
Stanford Exploration Project, Report 84, May 9, 2001, pages 1–167

Amplitude preserving AMO from true amplitude DMO and
inverse DMO

Nizar Chemingui and Biondo Biondi1

ABSTRACT

Starting from the definition of Azimuth Moveout (AM O) as the cascade ofDM O and
inverseDM O at different offsets and azimuths, we derive an amplitude-preserving func-
tion for the AM O operator. This amplitude function is based on the FK definition of
DM O and the definition of its true inverse. Similar to Liner’s formalism of a true inverse
for Hale’s DM O, we derive an asymptotically true inverse for Black/Zhang’sDM O and
Bleinstein’s BornDM O. A numerical test is given that compares amplitude preservation
using kinematically equivalentDM O operators cascaded with their true inverses. We
define amplitude-preserved processing as the preservation of the offset-dependent reflec-
tivity after AM O transformation, where the reflectivity is considered to be proportional to
the peak amplitude of each event. We found that anAM O operator defined using Zhang’s
DM O cascaded with its true inverse best reconstructs data amplitudes after transforma-
tion to a new offset and azimuth. The new amplitude function represents an amplitude-
preserving azimuth moveout.

INTRODUCTION

Previously, Biondi and Chemingui (1994) introduced a partial-migration operator named Azimuth-
Offset Moveout (AM O) that rotates the data azimuth and changes the data absolute offset. The
AM O operator can be defined as the cascade of an imaging operator that acts on data with a
given offset and azimuth, followed by a forward modeling operator that reconstructs the data
at a different offset and azimuth.

In the context of amplitude preserving processing, we need to derive a true amplitude
function for AM O so that amplitude variations as a function of offset and azimuth are not
distorted by this operation. Because we derivedAM O from DM O, AM O potentially has
amplitude effects similar to those ofDM O. Starting from the general definition ofDM O
in the FK domain (?Zhang, 1988;?) and the definition of a general inverseDM O (??), we
derived inverses for Zhang’sDM O and for Bleistein’s BornDM O. Our derivation of true
inverses is similar to that of Liner (?) for an amplitude-preserved inverse for Hale’sDM O.
The approach is based on a general formalism for inverting integral solutions (??) that we use
to derive a solution for an integral inverseDM O that is asymptotically valid. Our motivation
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for this approach is to compare our inverses to an inverseDM O formula of Ronen’s (?)
and Liner’s (?). A best amplitude-preservingDM O cascaded with its true amplitude inverse
is then selected to define an amplitude preservingAM O. We used thisAM O operator in an
amplitude-preserved processing sequence consisting of spherical divergence, normal-moveout
(N M O), azimuth moveout (AM O) and inverseN M O.

We conducted numerical experiments by transforming data from a given azimuth and ab-
solute offset to a new azimuth and offset using differentAM O operators defined from kine-
matically equivalentDM O’s and inverseDM O’s. We tested for amplitude preservation by
studying the offset-dependent reflectivity through peak amplitudes along a dipping event after
the AM O transformation. According to most interpreters, “true-amplitude” means that each
event’s peak is proportional to the reflection coefficient.

In the next section we will briefly review the definition of theAM O operator, describe the
general solution for an asymptotically valid inverseDM O (?) and then derive a true inverse
for Zhang’sDM O (1988) and Bleistein’s BornDM O (?).

AZIMUTH MOVEOUT OPERATOR

We defineAM O as an operator that transforms 3-D prestack data with a given offset and az-
imuth to equivalent data with different offsets and azimuths (Biondi and Chemingui, 1994).
Figure?? shows a graphical representation of this offset transformation; the input data with
offseth1 = h1(cosθ1,sinθ1) is transformed into data with offseth2 = h2(cosθ2,sinθ2). AM O
is not a single-trace to single-trace transformation, but moves events across midpoints accord-
ing to their dip. Therefore,AM O is a partial-migration operator.

The AM O operator is defined in the the zero-offset frequencyωo and midpoint wavenum-
berk as

AM O =

∫
dke−i k·x

∫
dt1

∫
dωoBCe

i ωo

(
t1

√
1+

(
k·h1
ωot1

)2
−t2

√
1+

(
k·h2
ωot2

)2
)

. (1)

The traveltimest1 andt2 are, respectively, the traveltime of the input data afterN M O, and the
traveltime of the results before application of inverseN M O. B andC are the Jacobians in the
FK definition of theDM O operator and the definition of its inverseDM O−1.

