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Amplitude-preserved low velocity noise suppression

Hector Urdaneta1

ABSTRACT

Low velocity noise can contaminate reflections and distort AVO amplitude information. I
explore different inversion methods for suppressing low velocity noise while simultane-
ously preserving amplitudes along reflections. A velocity-stack inversion process is used
for recreating models in velocity space that can reconstruct the reflections and the low
velocity noise. Velocity-stack inversion is the process of creating a velocity space model
that can correctly reconstruct the measured data. This is usually implemented by mini-
mizing theL2 norm of the data misfit and theL2 norm of the model. Better velocity space
images, with a better separation of the reflections and the low velocity noise, can be cre-
ated by minimizing a different norm of the data misfit and a different norm of the model
length. Norms closer to theL1 norm appear to be better at rejecting impulsive noise and
creating a spiky model. Current tests with the CORPOVEN 3-component dataset show
very encouraging results.

INTRODUCTION

Low velocity noise such as ground roll and air-waves contaminate reflection land data and
distort AVO amplitude information. Many low velocity noise suppression techniques focus on
the kinematics, e.g., predictive deconvolution or f-k filtering, without necessarily preserving
amplitude information. Recently, the general increase in use of amplitudes in applications
such as AVO analysis has increased the need for amplitude-preserved low velocity noise and
multiple suppression (Lumley et al., 1994). The top frame of Figure 1 defines the problem.
It shows a shot gather in which the events of interest are contaminated with low velocity
noise at low offsets, distorting the AVO amplitude information. The bottom frame of Figure 1
illustrates the solution I am looking for, that is, the ability to separate the interference between
the noise and the the events of interest (from here on called “the signal”) without affecting the
AVO information. With this goal in mind, I began by looking for an operator whose range
has axes of time and offset, whose domain’s representation of the signal and noise can be best
separated, and which has an efficient and stable inverse. Two schemes for suppressing the low
velocity noise are available. The first is modeling of the signal and the second modeling of
the noise. The motivation for modeling the signal is to get the best representation of the signal
and to mute the noise in the operator’s domain in order to reconstruct only the signal. The
reason for modeling the noise is that by doing so I mute the signal in the operator’s domain to
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Figure 1: Top: Field shot gather from the CORPOVEN 3-component dataset (Ata et al., 1994).
Bottom: reconstructed shot gather after suppression of low velocity noise, product of anL2

velocity-stack inversion of the field shot gather, muting of the low velocity noise in velocity-
stack space, and remodeling of the signal. Finally a linear outer mute of 1.8 km/s has been
applied to the gather.hector1-intro [CR,M]
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reconstruct only the noise, and then subtract it from the data in order to obtain the signal. In
modeling the signal there is a risk that any part of the signal that is not correctly reconstructed
may artificially distort the amplitudes, which will disturb the AVO analysis. Nevertheless,
modeling the signal proves to be easier than modeling correctly the noise because of the spatial
aliasing of the noise. Two processing operators are candidates for carrying out these two
schemes: velocity-stack, for modeling the signal, and slant-stack, for modeling the noise. The
advantage of using these two processing operators, in contrast to using physical operators, is
that we are completely free to modify them to optimize our processing goal, since they have
no constitutive relations that they need to satisfy. In this case it may be useful to modify the
operators to make them more easily invertible (Claerbout, 1991), to accelerate convergence
(Claerbout and Nichols, 1994), or to modify the inversion norm to obtain spiky models (?).
The velocity-stack operator has the disadvantage of not having an analytic inverse or a simple
inverse. However, it is possible to implement the inverse transform using an iterative solver.
Usually, the inverse transform is implemented as the minimization of a least-squares problem.
The least-squares solution has some attributes that may be undesirable. In this paper I show
the use of other types of norms in suppressing low velocity noise, following Nichols’ (?) steps
for suppressing multiples. I explore the use of slant-stack inversion for modeling the noise on
a synthetic example, and the use of velocity-stack inversion for modeling the signal on both a
synthetic and a real example.

