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Variational structure of inverse problems in wave propagation
and vibration

James G. Berryman1

ABSTRACT

Practical algorithms for solving realistic inverse problems may often be viewed as prob-
lems in nonlinear programming with the data serving as constraints. Such problems are
most easily analyzed when it is possible to segment the solution space into regions that are
feasible (satisfying all the known constraints) and infeasible (violating some of the con-
straints). Then, if the feasible set is convex or at least compact, the solution to the problem
will normally lie on the boundary of the feasible set. A nonlinear program may seek the
solution by systematically exploring the boundary while satisfying progressively more
constraints. Examples of inverse problems in wave propagation (traveltime tomography)
and vibration (modal analysis) are presented to illustrate how the variational structure of
these problems may be used to create nonlinear programs using implicit variational con-
straints.

INTRODUCTION

Although the most common method used to analyze inverse problems is perturbation theory
and/or linearization, it is generally recognized that most inverse problems of practical interest
are mathematically nonlinear. The inherent nonlinearities lead to the necessity of distinguish-
ing local minima from global minima. Optimization methods based on objective functionals
typically produce “solutions” that minimize the functional “locally” —i.e., in the vicinity of
the starting point of the minimization process. The methods discussed in the present paper
have been developed specifically to improve our insight into the structure of certain classes of
nonlinear inverse problems. Furthermore, once this structure is understood, methods of solu-
tion of the inverse problems using nonlinear programming methods are immediately suggested
by the particular variational structure observed. The first example presented uses vibration fre-
quencies of a taut string to deduce its mass distribution. The pertinent variational principle for
this problem is Rayleigh-Ritz. The second example uses traveltime data to deduce wave ve-
locity using Fermat’s principle of least-time. The remaining examples use frequencies of free
oscillation of the Earth to deduce density and elastic parameters. The pertinent variational
principle is again Rayleigh-Ritz, but significant differences in the variational structure arise
between these examples and the string density vibration analysis problem. The structures pos-
sessed by members of this set of problems appears to span the range of possible variational
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Modal analysis for string density

Figure 1: Density distribution of the string may be determined by analyzing the eigenfrequen-
cies associated with its modes of vibration.

structures and provides some new insights into potential inversion algorithms for some of the
problems.

STRING VIBRATION ANALYSIS

The equation of vibration for a simple string is

ρ
∂2u

∂t2
= T

∂2u

∂x2
, (1)

wheret is the time,x is the spatial coordinate of the string along its length,ρ(x) is the density
distribution of the string,T is the tension in the string (assumed constant), andu(x,t) is the
normal displacement of the string from its equilibrium position as a function of both position
and time. The ends of the string are fixed, so the boundary conditions areu(0,t) = 0 = u(1,t).
I assume that the string’s temporal motion may be decomposed into its Fourier components
so that I may study standing waves on the plucked string. The time dependence is assumed to
separate out in one of the forms sinωt , cosωt , or expi ωt , whereω = 2π f is angular frequency
with dimensions of radians/sec, whilef is frequency inHz. Then, the equation (1) reduces to

−ω2ρu = T uxx, (2)

where I have now introduced the subscript notation for derivatives such thatux ≡ ∂u/∂x,
uxx ≡ ∂2u/∂x2, etc. I assume that the tensionT in the string is known, but the density dis-
tribution ρ(x) of the string is unknown. Our goal is to determine to what extentρ(x) can be
determined using knowledge of modes of vibration of the string. In particular, I assume that
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some measurements of the vibration frequencies for standing waves have been made. Letωn

be the eigenfrequency andun(x) the eigenfunction of then-th Fourier component forn ≥ 1.
Highern corresponds to eigenfunctions with more internal nodes,e.g., n = 1 has no internal
nodes,n = 2 has one internal node, etc. Then, after choosing unit tensionT = 1, I multiply
(2) byun(x) and integrate along the length of the string to show that

ω2
n(ρ) =

∫ 1
0 u2

n,x(x)dx∫ 1
0 ρ(x)u2

n(x)dx
. (3)

To arrive at (3), I integrated once by parts (
∫

unun,xx dx = −
∫

u2
n,x dx) using the fact that

un(0) = 0 = un(1) to eliminate the boundary contribution. Equation (3) is an identity satisfied
by then-th eigenfrequency and relating it to the integrated properties of then-th eigenfunction.
Now the Rayleigh-Ritz method for characterizing eigenvalues [Courant and Hilbert, 1953]
may be applied to the string problem and it shows that

ω2
1(ρ) ≤ R[ρ,v1] ≡

∫ 1
0 v2

1,x(x)dx∫ 1
0 ρ(x)v2

1(x)dx
, (4)

whereR is the Rayleigh-Ritz quotient withv1(x) being any trial function satisfying the bound-
ary conditionsv1(0) = 0 = v1(1) whose first derivative with respect tox is finite everywhere
along the interval containing the string. When the string density distributionρ(x) is known,
the Rayleigh-Ritz method may be used as a numerical method for finding estimates of both the
eigenfrequencyω1 and the eigenfunctionu1(x); the theory shows thatR[ρ,v1] ≡ ω2

1(ρ) if and
only if v1(x) = u1(x) almost everywhere. Similarly, if I impose constraints on the trial function
such as requiringvn(x) to haven− 1 interior nodes [Coddington and Levinson, 1955], then
(4) generalizes to

ω2
n(ρ) ≤ R[ρ,vn] ≡

∫ 1
0 v2

n,x(x)dx∫ 1
0 ρ(x)v2

n(x)dx
. (5)

The characteristic frequencies (theωs) are those defined in (3) for the higher order modes.
I will sometimes refer to the equations (4) and (5) as the “forward problem,” since in these
equations I assume that the density distribution is a known quantity. The “inverse problem”
is the harder problem of taking measured values of the eigenfrequenciesωn and attempting to
solve for the unknown density distributionρ(x).

