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Angle-dependent reflectivity recovery by planewave synthesis
imaging

Jun Ji1

ABSTRACT

In this paper I compared imaging conditions of three different prestack migrations in
terms of angle-dependent reflectivity recovery. The imaging conditions compared are shot
profile migration with conventional imaging condition, de Brduin’s imaging condition,
and planewave synthesis imaging. The conventional imaging condition can be applied to
any reflector geometry and to arbitrary velocity, but it recovers only diagonal component
of the reflectivity matrix. de Bruin’s imaging condition recovers full reflectivity matrix but
has difficulty in implementing for arbitrary reflector geometry and under variable velocity.
Planewave synthesis imaging takes advantages from both conventional and de Bruin’s
imaging condition.

INTRODUCTION

During the past decade, the use of AVO (amplitude versus offset) analysis in petroleum ex-
ploration has become increasingly common. Even though the goal of AVO analysis is to
observe the anomalous angle-dependent reflectivity behavior of a reflector, the nameampli-
tude versus offsetwas chosen because most of the amplitude analysis is done in the common
midpoint domain. To analyze the properties of the reflector correctly, we need to know the
angle-dependent reflectivity, which is often called AVA (amplitude versus angle). When a
target reflector is close to horizontal, and velocity does not change much in the lateral direc-
tion, angle-dependent reflectivity can be obtained by measuring amplitudes along the offset,
followed by ray tracing for each event to determine the corresponding incidence angle to the
reflector. If a target reflector has a complex structure and strong lateral velocity variation,
however, AVO may not be the same as AVA because the amplitude can be affected not only
by the angle-dependent reflectivity but also by wave focusing or defocusing caused by prop-
agation through complex velocities or structures. Resnick et al. (1987) discuss the fact that
dips introduce serious problems for AVO analysis. They conclude that performing prestack
migration on the data before doing AVO analysis is a necessity. Most present day seismic
migration schemes determine only the reflection coefficient of the zero offset or averaged re-
flectivity over a range of reflection angles for each depth point in the subsurface. This is
mainly due to a simplified imaging condition. Recently, de Bruin et al. (1990) proposed an
imaging technique that produces angle-dependent reflectivity. Unfortunately, this scheme is
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not easy to apply when the reflector is not flat, which commonly happens in the real world.
Planewave synthesis imaging (Ji, 1993) is a promising alternative for the angle-dependent re-
flectivity recovery because it can be applied to any arbitrary structure and implicitly uses the
same imaging condition as the one of de Bruin. This paper describes the meaning of the im-
age obtained by planewave synthesis migration. After reviewing the imaging conditions of
the conventional prestack migration and of de Bruin et al. (1990), I discuss the equivalence
of that of the planewave synthesis imaging. Then I show some examples of angle-dependent
reflectivity recovery of each imaging method using synthetic data for comparison.

THE FORWARD MODEL

Since reflectivity imaging is an inversion from seismic data collected at the surface, it is
important to understand the implied forward model that relates the reflectivity to surface
seismic data. After preprocessing for multiple reflections, the monochromatic 2-D forward
model(Berkhout, 1985) for a seismic shot record can be written as follows:

gj (z0) = F(z0,z0)sj (z0), (1)

with

F(z0,z0) =

N∑
n=1

W(z0,zn)R(zn)W(zn,z0). (2)

In equation (1) source vectorsj (z0) and measurement vectorgj (z0) refer to one seismic exper-
iment at the surfacez = z0 with source location atx = xj . In equation (2), the propagation
operatorsW(zn,z0) andW(z0,zn) quantify the full propagation effects (down and up, respec-
tively) between depth levelsz0 and zn, and the reflectivity matrixR(zn) defines the elastic
angle-dependent reflection properties caused by inhomogeneities at depth levelzn. All ma-
trices and vectors refer to one temporal Fourier component. Equations (1) and (2) are valid
for single-component as well as multi-component measurement of both 2-D and 3-D data
(Berkhout, 1985).