MODELING THE SIGNAL

As discussed above, the modeling of the signal is done with a velocity-stack operator because
of the hyperbolic nature of the reflector in the gathers offset vs. time space, which produces
a localized model representation of the signal in the velocity-stack space. Stacking operators
are processing tools that may map data to an unphysical domain that happens to be convenient
for processing reasons. The normal gather domain has axes of time and offset. The stack
domain has axes of zero-offset time and velocity or slowness. Although the stacking space
is unphysical, and these operators can not be derived from constitutive relations of physics,
they are convenient since many data processing applications are much simpler in the stacking
domain. For example, the low velocity noise may be isolated and muted in velocity-stack
space, allowing reflections to be enhanced in the processed version of the input seismic data.
In doing velocity-stack inversion the aim is to create a model in the velocity-stack space in
which the signal energy and the noise energy are well separated. In addition, the reconstructed
data must be a good match to the signal-only part of the original data. In this section I explore
modeling the signal using a velocity-stack operator. I first try using anL2 inversion and then
other inversion norms that produce more pleasing results. As an example, I use a synthetic
gather that depicts some of the events seen in any of the vertical component shot gathers of the
CORPOVEN 3-component dataset.
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Least squares inversion

Figure 2 displays four stages in the processing of a synthetic gather. The first frame is the
original data,d, consisting of three hyperbolic events, direct arrival, and two aliased events
that depict the arrival of very low velocity surface waves. The second frame is itsL2 velocity-
stack inverse, the third frame is the data remodeled from the inverse, and the final frame is the
difference between the input synthetic and the remodeled data. The hyperbolic events of the
original data are contaminated by the low velocity noise at low offsets. In the second frame
of Figure 2 I have solved the inverse problem to

d = Vm

wherem is the velocity-stack space model andV is the forward operator that maps from
velocity-stack space to offset space. For the inverse problem I seek a solution to the problem
of finding the model in velocity-stack space,m, given the data,d. This is usually posed as
a least-squares minimization problem that minimizes the energy of the misfit between the
modeled and measured data:

min
m

‖d−Vm‖2

The use of a conjugate gradient method in performing the inversion will not only minimize
the data misfit but will also minimize the energy of the solution:

‖m‖2

Figure 2 shows the result of theL2 minimization of the data misfit’s norm. By limiting the
domain of the velocity-stack operator to low-slowness squared values and excluding the cor-
responding high slowness representation in the velocity-stack space of the low velocity noise,
I am able to suppress the noise. Because I do not define sufficiently well where the energy of
the signal lies in the the velocity-stack space, I am not able to model the signal at large offsets
correctly, since we see some smearing of the signal in the residual part of the data not modeled.
Moreover, we see that the noise is not completely removed. In Figure 3 I have extended the
domain of the velocity-stack operator to include negative-squared slownesses, which model
positive curvature hyperbolas. This models the signal at large offsets more successfully, but
does not yield a perfect result. Adding negative-squared slownesses to the velocity-stack do-
main is only possible because velocity-stack is a processing operator; it does not need to satisfy
any physical laws.

Weighting the residual

We can also choose to minimize theL p norm of the residual by minimizing the weighted
residual

min
m

‖WL d−WL Vm‖2

whereWL is a diagonal operator whosei th component is a function of the residual vector

WL i i = |r i |
(p−2)/2
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Figure 2: L2 inverse processing. Top left: input data. Top right: velocity-stack inverse using
an L2 norm of the data misfit. Bottom left: reconstructed input data. Bottom right: residual
data not modeled.hector1-L2synth[ER]
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Figure 3: L2 inverse processing using a wider-slowness squared range to include negative
values. Top left: input data. Top right: velocity-stack inverse using anL2 norm of the
data misfit. Bottom left: reconstructed input data. Bottom right: residual data not modeled.
hector1-longL2synth[ER]
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This is equivalent to solving the weighted problem

WL Vm = WL d

This scheme minimizes theL p norm of the data misfit and theL2 norm of the model space

min
m

‖d−Vm‖p

and
‖m‖2

Figure 4 shows the result of using anL1.1 norm to do minimize the data misfit. We see
that the model is less noisy, yet the model representation of the three hyperbolic events are
spread outside the domain of the velocity-stack operator. This results in a sharper image of the
modeled signal, but there is a higher loss of the signal as we go to further offsets.

