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Compensating for irregular sampling and rugged topography

Dimitri Bevc1

ABSTRACT

Artifacts arise when irregularly sampled data are input to a Kirchhoff datuming algorithm.
The irregular sampling occurs because of uneven sampling of the recording surface and
rugged topography. To ameliorate these artifacts, I combine wave-equation datuming
with model-space filtering to resample data onto a regular grid. The filtering can be a
simple Laplacian operator or a nonstationary prediction error filter with unknown filter
coefficients. Synthetic examples demonstrate that the method is successful for unevenly
sampled data along a flat datum. The best result is achieved by using a Laplacian filter in
the inversion.

INTRODUCTION

Kirchhoff wave-equation datuming can be used to regularize unevenly sampled data (Zhang
and Claerbout, 1992). Although the kinematics are correctly restored, artifacts arise from
the irregular sampling of the input data. These same artifacts arise when the data are sam-
pled evenly in areas where rugged topography has severe discontinuities (Bevc, 1992). In
the presence of both irregular sampling and rugged topography, the problem is compounded.
To overcome these difficulties, I formulate wave-equation resampling as an inverse problem
which transforms the data from an irregularly sampled rugged datum to a regularly sampled
flat datum. In this report I describe the theory of inverse datuming and apply it to synthetic
data. I resample the data using just the datuming operator, and with inversions of varying
complexity. In the most complex example, I implement the inversion so that I simultaneously
solve for the output data and the nonstationary prediction error filter (PEF) which estimates
the inverse covariance (Claerbout, 1994). Further work is required to determine the best pa-
rameters to use in the most sophisticated inversion, but so far the best results are attained by
using a Laplacian operator as an estimate of inverse covariance.

THEORY

The concept of wavefield resampling by upward continuation is illustrated in Figure 1. Appli-
cation of the Kirchhoff upward continuation operatorK† transforms the irregularly sampled
datad from the rugged topography to the regularly sampled datam along a flat datum. The
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detailed form of the Kirchhoff operator and its adjoint has been described in previous reports
(Bevc, 1994). The inverse problem is formulated by writing down the regression:

Figure 1: Upward continuation from
an irregularly sampled rugged topog-
raphy to an evenly sampled flat da-
tum. Input tracesd are time shifted,
weighted, and summed into output lo-
cationsm. dimitri2-ksample [NR]

m

d

0 ≈ d−Km
0 ≈ Am,

(1)

whered is the irregularly sampled data,K is the Kirchhoff downward continuation operator
(adjoint of upward continuation), andm is the regularly sampled output that we are solving
for. A is the inverse covariance matrix. If the inverse covariance matrix is unknown (as is
usually the case), it can be estimated by consideringA to be a prediction error filter with
coefficients to be determined (Claerbout, 1994). The model and the prediction error filter can
then be written as

m = mi +4m
A = A i +4A,

(2)

where the subscripti indicates initial values which are to be updated. The product of the filter
and the model is

Am = (A i +4A)(mi +4m)
= A i mi +A i 4m+4Am i +4A4m.

(3)

The regression equation (1) then becomes:

0 ≈ d−Km i −K4m
0 ≈ A i mi +A i 4m+4Am i +4A4m.

(4)

Dropping the nonlinear term and rearranging, the final regression can be written as:

d−Km i ≈ K4m
−A i mi ≈ A i 4m+4Am i .

(5)

The data space and model space residuals are defined as:

rd = d−Km i

rm = −A i mi .
(6)
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Packing the unknown filter coefficients,4A into the abstract vector4a and putting the ele-
ments of the slowness modelmi into a convolutional matrixM , the last convolution of equa-
tion (5) can be expressed asM4a. The regression of equation (5) can then be written in matrix
form as [

rd

rm

]
=

[
K 0
A i M

][
4m
4a

]
. (7)

This system of equations is solved using the method of conjugate gradients. The first step in
the solution is to initialize the model by calculating

mi = K†d, (8)

and making an initial guess of the filter

A i = ∂2
x + ∂2

t . (9)

The regression equation (7) can then be used to calculate the gradient:[
4m
4a

]
=

[
K† AT

i
0 MT

][
rd

rm

]
, (10)

and the conjugate gradient:[
4rd

4rm

]
=

[
K 0
A i M

][
4m
4a

]
. (11)

In summary, the conjugate gradient solution begins by initializing the model and filter with
equations (8) and (9). The residuals are initialized using equation (6) and iterations begin by
calculating the gradient [equation (10)] and the conjugate gradient [equation (11)].