Propagation operators

In order to model seismic data correctly, propagation operatorW should be a time extrapo-
lation since wavefield extrapolate in time physically. However, the time extrapolation is not
efficient in computation. Instead we use depth extrapolation, which is efficient in computa-
tion. If we use depth extrapolation as a propagation operator, however, we cannot model the
correct amplitude of the wavefield because the energy of the wavefield in a lossless medium is
preserved in time, not in depth. This does not mean that the amplitude of wavefield obtained
by depth extrapolation is totally incorrect because most of the energy recorded in reflection
seismic travels near the vertical direction and the wavefield becomes a plane wave in the far
distance where the energy of the wavefield is preserved both in time and depth. Therefore, if
the source wavefield is a plane wave, the amplitude of the wavefield after depth extrapolation
behaves similarly to that of the wavefield obtained by time extrapolation.
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Reflectivity matrix

The property of the angle-dependent reflectivity matrixR(zn) in equation (1) becomes clearer
if we look at it in the Fourier domain as de Bruin et al. (1990) does. In order to obtain an ex-
pression forR(kx,zn,ω), we start with the well-known angle-dependent reflection coefficient
R(zn,α) for two acoustic half-spaces separated by an interface atzn:

R(zn;α) =

ρ2c2cosα −ρ1

√
c2

1 −c2
2 sin2α

ρ2c2cosα +ρ1

√
c2

1 −c2
2 sin2α

, (3)

wherec1 andc2 are the velocities,ρ1 andρ2 are the mass densities of the upper and lower half-
space, respectively, andα is the angle of incidence. By substitutingk1 = ω/c1, k2 = ω/c2, and
kx = k1sinα into equation (3) we obtain

R(kx,zn,ω) =

ρ2

√
k2

1 −k2
x −ρ1

√
k2

2 −k2
x

ρ2

√
k2

1 −k2
x +ρ1

√
k2

2 −k2
x

. (4)

As an example, Figure 1 shows the angle-dependent reflection coefficients in the (kx,ω) and
(x,ω) domains whenc1 = 1500m/s, c2 = 3000m/s, ρ1 = 1000kg/m3, andρ2 = 1000kg/m3.
Since the reflection is a convolution of the downgoing wavefield with the reflection coefficient,
the reflectivity matrix in equation (2) can be visualized by taking the reflection coefficient for
a given frequency in Figure 1 and making a matrix whose columns are down-shifted reflection
coefficients of each other. Figure 2 shows this reflectivity matrix whenω = π/4.

Figure 1: Angle-dependent reflection coefficients in (kx,ω) (left) and (x,ω) (right) domains
whenc1 = 1500m/s, c2 = 3000m/s,ρ1 = 1000kg/m3, andρ2 = 1000kg/m3. jun1-rc-wk-wx
[ER]
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Figure 2: Reflectivity matrixR for
ω = π/4. jun1-rc-mat [ER]

REFLECTIVITY IMAGING

For reflectivity imaging, we extrapolate the upcoming and downgoing wavefield recursively
for each depth level as follows:

g(zn) = W∗(zn,zm)g(zm) (5)

and

s(zn) = W(zn,zm)s(zm), (6)

where∗ denotes the adjoint and implies that the upcoming waves are extrapolated backward
in time; the downgoing waves, forward in time. If we assume that the extrapolation operator
is unitary, from the forward model (1) we have

g(zn) = R(zn)s(zn). (7)

Using the above relation, the imaging is performed to retrieve reflectivity matrixR(zn) from
g(zn) ands(zn) for each depth level. One of the most important properties of the extrapolation
operator is the unitary that makes equation (7) true. Even though many algorithms based on
the wave equation are accepted as unitary operators, each algorithm has a different property in
terms of closeness to unitary. For this paper, I chose the split-step Fourier method (Stoffa and
Fokkema, 1990) because of its pseudounitary property (Appendix A).