Weighting the model

By combining model space weights and data space weights we can minimize theL p norm of
both the data misfit and the model space. In order to do this I solve the problem

WL VWRm̂ = WL d

followed by
m = WRm̂

whereWR is the diagonal operator whosei th component is

WRi i = |mi |
(2−p)/2

This scheme minimizes theL p norm in both the data misfit and the model space:

min
m

‖d−Vm‖p

and
‖m‖p

Figure 5 shows the result of using anL1.5 norm in both domains. We see how I get a spiky
velocity-stack model of the signal, which reconstructs a nicer signal, but there is some loss of
signal energy at far offsets. It is encouraging that the noise has been totally removed from the
reconstructed data.

MODELING THE NOISE

Modeling the low velocity noise is done using a slant-stack operator, which produces a lo-
calized noise representation in the slant-stack velocity space, because of its linear nature in
the gather offset vs. time space. The goal of modeling the noise is that if I model it well, I
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Figure 4:L1.1 inverse processing. Top left: input data. Top right: velocity-stack inverse using
an L1.1 norm of the data misfit. Bottom left: reconstructed input data. Bottom right: residual
data not modeled.hector1-longL1synth[ER]
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Figure 5: Spiking inverse processing. Top left: input data. Top right: velocity-stack inverse
using anL1.5 norm of the data misfit andL1.5 norm of model length. Bottom left: reconstructed
input data. Bottom right: residual data not modeled.hector1-longSPKsynth[ER]
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can subtract it from the input data and obtain the signal without worrying about distorting the
signal’s amplitude. The aim of the slant-stack inversion is to separate as best as possible the
model representations of the signal and noise. Figure 6 shows the result of using anL2 norm
for inverting the problem

d = Sm

wherem is the slant-stack space model andS is the forward operator that maps from slant-
stack space to offset space. Just as in the inverse problem for modeling the signal, I seek a
solution to the problem of finding the model in slant-stack space,m, given the data,d. The
middle frame of Figure 6 shows the reconstructed data from the slant-stack space model (not
shown) and the right frame shows the data not reconstructed. We see that I am only able to
reconstruct the unaliased energy of the noise while the aliased energy still contaminates the
signal, so I have not succeeded in removing the low velocity noise. Even worse we notice how
part of the signal gets modeled at low offsets; this is due to applying the stacking operator
along the offset axis as is conventionally done. To prove this last statement, I have done the
stacking along the time axis, which eliminated completely the reconstructed signal at low
offsets as illustrated in Figure 7. Moreover I have dealiased the low velocity noise to show
that to a very good extent, I have been able to suppress the low velocity noise from the data
without distortion along the amplitude of the signal.

Figure 6: L2 slant-stackL2 inverse processing. Stacking done along offset axis. Left: input
data, low velocity noise is aliased. Middle: reconstructed input data. Right: residual data not
modeled. hector1-ss1diff.L2[ER]

REAL DATA EXAMPLE

Figures 6 and 7 have illustrated the point made in the introduction that even though it is more
desirable to model the noise, this is only true to the extent that we can dealias the noise.
Since I do not have the right tool to dealias the low velocity noise, in the following real data
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Figure 7: L2 slant-stackL2 inverse processing. Stacking done along time axis. Left: input
data, low velocity noise is unaliased. Middle: reconstructed input data (suppressed low veloc-
ity noise). Right: residual data not modeled (amplitude-preserve signal).hector1-ss2diff.L2
[ER]