Feasibility analysis

There are two tricks that make it possible in some cases to use the variational functionals to
analyze inversion problems. The first trick is a result of what I call the “scale invariance”
property of the eigenfunctions in certain problems. For a given density distributionρ and its
corresponding eigenfunctionu(x), the only effect of multiplyingρ by a constantγ is to change
the eigenfrequency by the factor 1/

√
γ . This result follows since

R[γρ,u] = R[ρ,u]/γ , (6)
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Figure 2: Feasible part of the density space is determined implicitly by the explicit boundaries
defined by the frequency data.

which implies thatω(γρ) = ω(ρ)/
√

γ . I conclude that each eigenfunctionu(x) is determined
only by the relative variations in the density, not by the absolute scale. The second trick is
a result of the linear dependence of the denominator of the Rayleigh-Ritz functional on the
density distributionρ. I take advantage of this linearity inρ with greater ease by working with
the reciprocal ofR, so I first note that

1

R[ρ,v]
=

∫
ρ(x)v2(x)dx∫

v2
x(x)dx

≤ ω−2(ρ). (7)

Now, if I have made measurements of some of the eigenfrequencies of the string, I can ask the
following question: Are there density distributions that violate the inequality in (7)? That is,
if I try to compute the left hand side of (7) using an arbitrary trial density distributionτ (x),
when will the inequality be satisfied and when will it be violated? I use the answers to these
questions to define two distinct classes of trial model density distributionsτ (x):

If
1

R[τ ,vn]
≤ ω2

n(ρ) for each measured frequencyωn, thenτ (x) is feasible. (8)

However,

if
1

R[τ ,vn]
> ω2

n(ρ) for any measured frequencyωn, thenτ (x) is infeasible. (9)

As defined here, the concepts offeasibleandinfeasibletrial density distributions depend ex-
plicitly on the available dataωn and implicitly on the trial functionsvn(x). However, it is also
possible to show [Berryman, 1991] that universal (global) feasible and infeasible sets exist that
are independent of the particular trial functions chosen (dependence on the particular choice
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of the subset of those measured frequencies which are used in the analysis still remains). The
concepts offeasibleand infeasiblesets are commonly found in texts on nonlinear program-
ming methods [Fiacco and McCormick, 1990]. Since the method I develop for solving the
inverse problem is a type of nonlinear programming method, it is not surprising that these
concepts also arise in the context of numerical methods for solving inverse problems. Now,
I derive a very useful property of the class of feasible density distributions. Consider some
trial eigenfunctionv(x) and twofeasibletrial densitiesτa(x) andτb(x), which therefore (by
assumption) satisfy

1

R[τa,v]
≤ ω−2(ρ) and

1

R[τb,v]
≤ ω−2(ρ). (10)

Let λ be a number in the range 0≤ λ ≤ 1. Then, taking a linear combination of the two
expressions in (10) gives

λ

R[τa,v]
+

1−λ

R[τb,v]
≤ ω−2(ρ). (11)

But, the left hand side of (11) may be rewritten as∫
[λτa(x)+ (1−λ)τb(x)] v2(x)dx∫

v2
x(x)dx

=
1

R[τλ,v]
, (12)

where I have defined the convex combination of the trial densities to be

τλ(x) ≡ λτa(x)+ (1−λ)τb(x). (13)

Combining (11) and (12) shows that

1

R[τλ,v]
≤ ω−2(ρ). (14)

But any trial function that satisfies the analog of (14) for all frequencies considered from the
measurement set is by definition feasible. So, ifτa(x) andτb(x) are both feasible, their convex
combinationτλ(x) is also feasible. The definition of a convex set is this: a set such that the
convex combination —e.g., τλ = λτa + (1−λ)τb — of any two members is also a member
of the set. So, this fact implies thatthe set of all feasible density distributions for a given set
of vibration data (and a given set of trial eigenfunctions) is a convex set. In general, convex
sets are very useful in computations because they are often compact and always have smooth
boundaries. Now, the first trick (scale invariance) plays an interesting and important role in the
analysis. Suppose I have any trial density distributionτu and I have found the eigenfunctions
un(x) and eigenvaluesωn(τu) associated with this distribution. Then, the eigenfunctionsun(x)
are also the eigenfunctions for all densities of the formγ τu(x), whereγ is an arbitrary positive
scalar. It is not hard to show [Berryman, 1991] that there always exists a choice ofγ = γu

such thatγuτu(x) lies exactly on the boundary of the feasible set for the inversion problem.
It follows then that, ifγ ≤ γu, the densityγ τu lies in the feasible part of the model space;
while, if γ > γu, the densityγ τu lies in the infeasible part. This characteristic of the feasible
set allows us to produce a simple geometrical interpretation of the feasible set. In particular,
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for the vibrating string inversion problem,the feasible set of model densities is compact and
occupies a convex region in the neighborhood of the origin of the model space[i.e., near
ρ(x) ≡ 0]. I easily prove this statement. First note that a mass density must be nonnegative, so
the physical model space is the convex set (actually a cone) of all possible nonnegative density
distributions. Then, by taking the trial eigenfunction to bev1(x) = sinπx with the trial density
τ (x) = τ0 (constant), and noting that