Since 3-D prestack data are often irregularly sampled, it is necessary to defineAM O as an
integral operator in the time-space domain. A stationary-phase approximation of (1) yields a
time-space representation of theAM O operator where the equation for the kinematics of the
impulse response is (Biondi and Chemingui, 1994)

t2(x,h1,h2,t1) = t1
h2

h1

√
h2

1sin2(θ1 − θ2)− x2sin2(θ2 −ϕ)

h2
2sin2(θ1 − θ2)− x2sin2(θ1 −ϕ)

, (2)

while the amplitudes are given by

A(x,h1,h2,t1) ≈
2πBC
√

D
, (3)
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Figure 1: Map view of offset and azimuth ofAM O input and output traces.nizar2-sketch
[NR]

wherex = X(cosϕ,sinϕ) is the output location vector in midpoint coordinates andD is the
determinant of a Hessian matrix. For given input half-offset and time (h1, t1) and output half-
offset (h2), equations (2) and (3) define a surface in the time-midpoint space. The surface is a
skewed saddle; its shape and spatial extent are controlled by the medium velocity, the absolute
offsets and by the azimuth rotation, i.e., the differences in azimuths between the input and
the output data (Biondi and Chemingui, 1994; Fomel and Biondi, 1995). The JacobiansB
andC and the determinant1 in equation (3) are actually evaluated at the stationary point of
the phase function in the integral kernel of (1). We present an explicit formula for them for
different cases ofDM O’s in Appendix A.

The amplitude behavior ofAM O is completely controlled by the amplitude functions of
the DM O operator and its inverse. An amplitude correctAM O should follow from a true
amplitudeDM O and its amplitude-preserving inverse. Liner and Cohen (?) argued that an
adjoint DM O operator is a poor representation of an inverseDM O. They showed that for
the case of HaleDM O, the application ofDM O followed by its adjoint inverse can result in
a serious amplitude degradation. They proposed instead a solution for an asymptotically valid
inverseDM O and derived a true inverse for Hale’sDM O. In the next section we outline their
solution and apply it in order
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GENERAL FORMALISM FOR INVERSE DMO

DM O is a method of transformation of finite-offset data to zero-offset data. Let the normal
moveout corrected input data be denotedP2(t2,x2;h2) and the zero-offset desired output de-
notedP0(t0,x0;h = 0). Assume known relationships between the coordinates of the general
form

t0 = t0(t2,x2,w0,k0) and x0 = x0(x2) . (4)

The DM O operator can be defined in the zero-offset frequencyω0 and midpoint wavenumber
k as (?)

P0(ω0,k0;h = 0) =

∫
dx2

dx0

dx2

∫
dt2

dt0
dt2

e+[i ωot0(t2)−k0·x0(x2)] P2(t2,x2;h2) (5)

=

∫
dx2

∫
dt2Be+[i ωot0(t2)−k0·x0(x2)] P2(t2,x2;h2), (6)

whereas its inverse can be defined as:

P2(t2,x2;h2) =

∫
dk0

∫
dωoCe−[i ωot0(t2)−k0·x0(x2)] P0(ω0,k0;h = 0) (7)

where

C = C(t2,x2,ωo,k0) (8)

Note that for consistency with our definition of theAM O operator we consider aDM O−1 for
a forwardDM O that reconstructs a zero-offset sectionP0(t0,x0;h = 0) from an input section
P2(t2,x2;h2) recorded at a finite vector-offseth2.

A detailed derivation ofC is given by Liner (?). The method is based on a general formal-
ism (??) for inverting integral equations such as (6). The technique mainly involves inserting
(6) into (7) and expanding the resulting amplitude and phase as a Taylor series and making a
change of variables according to Beylkin (?). The solution provides an asymptotic inverse for
(6), where the weights are given by

C =
dω

dωo

dk
dk0

[
4π2dt0

dt2

dx0

dx2

]−1

(9)

In this expression,B =
dt0
dt2

dx0
dx2

is the Jacobian of the change of variables in the forwardDM O
given by

B =
∂(t0,x0)

∂(t2,x2)
= det

[
dt0
dt2

dt0
dx2

dx0
dt2

dx0
dx2

,

]
(10)

which reduces toJ =
dt0
dt2

dx0
dx2

assuming the general coordinate relationships (4) wherex0 is
independent oft2, leading to a zero lower left element in the determinant matrix above.
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The quantity dω
dω0

dk
dk0

is the inverse of the Beylkin determinant,H ,

H =
∂(ω0,k0)

