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Seismic monitoring of reservoir fluid flow:
Fundamental theory and examples1

David E. Lumley1

ABSTRACT

Time-lapse 3-D seismic monitoring of subsurface rock property changes incurred dur-
ing reservoir fluid-flow processes is an emerging new diagnostic technology for optimiz-
ing hydrocarbon production. I discuss the physical theory relevant for three-phase fluid
flow in a producing oil reservoir, and rock physics transformations of fluid-flow pressure,
temperature and pore-fluid saturation values to seismic P-wave and S-wave velocity. I
link fluid-flow physical parameters to seismic reflection data amplitudes and traveltimes
through elastic wave equation modeling and imaging theory. I demonstrate with synthetic
and field data examples that changes in fluid flow can be monitored and imaged from
repeated seismic surveys acquired at varying production calendar times.

INTRODUCTION

Hydrocarbon reservoirs are increasingly recognized as spatially heterogeneous entities, in
terms of pore-fluid content, pore-fluid saturation, porosity, permeability, lithology, and struc-
tural control. Knowledge of these reservoir parameters and their spatial variation is critical in
the evaluation of the total volume of hydrocarbon reserves in place, in understanding and pre-
dicting physical processes in the reservoir such as fluid flow and heat transfer, and in projecting
and monitoring reservoir fluid production and recovery as a function of time. A new diagnos-
tic role for seismic has recently been proposed in which several repeat 3-D seismic surveys
are acquired in time-lapse mode to monitor reservoir production fluid-flow processes, e.g, Nur
(1989). This 4-D monitoring concept offers a method for better characterization of reservoir
complexity by monitoring the flow of fluids with time in a producing reservoir. In this paper,
I attempt to link fluid-flow physics, rock physics, and the physics of seismic wave-theoretic
modeling and imaging. Figure??schematically shows how these three disciplines are coupled
in the seismic fluid-flow monitoring problem, and how the critical physical parameters in each
discipline are related. The equations of fluid-flow describe changes in pore pressurep, tem-
peratureT , and multi-phase pore-fluid saturationS due to fluid flow in porous media. Rock
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physics transformations relate these fluid-flow parameters to seismic compressional-wave and
shear-wave propagation velocitiesα andβ. Elastic wave theory demonstrates that scattered
wave amplitudesA and traveltimesτ of reflected seismic wavesu

PP
contain information about

the fluid-flow parameters, and more importantly, that time-varying aspects of fluid-flow can be
isolated from static background geology and identified separately by images constructed from
multiple time-lapse seismic data sets.
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Figure 1: A schematic showing the critical physical parameters in each discipline of fluid
flow, rock physics, and seismic wave theory, and how they are naturally coupled together in
the seismic fluid-flow monitoring problem. Fluid-flow parameters are permeabilityκ, porosity
φ, viscosityη, pressurep, temperatureT , and saturationSi . Rock physics parameters are bulk
and shear moduliK andµ, densityρ, compressional and shear velocitiesα andβ. Seismic
parameters are traveltimeτ , amplitudeA, compressional and shear reflectivitiesRp and Rs.
david3-forward[NR]

FLUID-FLOW THEORY

A simple view of a hydrocarbon reservoir under production can be modeled as an isother-
mal (constant reservoir temperature), immiscible (no chemical fluid mixing) three-phase fluid
flow, e.g., Dake (?). The three phases present in the pore space of the reservoir rock are oil,
gas and water. During production, pore pressure decreases near oil producing wells, and in-
creases near gas/water/steam injection wells, stimulating three-phase fluid flow in the three
spatial dimensionsx of the reservoir as a function of production timet . This fluid flow can
be approximated by coupling fluid-mass conservation with Darcy’s Law, which relates a gra-
dient in pore pressurep(x,t) to the rate of fluid-flowq(x,t), given the permeabilityκ(x) and
porosityφ(x) of the rock, and the viscosityη(x) of the fluid. Assuming the porosity varies
slowly in space, the three phases of fluid-flow are coupled by the following immiscible fluid
displacement equations:
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The subscriptso, w, andg refer to oil, water and gas respectively.Si is the saturation of the
i th fluid component in the pore space on a scale from zero to unity, andQi is a fluid source or
sink term which can represent fluid withdrawal from a producing well, or fluid addition from
an injection well. pi is the partial pressure for each phase of oil, gas or water. Equations (2)
and (1) assume incompressible fluid, whereas (3) incorporates the significant expansion and
compression effects of gas under variable pressure conditions by including the gradient terms
of gas fluid densityρg. These flow equations are coupled with the statements that the total
pore saturation is complete and conserved with time:

Sw + So + Sg = 1 (4)

∂t Sw + ∂t So + ∂t Sg = 0 . (5)

Equations (1)–(5) describe simple three-phase fluid flow in the hydrocarbon reservoir over pro-
duction time. They are typically solved on a variable 3-D reservoir mesh by finite-difference
or finite-element methods for the pressure and saturation spatial distributions at several time
steps. An example of a fluid-flow simulation mesh is shown in Figure?? for a faulted and
uplifted reservoir in the Troll field, offshore Norway. The important parameters to monitor
are the evolution of the pore pressure and saturation changes in space and time. More com-
plex equations are required to model thermal effects from steam injection processes, miscible
floods in which the fluid phases are allowed to mix by chemical reaction, and other compli-
cated phenomena such as oil fractionation, emulsions, fluid interfingering and gravity override.

ROCK PHYSICS TRANSFORMATIONS

Given the fluid-flow equations of the previous section, and some description of the reservoir
geology, we can use rock physics analysis to transform reservoir pressure, temperature and
fluid saturation data into seismic parameters. The most important parameters are the particle
displacement velocities of the elastic waves that may propagate and scatter through the reser-
voir. These seismic wave velocities are denotedα(x) andβ(x) for the compressional (P) and
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Figure 2: An expanded section of a reservoir fluid-flow simulation grid.david3-res-grid[NR]

shear (S) waves respectively. Typically, dry rock properties for the reservoir are measured in
the lab from core samples as a function of mineralogy, porosity, pressure and temperature.
Then, effective fluid bulk moduli are computed for three-phase fluid mixtures of oil, gas and
water, including the effects of temperature and pressure. Finally, saturated rock properties are
calculated using Gassmann’s equation to combine the dry-rock data and effective fluid moduli
as a function of pressure, temperature, porosity, and fluid saturation.

Dry rock properties

Rock cores obtained from boreholes in the reservoir are cleaned and oven-dried prior to dry
rock measurements. Dry rock porosityφ and densityρ measurements are performed. Com-
pressional and shear wave velocities are measured in the dry core samples with an ultrasonic
wave generator, oscilloscope, and computer controlled measurement apparatus. Traveltimes
for the P and S waves to propagate in the core sample are measured at the 100 kHz to 1 MHz
frequency range, and dry rock values forα andβ are computed. Figure?? shows an exam-
ple of compressional waveforms measured across different core samples in a lab experiment,
Lumley et al. (?). These measurements may be repeated under varying lab conditions of con-
fining pressure and temperature to map out the response of a dry rock sample to reservoir pore
pressure and temperature. Based on the dryα, β andρ data, the dry bulk moduliKdry and dry
shear moduliGdry of the core samples can be obtained using the relation:

Kdry = ρ(α2
−

4

3
β2) ; Gdry = ρβ2 , (6)

whereρ is the dry density.

Saturated rock properties

Unfortunately, ultrasonic lab measurements of saturated rock properties are not representative
of field saturated rock properties in the surface-seismic frequency bandwidth (10-200 Hz).
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Figure 3: High-frequency compressional waveforms measured in various core samples under
rock physics lab conditions. The lower two waveforms were measured in dry and saturated
Massillon sandstone cores respectively.david3-pwaves[NR]

This is due to dispersive wave effects caused by frequency-dependent fluid oscillations in the
core sample pore space at ultrasonic frequencies. However, the velocity effect of saturation
can be calculated at seismic frequencies by using Gassmann’s formulas, e.g., Bourbié et al. (?).
This formula relates the effective elastic moduli of a dry rock to the effective moduli of the
same rock containing fluid at low frequencies:

Ksat = Ksolid
φKdry − (1+φ)K f luid Kdry/Ksolid + K f luid

(1−φ)K f luid +φKsolid − K f luid Kdry/Ksolid
(7)

and

Gsat = Gdry , (8)

whereKsat andGsat are the effective bulk and shear moduli of the saturated rock. Gassmann’s
relations require knowledge of the effective shear and bulk moduli of the dry rock (Gdry and
Kdry), the bulk modulus of the mineral material making up the rock (Ksolid), the effective
bulk modulus of the saturating pore fluid (K f luid), and the porosityφ. Equation (7) is used to
compute the low-frequency bulk modulus of saturated rock from high-frequency dry rock data.
For partially saturated rocks at sufficiently low frequencies, we can use an effective modulus
K f luid for the pore fluid that is an isostress average of the moduli of the liquid and gaseous
phases:

1

K f luid
=

S

Kliquid
+

(1− S)

Kgas
. (9)
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This requires knowledge of the bulk modulus of the liquid phase (Kliquid), the bulk modulus
of the gas phase (Kgas), and the saturation values (S). In general, if the pore fluid includes
more than two phases, we can calculate the mixture’s effective bulk modulusK f luid based on
the the number of fluid componentsN, the volumetric concentrationsci of thei th component,
and their bulk moduliK i :

1

K f luid
=

N∑
i =1

ci

K i
. (10)

Finally, we can use the following formulas to find seismic velocities in saturated rocks:

αsat =

√
(Ksat+

4
3Gsat)

ρsat
(11)

and

βsat =

√
Gsat

ρsat
, (12)

whereρsat is the density of the saturated rock:

ρsat = (1−φ)ρsolid +φρ f luid , (13)

ρsolid is the density of the solid phase, andρ f luid is the density of the fluid mixture obtained
as an arithmetic mean of the volume-concentration-weighted fluid density componentsρi :

ρ f luid =

N∑
i =1

ci ρi . (14)

This process allows us to calculate fluid properties that depend on fluid-flow saturation values.
These properties will also depend on pressure and temperature through the dry rock measure-
ments, and through the variation in bulk modulus and density of reservoir gas. Pressure- and
temperature-dependent gas properties may be calculated as discussed by Batzle and Wang
(1992). This total combined rock physics analysis allows us to calculate seismic velocities
in saturated reservoir rock as a function of mineralogy, fluid type and saturation value, pore
pressure and temperature. Therefore, we can map P-wave and S-wave velocity and density
as a function of the reservoir grid directly from the fluid-flow simulation values of pressure,
temperature, and oil, gas and water saturation.
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SEISMIC WAVE THEORY

Given the fluid-flow pressure, temperature and saturation data, mapped to seismic P-wave and
S-wave velocity and density, the response of these fluid-flow changes can be modeled and
imaged in seismic data by considering basic elastic wave theory.

Elastic wave modeling

Consider the elastodynamic wave equation for a seismic particle displacement vector wave-
field u(x,ω) and a second order tensor stress fieldσ (x,ω) due to a body force vector excitation
f(x,ω):

∇·σ −ρω2u = f , (15)

e.g., Aki and Richards (1980). Assume further a linear elastic stress-strain relationship in the
material continuum such that

σ = C:∇u , (16)

whereC(x) is the fourth-order elastic stiffness tensorCi jkl , and the “:” symbol means a second
order inner contraction. A volume integral representation for theP̀Ṕ “P-wave to P-wave”
scattered wavefieldu

PP
can be expressed as:

âr ·u
PP

=

∫
V

f
P
·u

P
dV . (17)

Equation (17) is the volume integral representation of the reflectedP̀Ṕ wavefieldu
PP

(xr ,ω;xs)
measured at a receiverxr along an arbitrary vector component directionâr , due to the exci-
tation of a body force reflection-diffraction scattering potentialf

P
(x;xs,xr ) at each subsurface

pointx, excited by the incident source wavefieldu
P
(x,ω;xs) generated by a seismic source lo-

cated atxs. The assumption of isotropic elastic WKBJ (ray-valid) Green’s tensors for P waves
leads to:

u
P
(x,ω;x

′

) = A
P
(x;x

′

) t̂
P
(x;x

′

) ei ωτ (x;x
′
)
= A

P
t̂

P
ei ωτ , (18)

where A
P

andτ are the ray-valid P-wave amplitude and traveltime from the “source” loca-
tion x

′

to the “observation” pointx, and are related by the eikonal and transport equations
respectively:

|∇τ |
2
= ∇τ ·∇τ =

1

α2
(19)