1

R[τ0,v1]
=

τ0
∫

sin2πx dx

π2
∫

cos2πx dx
=

τ0

π2
(15)

satisfies the feasibility constraint if

τ0 ≤ π2ω−2
1 (ρ). (16)

The first measured eigenfrequencyω1 then determines an upper bound on the value ofτ0

for constant density models. For nonconstant models such as the two component string with
τ (x) = τa for 0 ≤ x < 1

2 andτ (x) = τb for 1
2 < x ≤ 1, the same argument shows that

1

R[τ ,v1]
=

τa
∫ 1

2
0 sin2πx dx+ τb

∫ 1
1
2

sin2πx dx

π2
∫ 1

0 cos2πx dx
=

τa + τb

2π2
≤ ω−2

1 (ρ). (17)

Thus, (17) show thatτb is bounded above by the straight line

τb ≤ 2π2ω−2
1 (ρ)− τa, (18)

producing tighter bounds onτb asτa increases. Whenτa = τb, this problem reduces to the
constant model result found earlier. These simple examples can be used to produce further
restrictions on model densities. Although the analysis presented is fine for the lowest eigen-
frequency, complications arise for the higher frequenciesωn, for all n ≥ 2. For these higher
eigenfrequencies, the Rayleigh-Ritz functional requires some constraints on the trial eigen-
functions (i.e., for ωn, the trial functionvn should be orthogonal to the eigenfunctionsum

for m < n). These restrictions on the eigenfunctions guarantee the existence of correlations
between the model and the trial eigenfunctions that would be neglected if we tried to make
direct use of the preceding analysis for the higher order eigenfunctions. I will show what the
consequences of these correlations are when I present the general analysis of variational struc-
ture for inverse problems later in the paper. The main result will be that a feasible set for the
Rayleigh-Ritz variational problem still exists, but it can be nonconvex when the variational
functionals become nonlinear as they do when such correlations arise.

Algorithm

Now I describe a general algorithm for solving the inverse problem for a two-segment string.
This algorithm involves a lot of forward modeling, but will always produce a good approxi-
mation to the solution. First, note that the symmetry of the problem guarantees that if (τ1,τ2)
solves the problem then so does (τ2,τ1). (I am presently considering only the frequencies as
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Figure 3: By scaling many density distributions, the location of the feasibility boundary can
be mapped.

data. This nonuniqueness of the solution can be easily removed by considering the eigenfunc-
tions as data as well.) Thus, I only need to consider half of the positive quadrant, say for
models such thatτ1 ≥ τ2. Then, picking models evenly spaced in angle for (say) 10 angles up
to θ = π/4, so (τ1,τ2) = (τ0cosθ ,τ0sinθ ) with θ = π/40,π/20,. . . ,π/4. (The precise value of
τ0 does not matter, since these points will eventually be scaled onto the feasibility boundary.)
Having chosen a set of initial points, I now do forward modeling on each of these string mod-
els. After scaling to the feasibility boundary, I check satisfaction of the data and pick the two
adjacent points that best satisfy the data. Then, I divide the angular region bracketed by these
two angles into 10 smaller angles, and repeat this process until I have a satisfactory solution.
The algorithm just described is basically a “shooting” algorithm for the inverse problem. The
algorithm just described is probably overly complex for the two component string problem.
It is not hard to show that the two lowest frequencies are enough to determine the densities
of the two segments (although not enough to tell which is which) when it is known that the
segments are of equal length. For such a simple problem, other algorithms that are more ef-
ficient could be devised to make optimal use of this information. The real advantage of the
approach becomes more apparent when we consider more complex models involving three or
more string segments. The inversion algorithm just described is easily generalized to many
segments of constant density and the resulting algorithm is complicated only by the need to
define an efficient means of choosing points in the model space for each forward modeling
phase of the calculation. It is also clear that algorithms of this type can easily be parallelized,
with an individual processor assigned to do a single forward modeling computation at each
step of the algorithm.
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TRAVELTIME INVERSION PROBLEM

A typical problem arising in seismic traveltime inversion in 2- and 3-dimensional heteroge-
neous media is the need to infer the (isotropic) compressional-wave slowness (reciprocal of
velocity) distribution of a medium, given a set of observed first-arrival traveltimes between
sources and receivers of known location within the medium [Dines and Lytle, 1979; Lytle and
Dines, 1980]. This problem is common for crosswell seismic transmission tomography imag-
ing a 2-D region occupying the plane between two vertical boreholes in oil field applications. I
could also consider the problem of inverting for wave slowness when the absolute traveltimes
are not known perfectly, as is normally the case in earthquake seismology for whole Earth
structure [Aki and Richards, 1980].