∂(ω,k)
= det

[ dω0
dω

dω0
dk

dk0
dω

dk0
dk

]
. (11)

We actually compute the inverse ofH as given by Liner (?):

H−1
=

∂(ω,k)

∂(ω0,k0)
= det

[
dω
dω0

dω
ddk0

dk
dω0

dk
dk0

]
. (12)

If we recognize thatk is independent ofω0, then the lower element ofH−1 is zero and (12)
reduces to

H−1
=

dω

dω0

dk
dk0

, (13)

whereω andk are, respectively,

ω = ωo
d

dt2
[t0(t2)] (14)

k = k0
d

dx2
[x0(x2)] . (15)

It is very important to recognize at this stage thatω andk in equations (14) and (15) depend
on the coordinate relationships (4). Therefore, the Beylkin determinant,H , is different for dif-
ferentDM O operators. However, as we will demonstrate later , for kinematically equivalent
DM O operators the determinant is constant. We conclude that a general inverseDM O is
completely defined given the coordinate relationships connecting output time and mid point to
their input values. The asymptotic inverse represents an amplitude-preserving inverseDM O.
The methodology was first applied to Hale’sDM O by Liner and Cohen (?), and we outline
their results in the next section.

Hale DMO and its inverse

Starting from the coordinate relationships between a finite-offset data and its equivalent zero-
offset data

t0 = t2

[
1+

(
k ·h2

ωot2

)2
]1/2

≡ t2A2 and x0 = x2 (16)

After differentiating (16) and taking into account a factor of 1/2π as scaling for the spatial
Fourier transform we can write (9) as

C =
A2

2π

dω

dωo

dk
dk0

. (17)



6 Chemingui & Biondi SEP–84

The remaining task reduces to performing the necessary derivatives, and with some algebra
one can verify thatH reduces to the simple expression (?)

H =
A3

2

2A2
2 −1

(18)

and, therefore, we arrive at the inversion amplitude function

C =
1

2π

[
1+

k2h2

ω2
ot2

2 A2
2

]
. (19)

For a detailed derivation, the reader should refer to the original work of Liner (?). An asymp-
totic true inverse for Hale’sDM O should then have the form:

P2(t2,x2;h2) =
1

2π

∫
dk0

∫
dωo

[
1+

k2h2

ω2
ot2

2 A2
2

]
e−[i ωoA2t2−k0·x0(x2)] P0(ω0,k0;h = 0) (20)

Black/Zhang DMO and its inverse

Similar to the preceding discussion, we start our derivation for an asymptotic inverse for
Black/Zhang’sDM O by recognizing the coordinate relationships,

t0 = t2A−1
2 and x0 = x2 −

kh2

ωot2A2
(21)

The Jacobian of the change of variables in the forwardDM O is given by

B =
∂(t0,x0)

∂(t2,x2)
=

2A2
2 −1

A3
2

, (22)

which has the familiar form of Zhang’s (1988) and Black’s (1993) Jacobian. Zhang based
his derivations on kinematic arguments that considered a fixed reflection point rather than a
fixed midpoint. This derivation takes into account the reflection-point smear (Deregowski and
Rocca, 1981;?), which means that the input event at locationx2 will be positioned byDM O
to the correct zero-offset locationx0.

To compute the Beylkin determinant for Black/Zhang Jacobian we start by writing the
phase phase function in theDM O integral kernel as:

8 = ωt0 −k ·x0 (23)

= ω
t2
A2

−k · (x2 −
kh2

ωot2A2
) (24)

= ω
t2
A2

−k ·x2 +ωot2

(
A2

2 −1

A2

)
(25)

= ωA2t2 −k ·x2 (26)
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The phase in equation (26) is identical to the phase function in Hale’sDM O and, therefore,
substituting forω andk back in (14) and (15) and differentiating with respect toω0 andk0,
we end up with the following expression forH−1:

H−1
=

A3
2

2A2
2 −1

. (27)

Therefore, the Beylkin determinant for Black/Zhang’sDM O becomes

H =
2A2

2 −1

A3
2

(28)

which is the same as that for Hales’sDM O.