A ∇
2τ +2∇τ ·∇ A = 0 . (20)
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The unit vector̂t
P

is the direction parallel to P-wave propagation, as shown in Figure??,
and is perpendicular to the wavefrontsτ = constant. For a linear isotropic elastic solid, the
stress-strain relationship is

σ
P

=

[
λ(∇·u

P
)I +2µ∇u

P
]

=
i ω

α

[
λ(t̂

P
·u

P
)I +2µt̂

P
u

P
]

, (21)

whereλ(x) andµ(x) are the Lamé parameters such that

λ = ρα2 and µ = ρβ2 , (22)

and I is the second-order identity matrixδi j . Lumley and Beydoun (1993) showed that the

P-wave reflection-diffraction scattering potentialf
P

is:

f
P

= −
i ω

α2
|u

P
|

[
(α∇λ−λ∇α)+2(α∇µ−µ∇α)·(t̂

P
t̂

P
)
]

. (23)

Equation (23) is abody force equivalentfor scattering-surface reflectivity excitations, and is
clearly dependent on material property contrasts (gradients):∇α, ∇λ and∇µ. After some
algebraic manipulation, (17) can be represented as:

âr ·u
PP

(xr ) =

∫
V

ρω2cosar AsAr ei ωτsr P̀Ṕcosφr dV(x) . (24)

To recap (24), the density at a subsurface point is denotedρ(x), and the geometric reflection
coefficient at that point is̀PṔ(x). The amplitude termsAs and Ar represent the cumulative
geometric spreading, transmission loss, Q-attenuation, etc., from the source and receiver to the
subsurface pointx respectively. The factor cosar involves the vector component projection at
the surface locationxr of u

PP
onto the arbitrary direction̂ar . The termτsr = τs+τr is the total

traveltime from the source atxs to the subsurface pointx and back up to the receiver atxr .
Finally, the diffraction weight cosφr represents the angle between the anticipated geometric
specular reflection direction̂t

PP

s and the non-geometric diffraction directiont̂
P

r . In the case of
specular reflection when̂t

PP

s = t̂
P

r , φr = 0 and so cosφr = 1. The generalized reflection ray and
angle geometries are shown in Figure??. A linearized version of the nonlinear̀PṔ reflection
coefficient can be parameterized as:

P̀Ṕ(x,cosθ̄ ) ≈ 0.5sec2 θ̄
1(ρα)

(ρα)
−4γ 2sin2 θ̄

1(ρβ)

(ρβ)
+

(
2γ 2sin2 θ̄ −0.5tan2 θ̄

) 1ρ

ρ
, (25)

whereγ = β/α and θ̄ is the reflection angle between the incident wave directiont̂
P

and the
local gradient of the compressional P-impedance structure∇(ρα). This linearization is also
given in a somewhat different parameterization by Aki and Richards (1980), and is accurate
when the relative perturbations in impedance and density are small, and the reflection anglesθ̄

are less than the critical angle at which conical “head waves” emerge. The seismic modeling
equations (19), (20), (24) and (25) show that changes in fluid-flow pressure, temperature and
saturation, mapped toα, β andρ changes through rock physics transformations, will have an
effect on the traveltimesτ and reflection amplitudes̀PṔ in the seismic datau

PP
. If several

seismic surveys are recorded at different phases of production fluid-flow, the seismic response
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will change with calendar time due to the coupled equations in fluid-flow, rock physics and
elastic wave theory shown above. For example, Figure?? shows modeled CMP gather seis-
mograms, after moveout correction, before and after oil production from a horizontal well.
The next section addresses the topic of imaging changes in fluid-flow directly from multiple
seismic data sets recorded in “monitoring” mode.
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Figure 4: Generalized reflection ray and angle geometries.david3-anglegeom[NR]

Seismic wavefield imaging

Given a seismic data set recorded at some calendar timeT1, we would like to be able to image
the subsurface reflectivity structureR1 which generated the reflected waves observed in that
seismic data. Furthermore, we would like to obtain several reflectivity estimatesR1, R2, R3, ...
corresponding to surveys over a producing reservoir at calendar timesT1,T2,T3..., and infer
something about the change in subsurface fluid flow from the changes in theRi maps. The
required imaging procedure is called “seismic migration” in the seismic exploration industry.
I briefly derive a “kinematic” Kirchhoff prestack depth migration equation which is suitable
for either 2-D or 3-D data acquisition, and incorporates single-arrival traveltime and phase
estimates. This migration equation yields accurate estimates of reflectivity amplitudes for
near-offset data, and provides an efficient and robust structural imaging condition for far-offset
data, Lumley (1989). Given the Helmholtz variable-velocityα scalar wave equation{