Wave slowness models

When a sound wave or seismic wave is launched into a medium, it takes time for the influence
of the wave to progress from a point close to the source to a more distant point. The time
taken by the wave to travel from one point of interest to the next is called thetraveltime.
The local slownessis the inverse of the local wave speed. It is most convenient to develop
inversion and tomography formulas in terms of wave slowness models, because the pertinent
equations are linear in slowness. I might consider three kinds of slowness models. I allow
the slowness to be a general functions(x) of the positionx. However, I often make one of
two more restrictive assumptions that (i) the model comprises homogeneous cells (in 2-D), or
blocks (in 3-D), withsj then denoting the slowness value of thej th cell, or block. Or (ii ) the
model is defined in terms of a grid with values of slowness assigned at the grid points together
with some interpolation scheme (bilinear, trilinear, spline, etc.) to specify the values between
grid points. Of course, as cells/blocks become smaller and smaller (down to infinitesimal),
I think of cells/blocks of constant slowness as a special case of continuous models, or of
continuous models as a limiting case of cells/blocks. When it is not important which type of
slowness model is involved, I refer to the model abstractly as a vectors in a vector spaceS.
For a block model withn blocks, I haveS = Rn, then-dimensional Euclidean vector space.
A continuous slowness model, on the other hand, is an element of a function space, e.g., the
set of continuous functions of three real variables. No matter how I parameterize the model,
these models necessarily have far fewer parameters than the actual medium they are intended
to represent. Thus, these models are analogous to cartoons, trying to capture the main features
with the minimum of detail.

Fermat’s principle and traveltime functionals

The traveltime of a seismic wave is the integral of slowness along a ray path connecting the
source and receiver. To make this more precise, I define two types of functionals for traveltime.
Let P denote an arbitrary path connecting a given source and receiver in a slowness models.
I will refer to P as atrial ray path. I define a functionalτ P, which yields the traveltime along



SEP–84 Wave propagation and vibration 9

pathP. Lettings be the continuous slowness distributions(x), I have

τ P[s] =

∫
P

s(x)dl P, (19)

wheredl P denotes the infinitesimal distance along the pathP. Fermat’s principlestates that
the correct ray path between two points is the one of least overall traveltime,i.e., it minimizes
τ P(s) with respect to pathP. Let us define a second traveltime functionalτ ∗ to be the func-
tional that yields the traveltime along the Fermat (least-time) ray path. Fermat’s principle then
states

τ ∗[s] = min
P∈Paths

τ P[s], (20)

wherePaths denotes the set of all continuous paths connecting the given source and receiver.
The particular path that produces the minimum in (20) is denotedP∗. If more than one path
produces the same minimum traveltime value, thenP∗ denotes any particular member in this
set of minimizing paths. Substituting (19) into (20), I haveFermat’s principle of least time:

τ ∗[s] =

∫
P∗

s(x)dl P∗

= min
P

∫
P

s(x)dl.P (21)

The traveltime functionalτ ∗[s] is well-known to be stationary with respect to small variations
in the pathP∗(s).

Seismic inversion and tomography

Suppose I have a set of observed traveltimes,t1, . . . , tm, from m source-receiver pairs in a
medium of slownesss(x). Let Pi be the Fermat ray path connecting thei th source-receiver
pair. Neglecting observational errors, I write∫

Pi

s(x)dl Pi = ti , i = 1,. . . ,m. (22)

Given a block slowness model, letl i j be the length of thei th ray path through thej th cell:

l i j =

∫
Pi ∩cellj

dl Pi . (23)

For n cells, Eq. (22) can then be written

n∑
j =1

l i j sj = ti , i = 1,. . . ,m. (24)

Note that for any giveni , the ray-path lengthsl i j are zero for most cellsj , as a given ray
path will in general intersect only a few of the cells in the model. I rewrite (24) in matrix
notation by defining the column vectorss andt and the matrixM as follows: Equation (24)
then becomes the basic equation of forward modeling for ray equation analysis:

Ms = t. (25)
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Figure 4: Schematic illustration of ray paths through a cell slowness model.

Note that equation (25) may be viewed as a numerical approximation to equation (21),i.e.,
it is just a discretized (or finite element) version of the equation. Equation (25) may be used
for any set of ray paths, whether those ray paths minimize (21) or not. If the ray paths used
to form the matrixM are actually minimizing ray paths,M is then implicitly a function of
the slowness models. The methods developed apply to both two-dimensional and three-
dimensional imaging applications.