Finally, by substituting back in (9) and accounting for the 1/2π factor in the spatial Fourier
transform, we obtain an expression for the weights of an asymptotic inverse for Black/Zhang’s
DM O:

C =
1

2π
(29)

These weights have been also derived independently by Paul Fowler (personal communica-
tion). Therefore, a true inverse for Black/Zhang’s (1988)DM O has the form

P2(t2,x2;h2) =
1

2π

∫
dk0

∫
dωoe−[i ωoA2t2−k0·x0(x2)] P0(ω0,k0;h = 0) (30)

Bleistein Born DMO and its inverse

Starting from a different argument, Bleistein (?) proposed aDM O operator that he derived
from a Born approximation for modeling wave propagation. This new operator, named Born
DM O (B DM O), is kinematically equivalent to Hale’s (1984)DM O and Zhang’s (1988)
DM O and only differs from each of them by a simple amplitude factor. This new Jacobian is
defined as

B =
∂(t0,x0)

∂(t2,x2)
=

2A2
2 −1

A2
. (31)

Similar to the previous analysis, and recognizing that thisB DM O is kinematically equivalent
to Hale’sDM O, we derive the weights on the inverse for Bleistein’s operator as

C =
1

2π A2
2

. (32)

An asymptotic true inverse for BornDM O is, then,

P2(t2,x2;h2) =
1

2π

∫
dk0

∫
dωo

1

A2
2

e−[i ωoA2t2−k0·x0(x2)] P0(ω0,k0;h = 0) (33)



8 Chemingui & Biondi SEP–84

Summary of true inverse for FK DMO

In this section we analyze the concept of an asymptotic true inverse and relate it to our ap-
plication of AM O. Figures?? and 3 compare results of different inverseDM O operators.
Figure?? is similar to the spike test of Liner (?). The left plot is an in-line section from a
common offset cube consisting of five unit-amplitude spikes. The offset is 800m and the CMP
spacing is 20 m in both directions. We compare the output of each true inverse to the output
of Ronen (?) inverse. The ideal output would be five spikes with unit amplitudes. The table
below summarizes the output of each inverseDM O for increasingly deep spikes.

Figure 2: From left to right: input data, results from Hale’s inverse, Black/Zhang’s inverse,
Bleistein’s inverse and Ronen’s inverse.nizar2-Spike[ER]

IDEAL Amp. Hale Black/Zhang Bleistein Ronen

1.00 .76 .76 .76 .35
1.00 .95 .95 .95 .66
1.00 .97 .97 .97 .77
1.00 .97 .97 .97 .82
1.00 .98 .98 .98 .86

Figure 3 consists of a similar test on an input earth model consisting of a single bed dipping
35 degrees. The original input section is a constant-offset section recorded at half offset of
800 m with 25 m CMP spacing. The input to eachDM O−1 is the output of its corresponding
forward DMO operator. We plot the peak amplitudes picked along the dipping event from the
output of each inverseDM O. The curves of amplitude picks from all three inverses perfectly
coincide with the amplitude picks from the original input section (DM O input). On the same
graph we also plot the peak amplitudes extracted from the output of Ronen’s inverse. The
results of this inverse clearly fall below their expected values.
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For both tests the results from the three differentDM O’s analyzed were identical. This
behavior follows directly from the kinematic equivalence of each of theseDM O operators.
On the spike test we also notice that the results of the inversion are more accurate from the
shallowest to the deepest spike illustrating the asymptotic nature of the true inverse. Note that
the two tests are only conclusive on the accuracy of the inverseDM O solution. Since we are
interested in the cascade of both forward and inverse operators acting at two different offsets
and azimuths, we need to understand what happens in the intermediate mapping to zero offset
prior to the forward modeling step.

Figure 3: Peak amplitudes along the dipping event from the output of various inverse DMO
algorithms. The lower amplitude curve is the result of applying Ronen’s inverse. The results
from Hale, Zhang, and Bleistein inverses are exactly the same and coincide with the predicted
peak amplitudes from the synthetic input.nizar2-comp-idmo[ER]

TRUE AMPLITUDE AMO FROM TRUE AMPLITUDE DMO

Our goal is to define an amplitude-preservingAM O from a true amplitudeDM O and its
true amplitude inverse. The definition of a true amplitude inverse follows directly from an
amplitude-preserving forward operator. To select a true amplitudeDM O we compare the
behavior of variousDM O algorithms on a dipping bed. Figure 4 shows the peak amplitudes
picked along the reflection event from the output of several forwardDM O operators. The
input data is a constant offset section modeled with a 3-D Kirchhoff style modeling algorithm.
The input was corrected for spherical-divergence spreading and forN M O effects. On the
same plot we also superimpose the peak amplitudes from a zero-offset section generated with
the Kirchhoff modeling program. As we notice, the theoretical curve almost coincides with
the output amplitudes of ZhangDM O. The amplitudes given by Hale’s algorithm fall below
the theoretical curve whereas the peak-amplitude from Bleistein’s output overshoot the correct
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amplitudes. To understand this behavior we need to examine the difference between what each
DM O is trying to accomplish.