∇
2
+ (ω/α)2} P(x,ω) = S(x,ω) , (26)

the “downgoing wavefield”D generated by a single source at locationxs can be evaluated at
any subsurface locationx within a volumeV from the frequency-domain integral representa-
tion:

D(x,ω;xs) =

∫
V

G(x,ω;x′) S(x′,ω;xs) dx′ , (27)
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Figure 5: Modeled CMP gather seismograms, before and after oil production from a horizontal
well. Note near offset waveform traveltime and amplitude changes, and far offset AVO tuning.
david3-noise13-ann[NR]

whereG(x,ω;x′) is the Green’s function solution to (26) associated with the source location,
andS is the source wave function. If we neglect the absolute amplitude of the source and con-
sider only relative amplitudes in the migrated section, and assume the source has a compact
delta function shape in both space and time:δ(t)δ(x′

−xs), then the downgoing wavefield can
be approximated by the source Green’s function alone:D(x,ω;xs) ≈ G(x,ω;xs). The “upgo-
ing wavefield”U reflected from the subsurfacex due to a source atxs can be reconstructed
from the seismic (scalar) dataP = âr ·u

PP
recorded at receiversxr using a Kirchhoff integral

representation:

U (x,ω;xs) =

∫
S

n̂·∇G(x,ω;xr ) P(xr ,ω;xs) dxr , (28)

whereG(x,ω;xr ) is the receiver Green’s function andn̂ is the unit vector normal to the record-
ing surfaceS that bounds the image volumeV of interest. The gradient operator∇ is taken
with respect to the subsurface coordinatex along the recording surface atx = xr . Given that
the reflected wavefieldU can be modeled as a convolution of the subsurface reflectivityR with
the source wavefieldD, a local least-squares estimate ofR can be obtained as the weighted
zero-lag correlation of the source and reflected wavefields:R≈

∑
ω W U D∗, whereW are as

yet unspecified weights, andD∗ is the complex conjugate ofD. If this weighted zero-lag cor-
relation is further averaged for all such single shot-profile migrations, the frequency-domain
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Kirchhoff migration equation becomes:

R(x) ≈

∫
ω

∫
xs

∫
xr

W [n̂·∇G(x,ω;xr )] G∗(x,ω;xs) P(xr ,ω;xs) dxr dxsdω . (29)

It can be shown that the reflectivity imageR is proportional to a reflection-angle averaged
version of theP̀Ṕ coefficient in the modeling equation (24), and is a first order estimate of the
relative P-wave impedance contrast in the earth,1(ρα)/(ρα), as inferred from equation (25).
Assume a parametric form for the Green’s functionsG such that:

G(x,ω;xa) ≈ Aa(x;xa) e±i (ωτa+φa) , (30)

where opposite signs are chosen in the exponential for the source (outgoing) and receiver
(reverse-time extrapolated) Green’s functions respectively. The parametersAa, τa andφa are
the single-arrival Green’s function amplitudes, traveltimes and phase rotations from location
xa to x. These parameters are often estimated by conventional high-frequency asymptotic ray
methods. Given the parametric form (30), an efficient time-domain version of (29) can be
obtained as:

R(x) ≈

∫
xs

∫
xr

cosθr Ŵ ei φsr P̂(xr ,xs; t = τsr) dxr dxs , (31)

where the “obliquity factor” cosθr is a function of the incident angle at each receiver with re-
spect to the surface normal, and is obtained as the dot product (αr ∇τr ·n̂). The Kirchhoff space-
time migration equation (31) is a weighted diffraction stack of the preprocessed, deconvolved
(but not divergence-corrected) datâP, after phase-rotation by the Green’s function parame-
tersφsr = φs +φr , evaluated along the diffraction trajectories given by the Green’s function
traveltimesτsr = τs + τr . I definekinematicmigration by setting the migration weightŝW to
unity. I note that (31) is suitable for 2-D migration if all spatial coordinates are 2-vectors, e.g.
x = (x,z), and P̂ is preprocessed by the half-time derivative operator

√
i ω. However, (31) is

equally suitable for 3-D migration if all spatial coordinates are 3-vectors, e.g.x = (x, y,z), and
P̂ is preprocessed by the full time derivative∂t .