Feasibility analysis for traveltime inversion

The idea of using feasibility constraints in nonlinear programming problems is well estab-
lished [Fiacco and McCormick, 1990]. However, comparatively little attention has been given
to the fact that physical principles such as Fermat’s principle actually lead to rigorous fea-
sibility constraints for nonlinear inversion problems [Berryman, 1991]. The main practical
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Figure 5: Scalings to find feasibility boundary point. Feasibility boundary in data space is
explicitly determined by the data. Feasibility boundary in model space is implicitly determined
through the traveltime calculation.

difference between the standard analysis in nonlinear programming and the analysis being
developed for nonlinear inversion is that, whereas the functions involved in nonlinear pro-
gramming are often continuous, differentiable, and relatively easy to compute explicitly, the
functionals in nonlinear inversion (e.g., the traveltime functional) need not be continuous or
differentiable and, furthermore, are very often rather difficult to compute. Feasibility con-
straints for such inversion problems are generally implicit, rather than explicit. Equation (22)
assumes thatPi is one of Fermat’s (least-time) paths and leads to the equalities summarized in
the vector-matrix equationMs = t. Now suppose instead thatPi is a trial ray path which may
or may not be a least-time path. Fermat’s principle allows us to write∫

Pi

s(x)dl Pi ≥ ti , (26)

where nowti is the measured traveltime for source-receiver pairi . When I discretize (26) for
cell or block models and all ray pathsi , the resulting set ofm inequalities may be written as

Ms ≥ t. (27)

Equations (26) and (27) can be interpreted as a set of inequality constraints on the slowness
models. Whensobeys thesem constraints, I say thats is feasible. When any of the constraints
is violated, I says is infeasible. The set of inequalities collectively are called thefeasibility
constraints. The concept of the feasibility constraint is quite straightforward in nonlinear
programming problems [Fiacco and McCormick, 1990] whenever the constraints may beex-
plicitly stated for the solution vector. However, in these inversion problems, an additional
computation is required. The feasibility constraints areexplicit for the traveltime data vector,
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Figure 6: By scaling many slowness vectorss, the location of the feasibility boundary in the
model space can be mapped.

but they are onlyimplicit (i.e., they must be computed) for the slowness vector. This added
degree of complication is unavoidable in the inversion problem, but nevertheless it is also very
easily handled computationally with only very minor modifications of the usual nonlinear in-
version algorithms. Now supposes1,s2 are two model vectors in the feasible set for a given
set of ray paths{P}. Let sλ = λs1 + (1−λ)s2 be the convex combination of these two vectors,
where 0≤ λ ≤ 1. Since, for each fixed ray pathi , the traveltime functionalτ P

i is a linear
functional of the slowness model, I have

τ P
i (sλ) = λτ P

i (s1)+ (1−λ)τ P
i (s2). (28)

But τ P
i (s1),τ P

i (s2) ≥ ti (by assumption) andλ and (1−λ) are non-negative. Therefore,

τ P
i (sλ) ≥ λti + (1−λ)ti = ti . (29)

Thus, the convex combinationsλ lies in the feasible set ifs1 ands2 do, so it follows again that
the feasible set for the traveltime time problem is convex. This shows that for a fixed set of
ray paths the local feasibility set is convex. One important difference between the traveltime
inversion problem and the string density inversion problem is that whereas the hierarchy of
variational functionals used in the Rayleigh-Ritz approach contains inherent nonlinearities due
to the necessity of orthogonalizing higher order trial eigenfunctions with respect to lower order
ones, no such necessity arises in the traveltime problem. Each traveltime measurement is in a
very real sense independent of every other traveltime measurement; all traveltimes are equally
important and no hierarchy of traveltimes needs to be established. Although it is certainly
possible to use trial ray paths that are highly correlated with the wave speed models under
consideration, such correlations are not required by Fermat’s principle in the way that they
are by the Rayleigh-Ritz method. (For example, we could do the entire tomographic inversion
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using straight rays, with some loss of accuracy in the final result.) This fact suggests, but does
not prove, that the global feasible set for the traveltime problem is itself convex. Using the
fact that the global feasible set must be the intersection of all possible feasible sets, we obtain
a proof of convexity [Berryman, 1991].

Algorithms

Stable reconstruction algorithms using feasibility constraints to solve the traveltime tomogra-
phy problem have been discussed in detail elsewhere [Berryman, 1990]. The key idea is to
use the fact that the solution, if one exists, must lie on the feasibility boundary and then to
force the solution in an iterative scheme to stay close to this manifold in the model space. An
iterative linear least-squares inversion algorithm was easily and cheaply stablized using this
approach. Other choices of algorithms based on the feasibility constraints are also possible, as
will be discussed at the end of the paper.

CONSTRAINTS FOR EARTH DENSITY DISTRIBUTION

A somewhat different class of problems involves analysis of free oscillations of the Earth in
order to deduce its density structure [MacDonald and Ness, 1961; Gilbert, 1971; Jordan and
Anderson, 1974; Aki and Richards, 1980; Gilbert, 1980; Ben-Menahem and Singh, 1981;
Lapwood and Usami, 1981; Morelli and Dziewonski, 1987; Snieder, 1993]. I concentrate on
toroidal modes since they are independent of gravitational effects. For each normal mode of
a vibrating elastic medium, the potential energy density is composed of a bulk contribution
κ B proportional to the bulk modulusκ and a shear contributionµS proportional to the shear
modulus. B and S are functionals of the exciting eigenfunctions. If the compressional and
shear wave speeds (vc andvs, respectively) have been found using (for example) traveltime
tomography, then I use the identities

v2
c = (κ +4µ/3)/ρ (30)

and

v2
s = µ/ρ, (31)

with ρ being the mass density, to show that the potential energy density may be written in the
form

ρU = ρ
[(

v2
c −4v2

s/3
)

B+v2
s S

]
. (32)