SYNTHETIC EXAMPLE

The algorithm is demonstrated on a synthetic shot gather along a planar datum. A Kirchhoff
code was used to generate the gather on a coarse grid, which was then subsampled unevenly,
so that the sampling interval varies between about 50 m and 150 m (Figure 2). The effect of
the irregular sampling is similar to the effect of statics since each trace has a slight departure
from hyperbolic traveltime due to the variation in offset (Figure 3).

Resampling by redatuming

In Figure 4 the synthetic is resampled by upward continuing the data to a regularly sampled
datum. This application of the operatorK† restores the kinematics, but results in the unde-
sirable artifacts which look like diffractions following the hyperbolic event. These artifacts
arise because the uneven sampling does not allow the Kirchhoff summation to properly cancel
in regions where there should be destructive interference. These streaks are intrinsic to the
Kirchhoff operator.
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Figure 2: Irregular sampling
interval of the synthetic data
dimitri2-xintsyn [CR]

Figure 3: Irregularly sampled syn-
thetic shot gather. The effect of
the irregular sample interval is the
step-like moveout seen at far offsets.
dimitri2-irrsyn [CR]

Figure 4: Wave-equation resam-
pled synthetic. The data of Fig-
ure 3 have been upward continued
to a regularly sampled output datum.
dimitri2-wedresamp[CR]
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Resampling by inverse redatuming

The first examples of resampling by inverse datuming are performed using equation (1). Using
only the top part of the regression,0 ≈ d−Km (i.e. no estimate of inverse covariance), results
in Figure 5a. We see that performing a conjugate gradient wavefield inversion alone does not
eliminate the artifacts because they are required to reconstruct the original data. All of the
inversions in this section are the result of 40 iterations of conjugate gradient. In Figure 5b
the inverse covariance is estimated by using a Laplacian operator forA in equation (1). This
results in an improved resampled output. The undesirable artifacts have been substantially
suppressed. Figure 6 is generated by solving equation (5) as outlined by equation (8) through

Figure 5: (a) Conjugate gradient datuming without any estimate of inverse covariance, and (b)
using a Laplacian filter as an estimate of inverse covariance.dimitri2-cgup.40 [CR]

equation (11). In the Figure 6a one filter was calculated for the whole data panel. The inversion
was run for 20 iterations using the Laplacian filter, and then for 20 more iterations solving
simultaneously for the output and the unknown PEF coefficients. The PEF was constrained to
be a 3 by 3 filter. Nonstationarity was taken into account in Figure 6b by solving for the PEF in
3 overlapping windows. This result is only marginally better than Figure 6a. The center traces
of the synthetic examples are plotted in Figure 7. The wave-equation resampled and conjugate
gradient resampled events (Figure 7bc) have noisier tails than the results of inverting with the
Laplacian inverse covariance estimate (Figure 7d). As concluded earlier, the best result is
obtained using the Laplacian (Figure 7d). This result has the lowest amplitude tail.

DISCUSSION AND CONCLUSIONS

Further work is required to gain experience in choosing filter coefficients and windows to get
optimal inversion results. Shape as well as size and gap of the PEFs has an effect on the in-
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Figure 6: (a) Conjugate gradient datuming using a PEF calculated for the whole data panel to
estimate inverse covariance, and (b) accounting for nonstationarity by calculating the PEF in
patches.dimitri2-cgresamp.40[CR]

Figure 7: Center trace of: (a) original synthetic (Figure 3), (b) wave-equation resampled syn-
thetic (Figure4), (c) conjugate gradient datuming (Figure5a), (d) conjugate gradient datuming
with Laplacian filter (Figure5b), (e) conjugate gradient datuming with PEF filter (Figure6a), (f)
conjugate gradient datuming with PEF nonstationary filter (Figure6b).dimitri2-amps [CR]
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version result. Using purely lateral prediction filters with zeros on either side of the 1 should
be examined. The examples shown here represent a very limited number of possibilities. The
best inversion result for the synthetic data is obtained by using the Laplacian. The nonsta-
tionary inversion may not be working well because the windows may have to be larger so that
the unknown filter coefficients can be better determined. It is clear that using an additional
regression equation to estimate inverse covariance results in a better inversion; however, it is
still unclear what kind of filter should be used. Given the added expense and complexity of
conjugate gradient datuming with the PEF, it may be better to just use the Kirchhoff operator
itself in situations where the topography and irregular sampling are not too severe. The ul-
timate goal of this work should incorporate not only resampling, butinterpolationof output
traces so that there are more output traces than input traces and so that gaps in recording are
filled. This will be especially useful for land data in rugged terrain where there are often many
more receiver locations than shot locations. The sparse shots tend to be more randomly placed
than the receivers.
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