Seismic velocity analysis

The seismic migration equation (31) images subsurface reflectivity structure, which is pro-
portional to short-wavelength impedance variation. However, (31) is a nonlinear function of
wave propagation velocityα to first order in traveltimesτ , and to second order in amplitudes
A. The coherency of any reflectivity image is therefore dependent upon the accuracy to which
the long-wavelength velocity structureα is known. Velocity estimation is nonlinear, and re-
flectivity estimation is linear, given a smooth estimate of the background velocity field. In
general, the problem of estimating the short-wavelength reflectivity and the long-wavelength
velocity are nonlinearly coupled, and need to be solved simultaneously. In practice, the prob-
lem is usually assumed to be separable and solved separately; first for the velocity and then
for the reflectivity.
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A general nonlinear inverse problem can be posed to solve for long-wavelength velocity
and short-wavelength impedance as follows. A measure of coherency can be defined as some
functionF of the reflectivity imageR, which is itself a function of the velocityα,

Coherency = F {R(α)} . (32)

Since the image is assumed to be most coherent at the correct velocity model, a nonlinear op-
timization problem ensues, e.g., Symes and Carazzone (1991). An optimal velocity solution is
obtained when the coherency does not improve with slight adjustments to the velocity model:

∂F {R(α)}

∂α
= 0 → α(x) . (33)

Equation (33) is the gradient of the image coherency with respect to velocity perturbation, and
can be used in a nonlinear steepest-descent or conjugate-gradient method to iterate towards a
final solution.

Seismic fluid-flow monitoring

The seismic migration equation (31) can be used to obtain an estimate of the subsurface re-
flectivity R for any seismic data set. This reflectivity image is an angle-average estimate of
the elasticP̀Ṕ scattering coefficient, and is a first order estimate of short-wavelength P-wave
impedance contrasts,1(ρα)/(ρα), in the subsurface. Information on the long-wavelength ve-
locity structureα(x) is available in the seismic data from the traveltime informationτsr in the
wavefieldu

PP
, by solution of the nonlinear velocity analysis system (33). The velocity struc-

tureα and reflectivity imageR estimated from a single seismic survey will be comprised of
coupled contributions from the reservoir geology and the fluid-flow states in pore space. The
estimation and interpretation of this information from a single seismic data set is known as
seismic reservoir characterization:

Characterization= α(x), Rp(x), Rs(x) = rock + fluid .

Seismic reservoir characterization is a very difficult task because of the ambiguity in trying
to separate geology effects from fluid-flow effects in a single seismic data set. However,
when multiple seismic surveys are conducted at separate calendar times, it is expected that the
reservoir geology will not change from survey to survey, but the state of fluid flow will change.
Therefore, differencing a series of reflectivity imagesRi and velocity model estimatesαi will
remove the static geologic contribution to the seismic data, and isolate time-varying seismic
changes in the reservoir which are due to time-varying fluid-flow changes alone. The process
of estimating and comparing reflectivity images and velocity estimates from multiple seismic
data sets recorded at different calendar times is known asseismic reservoir monitoring,

Monitoring = ∂t
{

α(x,t), Rp(x,t), Rs(x,t)
}

= fluid flow .

Seismic reservoir monitoring is potentially a much less ambiguous task than characterization,
because the effects of geology and fluid-flow may be uncoupled by comparing time-varying
seismic data sets.
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SYNTHETIC EXAMPLE

In this section, I present a simulated example of seismic reservoir monitoring on a North Sea
reservoir, Lumley et al. (1994), in order to determine if it would be feasible to observe changes
in seismic monitor data given a specific fluid flow and reservoir geology scenario. Fluid-flow
simulations were computed by Norsk Hydro for the case of solution-gas-drive oil production
from a horizontal well in the reservoir after 56 and 113 days of production. Reservoir geol-
ogy and core data measurements were combined to make rock physics transformations of the
fluid-flow saturation, pressure and temperature data to seismic velocities and densities. Multi-
offset elastic reflection seismogram surveys were simulated at each production phase. Prestack
migration images show gas coning during production in reasonable seismic noise levels and
frequency bandwidth.