This equation shows explicitly that the potential energy is the sum of terms proportional to the
unknown density, the squares of the (assumed) known velocities, and the functionalsB andS
of the (possibly trial) eigenfunctions. The kinetic energy of a vibrating system is proportional
to the density and the square of the time rate of change of the local displacement; so the
Fourier transform of this energy density takes the general formω2ρK , whereω is the angular
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Figure 7: A sphere composed of concentric shells of constant densityρ may be used to model
free oscillations of the Earth. Compressional and shear wave velocities are assumed to have
been previously determined using traveltime tomography. The inverse problem solves for
density structure using measured eigenfrequencies of toroidal oscillation in this example.
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Figure 8: For free oscillations, scaling the densityρ by a positive constant does not change
either the trial eigenfunctions or the frequencies, showing that any point along a ray in density
space is equally good for satisfying the frequency data. Thus, the feasible region forms a cone
in the density space. of the Earth.

frequency of oscillation, andK is the square of the trial displacement. The partitioning of
energy in a vibrating medium is known to balance the total kinetic and potential energy in
the volume over a cycle. If the volume is�, this balance between the two energies may be
expressed in the equality

ω2
∫

�

ρKd� =

∫
�

ρUd�, (33)

where againρ is the local density,K andU are functionals of the eigenfunctions of the normal
modes of vibration, andω is the angular frequency of vibration for a particular mode. It is
well-known that equation (33) can be rewritten in the form of a variational inequality as

ω2
≤

∫
ρUd�∫
ρKd�

, (34)

in which the right hand side is again the Rayleigh-Ritz quotient, and the inequality itself fol-
lows from the Rayleigh-Ritz variational principle. In (34),K andU are now functionals of
trial eigenfunctions, and equality is obtained when the minimum of the Rayleigh-Ritz quo-
tient is achieved, which occurs in variational calculations as the difference between the trial
eigenfunction and the true eigenfunction approaches zero. When looking for constraints on the
density distributionρ, I first notice that for this problem the Rayleigh-Ritz quotientdoes not
place any constraint on the scaleof the density. Multiplying any particular mass distribution
ρ by a positive constantγ produces no change in this ratio, since the constant may be moved
outside the integrals in both the numerator and the denominator and then cancels. This is an
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Figure 9: The scale of the density is determined by the total mass and/or the moment of inerita
of the Earth.

important difference between the present problem and the ones discussed previously (string
vibration and traveltime inversion). The boundary of the feasible set is not found by scaling
the density in this problem, and therefore the shape of the feasibility boundary is that of a cone
in the model space. However, an independent constraint on the density scale is easily obtained
when the total massM of a body such as the Earth is known, for then∫

�

ρd� = M . (35)

Another constraint on the overall scale is provided by the moment of inertia∫
�

ρr 2d� = I , (36)

when it is known. To attack the inverse problem, I again introduce the concept of particular
feasible density distributions and collections of these called “feasible sets,” as before. I assume
that some subset of the modal frequencies has been measured. For simplicity, I display equa-
tions for only one frequency and trial eigenfunction, but understand that the same argument
applies simultaneously to all eigenfrequencies and trial eigenfunctions. Suppose thatρa and
ρb are two density distributions, both satisfying the Rayleigh-Ritz inequality for the same trial
eigenfunction. Thus, I am considering only local or trial feasibility of the densities in this first
example. Then, by assumption,

ω2
n

∫
ρaKd� ≤

∫
ρaUd� (37)
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and

ω2
n

∫
ρbKd� ≤

∫
ρbUd� (38)

both hold. If I next multiply (37) byλ and (38) by (1−λ) and add the two inequalities, I find

ω2
n

∫
ρλKd� ≤

∫
ρλUd�, (39)

whereρλ = λρa + (1−λ)ρb is defined as the convex combination of the two densities. Thus,
by the preceding argument, I have established the feasibility of the convex combination of
any two density distributions that are themselves feasible (i.e., ρλ also satisfies the Rayleigh-
Ritz constraints obtained from the data) for any particular choice of trial eigenfunction. This
argument establishes that local feasibility sets are convex. The proof is similar for global
feasibility. Suppose I have found the actual eigenfunctions for the densitiesρa andρb, and
therefore know the corresponding potential and kinetic energy densitiesKa,Ua, Kb,Ub for
these density distributions. These eigenfunctions (by assumption) produce minima in the re-
spective Rayleigh-Ritz quotients; so if the resulting inequalities show that bothρa andρb are
feasible, then

ω2
n ≤

∫
ρaUad�∫
ρaKad�

≤

∫
ρaU∗d�∫
ρaK∗d�

, (40)

and similarly

ω2
n ≤

∫
ρbUbd�∫
ρbKbd�

≤

∫
ρbU∗d�∫
ρbK∗d�

, (41)

where the functionalsK∗ andU∗ have been evaluated using some other convenient trial eigen-
functions (a specific choice will be made later in the discussion). Then, using the same argu-
ment as in the last paragraph, I find that the convex combination of densitiesρλ must satisfy

ω2
n ≤

∫
ρλU∗d�∫
ρλK∗d�

(42)

for any suitably constrained choice of trial eigenfunction. So, in particular the inequality
must hold for the actual eigenfunctions that minimize the Rayleigh-Ritz quotient for (42),i.e.,
whenU∗ = Uλ andK∗ = Kλ. Thus, it follows from (42) that ifρa andρb are globally feasible
densities, then so is their convex combinationρλ since