The difference between Bleistein’sDM O and Black/Zhang’sDM O results from a philo-
sophical difference about what could be defined as “true-amplitudeDM O”. While our goal
was preserving the peak amplitude of each reflection event, Bleistein’s algorithm is based on
preserving the spectral density of the image wavelet. A second difference results from the se-
quence in the processing flow surroundingDM O. A divergence correction must be applied to
the input prior to applying Black/Zhang’sDM O, whereas both input and output of Bleistein’s
DM O decay with spherical divergence factors of1

t2
and and1

t0
respectively (?). These two

differences account for theA2 factor between the two Jacobians leading to higher weights on
Bleistein’sDM O, which results in higher peak amplitude than those on the predicted curve.

On the other hand, the difference between Black/Zhang’sDM O and Hale’sDM O results
from the fact that the former algorithm accounts for the reflection point smear and, therefore,
correctly repositions input events at their true zero-offset locations. The two Jacobians differ
by a factor of

BZ

BH
=

2A2
−1

A2
(34)

Because this ratio being always larger than 1, it leads to lower weights on Hale’s operator,
which explains the lower peak amplitudes measured along the dipping event in the output of
Hale’s DM O.

Consequently, to be consistent with our original definition of “amplitude preserved pro-
cessing”, we chose to define the amplitude function for theAM O operator from the Jacobian
of Black/Zhang’sDM O and the Jacobian of its corresponding asymptotic true inverse. In
the remainder of the paper we examine the amplitude behavior ofAM O according to this
definition.

AMPLITUDE PRESERVATION BY AMO

The AM O operator is defined as the cascade of an imaging operator that acts on data with
a given offset and azimuth, followed by a forward modeling operator that reconstructs the
data at a different offset and azimuth.AM O can also be defined as the cascade of an offset
continuation operator that changes the data absolute offset followed by an azimuth continu-
ation operator that rotates the data azimuth. These two operations do commute and in some
applications theAM O operation may reduce to simply one or the other.

To examine the amplitude behavior ofAM O, we conducted various numerical experi-
ments and tested for amplitude preservation for a dipping reflector. In a first experiment we
apply AM O as an azimuth continuation operator to change the orientation of the input. In a
second testAM O acts a 2-D offset continuation that modifies the offset of the data. In a final
test we applyAM O as a vector-offset continuation operator where both offset and azimuth
are modified during the transformation. For each experiment we compare the peak amplitudes
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Figure 4: Peak amplitudes along the dipping event from the output of various DMO algo-
rithms. The continuous curve is the the predicted result, the dashed curve is Hale’s result,
the dotted curve is Black/Zhang’s results and the large dashed curve (top curve) is Bleistein’s
result nizar2-comp-dmo[NR]

picked on theAM O reconstructed sections to the peak amplitudes extracted from identical
sections generated by synthetic modeling. To better illustrate the difference in amplitudes, we
slightly smooth the curves of amplitude picks on both sections

Azimuth continuation

Starting from a an input constant-offset section recorded at half offset of 800 m and an angle
of 5 degrees measured from the dip direction, we rotate the azimuth of the data by 40 degrees
while keeping the offset constant. We compare the reconstructed section to a constant offset
section modeled by the 3-D modeling code at an offset of 800m and azimuth of 45 degrees.
Figure 5 shows the peak amplitudes extracted from the output ofAM O along the dipping
event. On the same graph we also plot the peak amplitudes as picked from the modeled
section. Note that the two curves are very similar with the reconstructed amplitudes being few
percent lower than the predicted peak amplitudes.

Offset continuation

In the case of no azimuthal change,AM O reduces to a 2-dimensional operator that is equiv-
alent to an offset continuation operator. We applyAM O to the same input constant-offset
section recorded at half offset 800m and 5-dgree azimuth to change its offset to 400m. Figure
6 shows the peak amplitudes picked along the dipping event on the reconstructed section to-
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Figure 5: Peak amplitudes extracted from azimuth continuated section (dashed curve) and
from synthetic section (continuous plot).nizar2-azimuth[ER]

gether with the theoretical curve from the modeling program. Again we notice that both plots
follow each other very closely with an error of less than a few percent.

