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Short Note

Prestack migration by split-step DSR

Alexander M. Popovici1

INTRODUCTION

The DSR prestack migration equation, though defined for depth variable velocity, can be used
to image media with strong velocity variations using a phase-shift plus interpolation (PSPI) or
split-step correction. The split-step method is based on applying a phase-shift correction to the
extrapolated wavefield, a correction that attempts to compensate for the lateral velocity varia-
tions. I show how to extend DSR prestack migration to lateral velocity media and exemplify
the method by applying the new algorithm to the Marmousi dataset.

Split-step prestack migration

The depth-variable-velocityprestack migration in offset-midpoint coordinates (Yilmaz, 1979)
is formulated as

p(t = 0,ky,h = 0,z) =

∫
dω

∫
dkh ei

∑
i kzi(ω,ky,kh)1zi p(ω,ky,kh,z = 0), (1)

wherep(ω,ky,kh,z = 0) is the 3-D Fourier transform of the fieldp(t , y,h,z = 0) recorded at
the surface, using Claerbout’s (1985) sign convention:

p(ω,ky,kh,z = 0) =

∫
dt ei ωt

∫
dy e−ikyy

∫
dh e−ikhh p(t , y,h,z = 0).

The phasekz(ω,ky,kh) is defined in the dispersion relation as

kz(ω,ky,kh) ≡ −sign(ω)
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The two integrals inω andkh in equation (1) represent the imaging condition for zero-offset
and zero time (h = 0,t = 0). In parallel, the depth-variable-velocityzero-offset migration
(Gazdag, 1978) is formulated as

p(t = 0,ky,z) =

∫
dω0 ei

∑
i kzi(ω0,ky)1zi p(ω0,ky,z = 0) (3)
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where p(ω0,ky,z = 0) is the 2-D Fourier transform of the fieldp(t , y,z = 0). The phase
kz(ω0,ky) is defined in the dispersion relation as

kz(ω0,ky) ≡ −2 sign(ω0)
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4
. (4)

For zero-offset migration, the idea of a split-step correction appeared first in Gazdag and
Sguazzero’s (1984) PSPI algorithm, but it did not become a standalone technique until Stoffa
et al. (1990) reversed the order of the algorithm, permitting the correction to be applied only
once. The schematic flow of the two algorithms is shown in Figure??, and the split-step cor-
rection is represented by the box containing thee−

ω
v(x,z) 1z term. Gazdag and Sguazzero (1984)
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Figure 1: The two Fourier migration algorithms.
a) Phase Shift Plus Interpolation (PSPI).
b) Split-step Fourier Migration.mihai1-gazsplit[NR]

implement a technique in the PSPI algorithm to ensure that all the zero dips (corresponding
to the casekx = 0) are downward continued without distortion. The technique consists of
multiplying the wavefieldP(x,z,ω) with the phase-shift correction factor

e−i ω
v(x,z) 1z

prior to the Fourier transformation along theX axis. The downward extrapolation phase in-
corporates another correction factor

e
i ω
v1

1z

where the subscriptv1 denotes one of the constant velocities used in the downward extrapola-
tion step. When the velocity varies only in depthv(z), the two terms cancel each other. When
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the reflectors are flat (kx = 0), the extrapolation term becomes

e
−i

√
ω2

v2 −k2
x1z

= e−i ω
v 1z

and is cancelled by the multiplication with the phase-shift correction factor

e
i ω
v1

1z.

As a result, the zero-dip reflections are downward continued with the correct laterally varying
phase-shift

e−i ω
v(x,z) 1z.

The same result can be obtained via the Stoffa et al. (1990) algorithm, where the phase-
correction term is contained in a single term, as follows:

ei ( 1
vm

−
1

v(x,z) )ω1z.