Conventional prestack imaging

In conventional prestack imaging as in shot profile imaging (Claerbout, 1985), the reflectivity
is obtained by deconvolving the downgoing wavefield from the upcoming wavefield in the
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(x,ω) domain as follows:

X(x,zn,ω) =
g(x,zn,ω)s∗(x,zn,ω)

s(x,zn,ω)s∗(x,zn,ω)+ ε2
, (8)

whereε2 represents a small positive value introduced for stability becauses(x,zn,ω) may
contain zeros. Then imaging is carried out by summation over all frequencies to extract the
zero-time component of the reflectivity as follows:

R(x,zn) =

∑
ω

X(x,zn,ω). (9)

Therefore we obtain one reflection coefficient value for each point of the subsurface. Since we
performed the deconvolution in the (x,ω) domain by dividing the source wave from received
wave in equation (8), we implicitly assumed the reflectivity matrixR is a diagonal matrix.
The diagonality of the reflectivity matrixR means locally reacting reflection coefficient. If we
assume that source wavefield acts like a planewave locally at reflector, the imaging condition
used in the profile imaging will produce the reflection coefficient of the angle that corresponds
to the local incidence angle of the source wavefield at each point of the subsurface.

de Bruin’s imaging condition

In order to retrieve the full reflectivity matrix, de Bruin et al. (1990) proposes another imag-
ing condition. Instead of deconvolving in the spatial domain, they deconvolve in the Fourier
domain (kx,ω) after Fourier transforming both downgoing and upcoming waves, as follows:

X(kx,zn,ω) =
g(kx,zn,ω)s∗(kx,zn,ω)

s(kx,zn,ω)s∗(kx,zn,ω)+ ε2
. (10)

The next step is to transformX(kx,zn) into X(p,zn) by replacing the wavenumberkx with the
ray parameterp = kx/ω. Then imaging is carried out in thep−ω domain along the lines of
the constantp:

R(p,zn) =

∑
ω

X(p,zn,ω). (11)

This imaging condition retrieve the full angle-dependent reflectivity. However, since the de-
convolution is performed in the Fourier domain, it implies a spatially invariant reflectivity,
which is the case of horizontal reflector in constant velocity medium. Thus it has a disadvan-
tage that is difficulty in implementing.

Imaging condition in planewave synthesis migration

In planewave synthesis imaging, the deconvolution of the downgoing wavefield from the up-
coming wavefield is performed in the space domain as profile imaging does. As explained in
an earlier section, the deconvolution in the space domain implies diagonality of reflectivity
matrix and the diagonal property is valid only if the source wave acts like a planewave locally.
This is the case of planewave synthesis migration because it synthesize a planewave source
along the reflector before migration. Therefore, in planewave synthesis migration, we retrieve
the angle-dependent reflectivity by using a conventional imaging condition.
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COMPARISONS WITH A SIMPLE EXAMPLE

For the purposes of the comparison, let us consider the simple acoustic subsurface model
shown in Figure 3a. Figure 3b displays the simulated seismic response of one shot record and
shows AVO effect clearly.

To obtain the angle-dependent reflectivity with conventional prestack imaging, I applied
shot profile imaging with phase-shift extrapolation, acquired the offset-dependent reflectivity
image (Figure 4a), and transformed it to angle-dependent reflectivity image (Figure 4b) using
the incidence angle to each depth location. Figure 5 shows an angle-dependent reflectivity
image obtained using de Bruin’s imaging condition; Figure 6, one obtained using planewave
synthesis imaging. All of them retrieve the general amplitude increasing pattern with respect to
the incidence angle. To see the amplitude more clearly, I picked amplitude of each reflectivity
image at the reflector depth and plotted the amplitude as a function of the incidence angles
(Figure 7). It shows the reflectivity obtained by the planewave synthesis is more close to the
theoretical solution.

Figure 3: (a): Subsurface model of a horizontally layered acoustic medium, containing one
reflector at depthz = 500m. (b): Simulated seismic response from the acoustic model.
jun1-modl-shot[ER]

CONCLUSIONS

Although the imaging condition in planewave synthesis imaging is equivalent to that of con-
ventional profile imaging, planewave synthesis imaging recover full reflectivity matrix as de
Bruin’s imaging condition. This is achieved due to the property of the source wavefield synthe-
sized. Thus planewave synthesis imaging is a promising method to recover angle-dependent
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Figure 4: Offset-dependent (a) and angle-dependent (b) reflectivity image obtained by profile
imaging with the conventional imaging condition.jun1-prf-img [ER]