examples, I have chosen to model the signal as a means of suppressing the low velocity noise.
The following figures show the effect of using the various inversion methods on a shot gather
from the 3-component dataset provided by CORPOVEN. (Ata et al., 1994) Figure 8 displays
the four stages in the processing of a vertical component shot gather. The first frame is the
raw shot gather, the second frame is itsL2 velocity-stack inverse, the third frame is the signal
reconstructed from the inverse, and the fourth frame is the difference between the raw shot
gather and the reconstructed data. I chose to process the raw data in shot gather space instead
of CMP space, since in CMP space the spatial aliasing of the low velocity noise will be even
greater as a result of the bigger spacing between traces in CMP space. The CORPOVEN
shot gathers are sampled at 2 msec intervals with a 6 second record length. The number of
receivers per shot is 216, with a geophone group interval of 17 meters. The most relevant
events occur at about 1.9, 2.1, and 2.2 seconds. The data is very rich in low velocity noise, but
because it has a distinct RMS-stacking velocity from the signal, the muting of the noise in the
velocity-stack space does an excelent job of removing it from the reconstructed signal, as we
see from the third and fourth frames in Figure 8. There is some energy loss of the signal at far
offsets, as we can see (if we look at the plot at an angle) in the fourth frame at around 2.5 kms.
Figure 9 displays the effect of spiking inversion in the model space. The inversion minimized
the L1.1 norm of the data misfit and theL1.1 norm of the model. The events in velocity-
stack space are much more compact. This is a very desirable result, since I now obtain a
better reconstruction of the signal, while suppressing completely the low velocity noise from
the reconstructed data. Figure 10 shows the same four processing stages of the shot gather’s
inline component. The first frame shows a windowed section of the gather, which is heavily
contaminated with low velocity noise. It is interesting to note the dispersion of the ground
roll. The higher frequencies (which are aliased), arrived first, while the lower frequencies
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Figure 8: L2 inverse processing. Top left: input shot gather, vertical component. Top
right: velocity-stack inverse using anL2 norm of the data misfit and negative squared slow-
nesses. Bottom left: reconstructed input data. Bottom right: residual data not modeled.
hector1-real2p.L2[CR,M]
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Figure 9: Spiking inverse processing. Top left: input shot gather, vertical component. Top
right: velocity-stack inverse using anL1.1 norm of the data misfit andL1.1 norm of model
length. Bottom left: reconstructed input data. Bottom right: residual data not modeled.
hector1-real2p.SPK[CR,M]
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(which are unaliased), arrived later. The second frame is theL2 velocity-stack inverse and the
third and fourth frames are the reconstructed data and the difference between the raw data and
the reconstructed data, respectively. Even though the amplitudes reconstructed at near offsets
are somewhat questionable, since the noise level at near offsets is so high that it completely
masks away the signal, the inversion does a good job reconstructing the signal at mid and
far-offsets. Looking at the reconstructed data at an angle, we can see that the reconstructed
reflections at low offsets are more evident. Figure 11 shows the use of a spiking inversion of
the gather’s inline component to suppress the low velocity noise, which produces a more spiky
velocity-stack model.

CONCLUSIONS

I have discussed two methodologies for suppressing low velocity noise while preserving signal
amplitudes. The techniques involved the use of different minimization norms for the data mis-
fit and the model length. Velocity-stack inversion is used to reconstruct the signal, and slant-
stack inversion is used to reconstruct the noise. The complete liberty to modify these process-
ing operators and the use of norms closer toL1 produce more desirable velocity space images,
with a better separation of the signal energy and the low velocity noise energy. For the real
data examples, forward modeling of the velocity-stack space images produce an amplitude-
preserved low velocity noise suppression. Current tests with the CORPOVEN 3-component
dataset appear very encouraging.
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Figure 10: L2 inverse processing. Top left: input windowed shot-gather, inline component.
Top right: velocity-stack inverse using anL2 norm of the data misfit and and negative squared
slownesses. Bottom left: reconstructed input data. Bottom right: residual data not modeled.
hector1-real2v.L2[CR,M]
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Figure 11: Spiking inverse processing. Top left: input windowed shot-gather, inline compo-
nent. Top right: velocity-stack inverse using anL1.1 norm of the data misfit andL1.1 norm of
model length. Bottom left: reconstructed input data. Bottom right: residual data not modeled.
hector1-real2v.SPK[CR,M]
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