The difference is that the downward extrapolation is done with a single velocity and the pertur-
bation slowness phase shift is performed after the downward extrapolation step. For prestack
migration, the two square roots in the phase term represent specifically the extrapolation term
for the source and for the receiver. In other words if we downward extrapolate first the source,
and second the receiver, we need in each case a different phase-correction term. The phase-
correction term includes a laterally varying velocity function,vg(xg,z) for the geophone-field
continuation andvs(xs,z) for the source-field continuation. A minor problem arises in the fact
that the DSR prestack migration equation (1) is defined in midpoint and offset coordinates,
while the velocity is defined in shot and geophone coordinates. We can easily go from one
system to another using the transformation relations

y =
xg + xs

2

h =
xg − xs

2
,

(5)

wherey andh are the midpoint and offset coordinates andxs andxg are the shot and geophone
surface coordinates. Note that the variableh represents half the total distance between the
source and geophone. The split-step correction term becomes

e
i ( 2

vm
−

1
vg(xs,z) −

1
vg(xg,z) )ω1z

.

In midpoint-offset coordinates the split-step correction term becomes

ei ( 2
vm

−
1

v(y−h,z) −
1

v(y+h,z) )ω1z.

In other words, for each midpointy, we use the velocity located aty−h (the source location)
and the velocity located aty+h (the receiver location). A diagram of the prestack migration
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Figure 2: DSR split-step prestack migration algorithm.mihai1-DSRsplit [NR]

split-step algorithm is represented in Figure??. The last box represents the multiplication with
the split-step correction exponential term, where the slowness difference1s is defined as

1s(y,h,z) =
2

vm
−

1

v(y−h,z)
−

1

v(y+h,z)
.

The DSR split-step migration algorithm was applied to the Marmousi data, a well known
prestack synthetic dataset generated by the Institut Français du Pétrole. The Marmousi dataset
is based on a real geologic model from the Cuanza basin in Angola (Aline Bourgeois et al,
1991). The geological model of the basin consists of a deltaic sediment interval deposited
upon a saliferous evaporitic series. The sediments are affected by normal growth faults caused
by the salt creep. Under the salt there is a folded carbonate sedimentation series forming a
structural hydrocarbon trap. The challenge presented to the exploration geophysicists it to im-
age the hydrocarbon trap. The complex velocity model, with strong lateral velocity variations,
is shown in Figure??a. Figure??b shows the near-offset section with a half-offseth = 100m.
Figure??a shows the result of zero-offset split-step migration applied to the near-offset sec-
tion. The full near offset is 200 meters (h=100 m). Applying a zero-offset algorithm to a
non-zero offset section obviously introduces errors in the imaging results, and the target area
is poorly imaged. In comparison, the DSR split-step prestack migration algorithm produces
an excellent image of the hydrocarbon trap, shown in Figure??b.
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The size of the prestack migration dataset used was 720x256x64 and was increased to
1024x256x64 by zero padding for the fast Fourier transform. The prestack migration took
about 20 minutes on a 1024x256x64 dataset. The prestack migration took about 20 minutes
on our CM-5 when using the entire frequency spectrum (1024 frequencies). The runtime can
be effectively cut by a factor of two by using only half of the total number of frequencies. My
implementation also sums implicitly over the offset. By using the artifact reduction techniques
described in Popovici (1993) and stationary phase tables, the algorithm can be modified to
handle separate offsets.

CONCLUSIONS

A very simple split-step modification to DSR prestack migration leads to a powerful migration
algorithm that can handle strong lateral velocity variations. The new algorithm produces very
good images of the Marmousi dataset and is computationally very efficient on our CM-5.
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Figure 3: Marmousi velocity model and near-offset section.
a. Marmousi velocity model.
b. Near-offset section (h=100 m).mihai1-marmVelandNO[NR]
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Figure 4: Zero-offset and prestack migration of the Marmousi.
a. Zero-offset migration of the near-offset section.
b. Prestack migration using DSR with a split-step term.mihai1-ZOandDSRsplit[NR]
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