Figure 5: Angle-dependent reflectiv-
ity image obtained by profile imag-
ing with de Bruin’s imaging condi-
tion. jun1-prf-db-img [ER]

Figure 6: Angle-dependent reflectiv-
ity image obtained by the planewave
synthesis imaging. jun1-pws-img
[CR]
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Figure 7: Angle-dependent reflection
coefficient as a function of the an-
gle of incidence: (a) the theoretical
result, (b) the result of profile imag-
ing with conventional imaging con-
dition, (c) the result of profile imag-
ing with de Bruin’s imaging condi-
tion, and (d) the result of planewave
synthesis imaging.jun1-ava [ER]

reflectivity for a nonflat reflector when lateral velocity changes. A test to a simple synthetic
data showed that planewave synthesis imaging among three imaging techniques provide the
closest result to the theoretical solution.
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APPENDIX A

PROPERTY OF SPLIT-STEP FOURIER EXTRAPOLATION

Unitary versus Pseudounitary

A linear operator is called a unitary operator, if its adjoint equals to the inverse of it as follows:

W∗
= W−1. (A-1)
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The unitary operator has the property that each eigenvalue of it is on the unit circle in complex
plane.

W = Q3Q∗ (A-2)

with |3| = I . Pseudounitary is a property that is closely related to the unitary. The adjoint of
a pseudounitary operator is not the inverse of it.

W∗
6= W−1. (A-3)

The pseudounitary operator, has only two kinds of eigenvalues the one that is on the unit circle
in complex plane like that of unitary operator, and the other is zero. If we apply the pseu-
dounitary forward operator followed by its adjoint operator, the resulting operator becomes
idempotent operator. Therefore this property can be used as criterion for identifying a pseu-
dounitary operator.

Split-step Fourier extrapolation operator

Split-step Fourier extrapolation (Stoffa and Fokkema, 1990) consists of two-step extrapolation,
which is a phase shifting in the (k,ω) domain followed by an additional phase shifting in the
(x,ω) domain. Let us consider a simple case which consist of two depth levels extrapolation.
Then the forward operator can be expressed as follows:

W = F∗

t exp−i p11z F∗

x exp−i p21z Fx exp−i p11z F∗

x exp−i p21z Fx Ft , (A-4)

whereFx andFt represent Fourier transform along the space and the time, respectively. The
phasesp1 and p2 quantify the amount of phase shift in the (x,ω) and in the (k,ω) domain,
respectively and defined as follows:

p1(x,ω) = ω1u(x) (A-5)

and

p2(k,ω) = ωu0

√
1− (

k

ωu0
)2 (A-6)

whereu0 represents the reference slowness and1u(x) is variation of the slowness from the
reference slowness. Then the adjoint of the forward operator becomes

W∗
= F∗

t F∗

x expi p21z Fx expi p11z F∗

x expi p21z Fx expi p11z Ft . (A-7)

If we apply the adjoint operator after the forward operator as follows:

W∗W = F∗

t F∗

x P∗

2 Fx P∗

1 F∗

x P∗

2 Fx P∗

1 Ft F
∗

t P1F∗

x P2Fx P1F∗

x P2Fx Ft (A-8)

with P1 = exp−i p11z andP2 = exp−i p21z. WhereP1 is unitary operator butP2 is pseudounitary
operator because we substitute 0 for evanescent component that is the case of thatp2 becomes



10 Ji SEP–84

imaginary. If I group the operators so that they are in the same domain, for example (k,ω)
domain as follows:

W∗W = F∗

t F∗

x (P∗

2 )(Fx P∗

1 F∗

x )(P∗

2 )(Fx P∗

1 Ft F
∗

t P1F∗

x )(P2)(Fx P1F∗

x )(P2)Fx Ft

= F∗

t F∗

x Ip I I p I I p I I pFx Ft

= F∗

t F∗

x IpFx Ft (A-9)

where I is identity matrix andIp is idempotent matrix with some elements are 1 and others
are zeros. Therefore the split-step Fourier extrapolation is pseudonunitary.
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