn[NR]

requires solving the expressionSd= SnwhenSs= 0. If the exact signal annihilation filter is
not available andSs≈ 0, the noise must be solved for from the regressionSn≈ Sd. Similar
expressions have been used for noise removal by Claerbout and Abma(1994) and Abma and
Claerbout(1994). In the next section I will present a solution toSn≈ Sd.

NOISE ESTIMATION BY INVERSION

For a given signal annihilation filterS, the expressionSd≈ Snis used to get the noisen from
the data. The expressionSd≈ Sn is not useful in itself for calculating the noisen, since the
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filter S is not perfect and is unlikely to completely annihilate the signal to the point where
the inversion forn could not restore it. Without additional constraints, the obvious solution
to Sd≈ Sn is d = n. In earlier work, I found that, although the filterS could attenuate the
signal significantly, a simple inversion ofSd= Sn for n restores much of the signal into the
calculated noisen. The constraint used here to keep signal out of the calculated noise is that the
noise is approximately the noise estimated from prediction filteringSd. This is a reasonable
approximation, sinceSd should be about equal to the actual noise. The difference between
the actual noisen and the noise approximated bySdshould be fairly small and involves only
the response of the noise to the filterS. This approximation is weighted asεn ≈ εSd. The
value forε may be changed to account for the signal-to-noise ratio of the data. The system of
regressions to be solved is now (

Sd
εSd

)
≈

(
S
ε

)
n. (1)

The results of solving this system are referred to as inversion prediction in the following dis-
cussion to distinguish it from prediction filtering. Since this system estimatesn from the
approximationSd, it is reasonable to initializen to Sd before entering the iterative solver.
Another reason for initializingn to Sd is that the filterS is generally small and will pass only
a limited range of spatial and temporal frequencies. In the case of a spike in the data, inversion
for the noise with a small filter does not allow the complete restoration of the spike. Because
the noise is expected to be almost white and in some cases dominated by spikes, initializingn
to Sd improves the calculation ofn and reduces the number of iterations needed. Equation (1)
expressed as a minimization of the residualr is

r =

(
S
ε

)
n−

(
Sd
εSd

)
. (2)

Initializing n to Sd involves adding (
S
ε

)
Sd (3)

to the right-hand side of equation (2) to produce, with some simplification,

r =

(
S
ε

)
n+

(
SSd− Sd

0

)
. (4)

Since the iterative solver just updatesn without regard to the initial value (Claerbout, 1995),
the value ofn in this equation may be considered as the change of the calculated noise from
the first estimate of the noiseSd. This may be expressed as

r =

(
S
ε

)
1n+

(
SSd− Sd

0

)
. (5)

The results of inversion prediction are sensitive to the value ofε. At present, the optimum
value of ε is uncertain. It would seem thatε should decrease as the signal-to-noise ratio
decreases, since the difference between the actual noisen and the estimated noiseSd is larger.
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However, in the presence of strong noise, the largerε is, the more stable the inversion should
be. If ε is relatively large, around 1.0, the amplitudes of the reflections are preserved and
spurious events are somewhat suppressed. Asε gets very large, the result approaches the
prediction filter result. Whenε gets small, the amplitudes of the reflectors are attenuated, since
the signal filterSdoes not perfectly annihilate the signal before the inversion. For smallε, the
spurious events tend to return also. The best value ofε appears to be different for samples with
Gaussian noise than for samples with uniformly distributed noise. For most work, it appears
that good values ofε vary from 0.1 to 3.0. Small values ofε remove background noise, but
seem to introduce organized noise into the calculated signal. For the real data examined,
the background noise increases asε increases, and the continuity of the data increases asε

decreases. Further work is needed to determine how the strength and type of noise affects the
value ofε.

An example of the difference between prediction filtering and inversion prediction is seen
in Figure 2. The filterS is calculated from the data to predict the flat event. WhenS is
applied to the spike, the filter response can be seen in the prediction filter result. The inversion
prediction result has effectively eliminated the filter response.

Figure 2: A comparison of the action of a t-x prediction filter and an inversion prediction on a
spike. ray1-onespikea[NR]