ω2
n ≤

∫
ρλUλd�∫
ρλKλd�

. (43)

This proves that the global feasible set is convex. It is not hard to show that the global feasibil-
ity set may also be characterized as the intersection of all local feasibility sets, and is therefore
a smaller (but still expected to be nonempty) set than any of the local feasibility sets (for par-
ticular trial eigenfunctions). It is harder to prove that the set is nonempty for this problem,
than for the previous expamples.
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Figure 10: If compressional and shear velocities are not known, then a sphere composed of
concentric shells of constant densityρ, bulk modulusκ, and shear modulusµ may be used to
model free oscillations of the Earth. As in the last example, model structure is inverted from
eigenfrequency data.
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CONSTRAINTS FOR ELASTIC MODULI AND DENSITY

Now suppose that the only data available for determining Earth structure is the free oscillation
data. What can be said about the corresponding nonlinear inversion problem? It turns out that
the analysis goes through essentially as before, but now the model space is larger, involving
not only the density distributionρ but also the bulk modulusκ and the shear modulusµ. The
Rayleigh-Ritz inequality is still of the form

ω2
≤

∫
(κ B+µS)d�∫

ρKd�
. (44)

When two models (ρa,κa,µa) and (ρb,κb,µb) satisfy the feasibility constraints, I have

ω2
n

∫
ρaKd� ≤

∫
(κaB+µaS)d� (45)

and

ω2
n

∫
ρbKd� ≤

∫
(κbB+µbS)d�. (46)

And the convex combination

(ρλ,κλ,µλ) ≡ (λρa + (1−λ)ρb,λκa + (1−λ)κb,λµa + (1−λ)µb) (47)

clearly satisfies the corresponding condition

ω2
n

∫
ρλKd� ≤

∫
(κλB+µλS)d�, (48)

where the same trial eigenfunctions have been used in (45)–(48). This again establishes con-
vexity of any local feasibility set and the proof of the convexity of the global feasibility set for
(ρ,κ,µ) follows immediately using the same arguments as before. The Rayleigh-Ritz ratio is
again scale invariant, so an overall change in scale of the form (ρ,κ,µ) → (γρ,γ κ,γµ) does
not affect the frequency predictions. But, as long as the scale of any one of the parameters
is known, the others follow from it, so knowledge of the total mass (35) and/or total moment
of inertia (36) is again sufficient to determine the scale of the model. The main difference
between the results for a single parameterρ and those for a set of parameters such as the triple
(ρ,κ,µ) is that, depending on details of how the three parameters are discretized for numerical
treatment, the model space will be on the order of three times larger for the case of pure free
oscillation data and therefore correspondingly more of this vibration data will be required to
obtain enough constraints to produce the same degree of model resolution.

VARIATIONAL STRUCTURE OF INVERSE PROBLEMS

The various inverse problems considered so far may be viewed as special cases of the fol-
lowing general problem. Suppose I have the set of measured data{qi } and that these data are
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Figure 11: Scaling the triple (ρ,κ,µ) by a positive constant does not change either the trial
eigenfunctions or the frequencies, showing again that any point along a ray in the model space
is equally good for satisfying the frequency data. The overall scale is again determined by the
total mass and/or the moment of inertia of the Earth.

known — from the mathematical physics of the related forward problem — to be minima of
an appropriate variational functional so that

qi ≤ Qi [n1, . . . ,nk,d1, . . . ,dm;v1, . . . ,vp], (49)

whereQi is a functional whose first (k +m) arguments are parameters of the model (such as
density for string vibrations, slowness in traveltime tomography, or bulk and shear moduli in
elastic vibration) and whosep remaining arguments are trial eigenfunctions. The dependen-
cies on the trial eigenfuctions will be suppressed in the following discussion. If the functional
can be written in the form of a quotient

Qi [n1, . . . ,nk,d1, . . . ,dm] =
Ni [n1, . . . ,nk]

Di [d1, . . . ,dm]
, (50)

where the functionals in the numeratorNi and in the denominatorDi are themselves linear
functionals of each of their arguments, then I find that all the examples considered may be
written in this form (see Table 1). It follows easily from this postulated form that the inverse
problem leads in all cases to a convex feasible region in the multiparameter model space. This
follows directly from the observation that, if

qi Di [d̂1, . . . ,d̂m] ≤ Ni [n̂1, . . . ,n̂k] for all i (51)

and if

qi Di [d̃1, . . . ,d̃m] ≤ Ni [ñ1, . . . ,ñk] for all i , (52)
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then for anyλ in the range 0≤ λ ≤ 1 I find

qi ≤
Ni [n

(λ)
1 , . . . ,n(λ)

k ]

Di [d(λ), . . . ,d(λ)
m ]

for all i , (53)

where

n(λ)
j = λn̂j + (1−λ)ñj for 1 ≤ j ≤ k, (54)

and

d(λ)
l = λd̂l + (1−λ)d̃l for 1 ≤ l ≤ m, (55)

guaranteeing that, if the “hat” and “tilde” models are themselves feasible for the given set of
trial eigenfunctions, then the convex combinations of the “hat” and “tilde” models parametrized
by λ are also feasible. The argument just given depends strongly onthe implicit assumption
that the conditions for admissibility of eigenfunctions are independent of the convex combi-
nation parametrized byλ. Such independence is definitely true for the traveltime inversion
problem where the ray paths play the role of eigenfunctions, but also definitely not true for
the string density inversion problem or for the free oscillations problem. Thus, whether or not
the global feasible set is convex depends on the problem, and in particular on the variational
principle being used in the analysis. Rayleigh-Ritz variational problems will not have con-
vex feasibility sets, while traveltime tomography and some other similar inversion problems
[Berryman, 1991] in general do have convex feasibility sets.