Vector-offset continuation

In a final experiment we apply theAM O operator to transform the input constant-offset sec-
tion of the first test to a new section with different absolute half offset of 400m and azimuth of
45 dgrees. Figure 7 shows the peak amplitudes picked along the dipping event on the recon-
structed section. For comparison, we also plot the peak amplitudes from a reference section
that is modeled with the same vector offset as the output ofAM O. The two curves match very
closely and the differences are more contributed to cumulative errors in the processing se-
quence surroundingAM O, which includes spherical divergence andN M O corrections prior
to AM O and inverseN M O after AM O.

CONCLUSION

We presented an amplitude-preserving function for theAM O operator. This amplitude func-
tion is based on the FK definition ofDM O and the definition of its true inverse. Similar to
Liner’s formalism of a true inverse for Hale’sDM O, we derived an asymptotically true inverse
for Black/Zhang’sDM O and Bleinstein’s BornDM O. Numerical experiments showed that
Black/ZhangDM O best presrves peak amplitudes. We define amplitude-preserved process-
ing as the preservation of the offset-dependent reflectivity afterAM O transformation, where
the reflectivity is considered to be proportional to the peak amplitude of each event. We used
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Figure 6: Peak amplitudes from offset-continuated section from h1=800m to h2=400m and
from a synthetic curve modeled at h=400m (continuous curve).nizar2-offset [ER]

Figure 7: Peak amplitudes extracted from a section rotated by 40 degrees and offset continu-
ated from 800m to 400m. The solid curves shows the predicted amplitudes from the synthetic
section. nizar2-amo[ER]
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Black/Zhang’sDM O cascaded with its true inverse to define an amplitude function for the
AMO operator. Results showed that we can preserve peak amplitudes for a dipping event after
applying AMO as an azimuth continuation operator, as an offset continuation operator or a
vector-offset transformation. We conclude that the new AMO amplitude function represents
an amplitude-preserving azimuth moveout.
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APPENDIX A

CONNECTING FK AMO WITH INTEGRAL AMO

This appendix describes the derivation of the amplitude function for the AMO impulse re-
sponse in the time-space domain. The determinantD in Equation (3) of the main text can be
written in terms of Biondi and Chemingui (1994) notations as:

D = −
(h2xh1y −h1xh2y)2

ω2
ot1t2

(1+β2
1)

−3/2
(1+β2

2)
−3/2

= −
12

ω2
ot1t2

(1+β2
1)

−3/2
(1+β2

2)
−3/2

= −
12

ω2
ot2

1

A−4
1 A−2

2 . (A-1)

whereβ1 andβ2 are, respectively,

β1 =
h1.k
ωot1

and β2 =
h2.k
ωot2

(A-2)

and1 is given by:

1 = h2xh1y −h1xh2y

= |h1||h2|sin(θ1 − θ2) (A-3)

Using a similar change of variable as used for the solution to the stationary path (Biondi and
Chemingui, 1994), we write

ν1 =
β1√

1+β2
1

and ν2 =
β2√

1+β2
2

. (A-4)
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whereν1 andν2, evaluated at the stationary pathk0 are

ν1 =
X sin(θ2 −ϕ)

h1sin(θ1 − θ2)
, (A-5)

and

ν2 =
X sin(θ1 −ϕ)

h2sin(θ1 − θ2)
. (A-6)

Next we substitute for (A-4) and (A-5) in (A-2) to evaluate the determinantD at the stationary
path. In a final step we evaluate the forward and inverse Jacobaians at the stationary path
and substitute back forB, C andD in equation (3) of the main text. We obtain the following
expressions for the amplitude function of theAM O operator as defined in terms of various
DM O operators and their corresponding inverses.

Hale weights

A(x,h1,h2,t1) =
ωot1
1

 (1+ν2
2)√

1−ν2
1

√
1−ν2

2

 (A-7)

Black/Zhang weights

A(x,h1,h2,t1) =
ωot1
1

(
(1+ν2

2)

(1−ν2
1)3/2(1−ν2

2)1/2

)
(A-8)

Bleistein weights

A(x,h1,h2,t1) =
ωot1
1

(
(1+ν2

2)(1−ν2
2)1/2

(1−ν2
1)3/2

)
(A-9)

Notice that the zero-offset frequencyωo enters as multiplicative factor in the expression for
AMO amplitudes, but the data is never available as zero-offset data during the AMO process.
The effect of this multiplicative factor can be approximated by a time-domain filter applied
either to the input or to the output data (Biondi and Chemingui, 1994).
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