IMPROVING THE SIGNAL PREDICTION FILTER

In the previous discussion, it was assumed that the signal filterS completely annihilates the
signal, that isSs= 0. In reality, imperfect filters are derived from noisy data. For prediction
filtering, the filters are derived from the least-squares solutions to the expressionSd= 0. Since
the datad contains noise, rather than getting anSwhereSs= 0, we must contend with an im-
perfectS such thatSs≈ 0. This section shows how a betterS may be calculated by reducing
the influence of the noise. The presence of noise in the estimation of the signal annihilation
filter S affects the calculation of the estimated signal in two ways. First, spurious events may
be generated. These events may be widely separated in f-x prediction or may be seen as dis-
tortions of an event’s wavelet. The cause of these distortions is discussed in Abma(1994).
Second, the amplitudes of the reflectors in the calculated signal are reduced due to the imper-
fect prediction. As the strength of the noise increases, the more corrupted the filter becomes
and the more the reflectors are attenuated. To improve the calculation of the filterS, Sshould
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be derived from the signals instead of the datad. Since the actual signal is unavailable, the
inversion prediction result from equation (1) is used to get an estimate of the signal. Although
the signal estimate is not perfect becauseS is imperfect, this signal estimate can be used to
create a newS that is less affected by the noise. The process of calculating the signal, then
getting a new signal annihilation filter, may be iterated as often as desired. At this point, you
might wonder why we should bother with the inversion when a cleaned-up signal might be
obtained from prediction filtering result. The inversion is necessary because the signal anni-
hilation filter calculated from the signal derived from prediction filtering will be exactly the
same as the original filter calculated from the data. The residualr in the filter calculation
expressionr = Sdbecomes zero when the datad is replaced by the signal estimated from pre-
diction filtering. This is because all the noise calculated in prediction filtering is orthogonal
to S, so everything in the remaining signal fitsS perfectly. Therefore, the inversion result is
needed to produce an updated filter which the prediction filtering result cannot produce. Once
an improved signal filterS is calculated from the estimated signal, this new filter may be used
either to produce an improved prediction filtering result, or it may be used to derive another
inversion prediction result. If the response of the filter to the noise is assumed to be small, the
improved prediction filtering result might be the final result, but generally, if the noise is large
enough to corrupt the filter, the response of the filter to the noise should be removed with in-
version prediction. Figures 3 and 4 in the next section show that iterating the calculation of the
signal annihilation filter has the desired effect of preserving the amplitudes of the calculated
signal and reducing the wavelet distortion in cases of small signal-to-noise ratios. Both effects
are the result of removing some of the noise from the data used in the filter calculations. The
amplitude improvement is a straightforward result of having a filter that predicts the signal
well, rather than having a filter that predicts the signal poorly. The reduction of the generated
spurious events results from the filter not being forced by the noise to use events parallel to the
predicted events to improve the predictions(Abma, 1994). In the examples shown in the next
section, three iterations of estimating the signal annihilation filterSwere used. I’ve found that
one or two iterations do not allow the amplitudes of the reflections to be restored properly and
more iterations seem to weaken the reflections. More work needs to be done to find how the
number of iterations affects weak events that do not line up with the strongest events in a sec-
tion. It is possible that iterating tends to eliminate weak events not lined up with the strongest
reflections, since a preliminary filter might attenuate a weak event which then would not be
recovered in the following passes.

EXAMPLES

Synthetic data examples

The first synthetic example is one previously used in Abma(1994) to show how t-x predic-
tion filtering can generate spurious events that appear as wavelet distortions. Figure 3 shows
how inversion prediction for the noise using equation (4) compares to prediction filtering. Al-
though the inversion prediction result shows more organized noise in the background than
the prediction filtering result, the amplitude of the signal is better preserved in the inversion
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prediction result. Close-ups of the wavelets are seen in Figure 4. Notice that the input event
has been distorted by the t-x prediction filter result. While the inversion prediction result still
shows some distortion of the wavelet, the distortion is small and the amplitude of the wavelet
is better preserved than it is in the prediction filtering result.

Real data examples

Real data processed with the inversion prediction show results similar to the synthetic ex-
amples, although, wavelet distortion is difficult to recognize in complex real data. Even so,
the reflection amplitudes appear to be improved on the inversion prediction results when com-
pared to the prediction filtering results. The first section in Figure 5 shows the input, a 2-D line
from a 3-D survey. The second section in Figure 5 shows the result of applying a prediction
filter to the data in the first panel. The results are significantly better than the input. The third
section in Figure 5 show the results of the inversion prediction. Although it is difficult to see
in the displays here, the amplitudes on the inversion results can be seen to be better preserved
than the prediction filter results. It is difficult to judge whether the events between 1.2 and 1.6
seconds are organized noise or weak reflections attenuated by the t-x prediction filter, but they
are likely to be organized noise similar to that seen in the synthetic examples. Figure 6 show
a close-up of the data in Figure 5. The results of the inversion prediction are more appealing
than the t-x prediction filtering results.

CONCLUSIONS

In the presence of strong noise, prediction filtering attenuates reflections and produces spurious
events. Inversion prediction preserves the reflection amplitudes and reduces the amplitudes
of the spurious events. While I was hoping for an improvement in the signal-to-noise ratio
over prediction filtering, the signal-to-noise ratio of inversion prediction generally appears to
be about equal to that of prediction filtering. Inversion prediction removes the response of
the filter to the noise, however this effect is difficult to see in real seismic data. The main
advantage of the inversion prediction technique may be to clean up the signal annihilation
filter in the presence of strong noise. For real seismic data, preserving the signal amplitude and
reducing the amplitudes of spurious events may be more important than eliminating the filter
response. However, if the noise consists of very large spikes, eliminating the filter response
becomes important. Removing the filter response with the inversion may have more effect
on the calculation of an improved filter than it does on the interpretation of the section. In
the future, I intend to use the ideas presented here, especially those of initializing the noise
estimate to the prediction filtering result, to improve the accuracy and decrease the expense of
prestack signal and noise separation.
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Figure 3: A reflection buried in a field of random noise. The top plot is the original, the
middle plot is the original with t-x prediction, and the bottom plot is the signal using the
inversion results. ray1-synth3[NR]
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Figure 4: A single trace taken from
the right side of the data. The original
reflection on the top shows a three-
point wavelet. The middle plot is
the t-x prediction result. The bottom
plot is the inversion prediction result.
ray1-graph3[NR]
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Figure 5: The original data, t-x prediction, and inversion predictionray1-real3 [NR]



10 Abma SEP–84

Figure 6: A closeup of the original data, the t-x prediction, and the inversion prediction.
ray1-clsup3[NR]
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