TABLE 1.

Problem {qi } {ni } {di } Description of feasible set

Density from {ωi } — d1 = ρ Finite, nonconvex, bounded

string vibration region near the origin

Wave slowness from {τi } n1 = s — Infinite, convex, bounded

traveltime tomography away from the origin

Elastic constants from {ωi } n1 = κ d1 = ρ Infinite cone, nonconvex

free oscillations n2 = µ

Although convexity of the feasible set is not really necessary when designing a nonlinear
programming method for solving the inverse problem, convexity does help to simplify the
reconstruction algorithms when it is a characteristic of the problem of interest.

DISCUSSION

Finite data sets

Suppose I have a finite set of measurements{q1, . . . ,qM} and I compute the feasible setFM

associated with that measurement set. Now suppose that an additional measurement is made
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so the measurement set is now{q1, . . . ,qM+1} with the associated feasible setFM+1. What
is the relationship betweenFM andFM+1? The addition of a constraint can only decrease
the size of the feasible set, so it follows easily from the convexity properties that in general
FM+1 ⊆ FM ⊆ FM−1 ⊆ ·· · ⊆ F1.

Measurement error

An issue that is often raised about the usefulness of the feasibility constraints concerns the
effects of measurement errors on the location of the feasibility boundary. The variational
constraint equations always find the data in the role of upper or lower bounds on integrals in-
volving the unknown parameters. The data therefore enters these constraints linearly, so small
measurement errors will generally lead to small (or possibly no) changes in the location of the
bounding curves, depending on which measurements are in error and which measurements are
the most constraining. I think of the feasibility boundary in these circumstances, not as a sharp
but rather, as a fuzzy boundary. If the errors are small, then the fuzzy region is also small. It is
useful to take this fuzziness into account in practical algorithms that make use of the feasibility
boundary to reconstruct the desired model parameters in these inverse problems. This can be
accomplished by using either the least (or the most) constraining range of data-minus-error
(or data-plus-error) when computing this estimate of the boundary location. Alternatively,
the fuzziness of the boundary can be incorporated directly into algorithms that use only the
approximate location of the feasibility boundary as a means of constraining a search for the
desired model parameters based on other criteria (such as minimizing the least-squares error
in predicted versus measured data, or some other choices of objective functional minimiza-
tion). Experience has shown that practical algorithms based on feasibility constraints are less
sensitive (more robust) to the presence of measurement errors than most other algorithms for
inversion.

Algorithms

The variational structure of nonlinear inverse problems does not by itself provide an algorithm
for reconstructing the desired model parameters from the data. Nevertheless, knowing the
existence of the feasibility boundary and the convexity properties of the feasible set suggests
a number of possible algorithms that may be useful depending on the particular problem. I
may suggest three types of algorithms: (1) The most obvious and probably the least practical
algorithm entails a search along the feasibility boundary for the model that best fits the data.
This approach has much in common with linear programming methods of the simplex type,
but is probably not practical for most of the large dimensional problems that would benefit
from the methods discussed in this paper. The reason for the difference is that the feasibility
boundary in nonlinear inversion problems is determined only implicitly and therefore requires
considerable computation to find each boundary point, whereas in linear and most other non-
linear programming problems the boundary constraints are given explicitly. (2) A Monte Carlo
or shooting method that tries to sample a region of the model space and map the feasibility
boundary in that local region has been tried on both the string density inversion problem and
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on the traveltime inversion problem. This approach has been found to work extremely well
in the problems of lower dimensionality, and it also works well in higher dimensional prob-
lems that are easily parallelized (such as traveltime tomography) when many processors are
available. Finally, (3) virtually any existing inversion algorithm can be easily modified to
incorporate the feasibility constraints as a natural means of regularizing,i.e., preventing di-
vergences from occurring. In particular, iterative linear least-squares inversion algorithms that
might diverge due to inconsistencies arising from the forward modeling (trial eigenfuctions
or trial ray paths) based on a previous guess of the model can be easily stabilized by forcing
the stepsize for model updates to remain small enough so that the successive iterates do not
wander away from the feasibility boundary. Such a constraint does not tie the result to any
particular part of the model space that must be chosen prior to the inversion (i.e., hard con-
straints on the maximum and minimum values of the parameters in the model are not needed),
but rather tethers the final result to a manifold determined strictly by the data and the mea-
surement configuration. Thus, the data itself is used to determine the appropriate means of
regularizing the solution to the inverse problem in such algorithms. This approach is probably
the one that will find the most use in practical solutions to inverse problems.
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