Fluid-flow simulation

The oil zone is located at a depth of approximately 1550 meters, and it varies in thickness
from a few meters to more than 20 meters. Horizontal drilling technology makes it possible
to commercially produce oil from this thin oil zone. The reservoir fluid-flow grid, shown
in Figure??, consisted of 312 individual blocks, and each grid cell was given with a fluid-
flow simulation data value of porosity, pore pressure, gas saturation, oil saturation, and water
saturation. As an example of the simulation data, Figure??shows thechangein oil saturation
after 113 days of production. The thin oil zone is compressed due to gascap expansion from
above and upward water coning from below.

Oil Saturation at 113 Days - Initial Oil Saturation

 -1.0

 -0.6

 -0.2

  0.2

  0.6

  1.0

1.6                                         2.0                                         2.4

1.50
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1.55

Figure 6: The change in oil saturation after 113 days of oil production. The thin oil zone
at 1.55 km depth is compressed from above due to downward gascap coning (black), and
upward water coning from below (dark gray). Black implies a 100% decrease in oil saturation.
david3-oil-sat [NR]
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Rock physics

Given the fluid-flow simulation data and reservoir geology, rock physics analysis is used to
transform pressure, temperature and saturation data intoα, β andρ distributions within the
reservoir. Estimates of dry rock properties in the reservoir are based on the results in a sim-
ilar reservoir reported by Blangy and Strandenes (1991) and Blangy (1992), which involved
laboratory experiments conducted on 38 core samples. Figure?? shows an example of the
αdry core measurements made as a function of reservoir sand porosity at 20 MPa differential
pressure. Figure?? shows an example of the change in P impedance mapped from the fluid-

2000

Differential pressure 20 MPa

2400

2800

0.2 0.3

V
p,

 m
/s

0.4

Porosity

Figure 7: P-wave velocityα measured versus porosity in 38 dry core samples from the Troll
reservoir at 20 MPa differential pressure.david3-vp-phi [NR]

flow simulation at 113 days of oil production compared to the the initial reservoir state prior
to production. There is a significant decrease in P impedance above the oil zone where the
gascap has expanded downward, and a smaller increase in P impedance below the oil zone
where the aquifer has coned upward during production. The maximum relative decrease in P
impedance is about 15% which is strong enough to cause a significant seismic reflection.

Seismic monitoring

Given theα, β andρ distributions in the reservoir corresponding to the fluid-flow simulation
data and rock physics transformations, I simulated a multi-offset surface seismic survey at
each of three separate monitoring phases of oil production. These three prestack datasets were
then processed to produce stacked and prestack-migrated reflectivity images. Difference im-
ages obtained by subtracting combinations of stacked and migrated sections clearly show that
reservoir fluid production is visible in the seismic data and can be monitored in the presence
of reasonable levels of seismic noise. Figure?? shows the difference section obtained by a
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gas cone above the oil zone shows a 15% decrease in impedance (black), and the aquifer
uplift below shows a 5% increase in impedance (white), compared to initial conditions.
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simple subtraction of the Base Survey migration image, prior to oil production, from the Mon-
itor 2 migration image, after 113 days of oil production. The gas coning clearly stands out
from the background seismic noise as a bright spot at 2 km and 1.6 s, and accurately defines
the spatial extent of the true impedance model anomaly.

FIELD DATA EXAMPLE

In this section I briefly show a field data example from a steamflood in the Duri field, Indone-
sia, first reported by Bee et al. (?) and Lumley (1995a; 1995b).

Field data

Figure ?? shows two inline profile-view sections cut from a 3-D migration cube. The left
panel is before steam injection, the right panel is after 5 months of steam injection. After
steam injection, the heat, pressure and desaturation of the steamed zone show up clearly as
differences in the time-lapse seismic sections. The shallow portion of the borehole is even
visible in the seismic data due to heating of the casing and surrounding rock. Figure??shows
two time-slice map-view sections cut from a 3-D migration cube at about the depth that steam
should be penetrating the reservoir. The lower panel shows a circular disk of steam “S” about
50 m in diameter (white), and a large outer annulus interpreted to be a transient pressure front
“P” (dark gray). These examples clearly demonstrate that reservoir fluid-flow changes can be
seen in some field conditions with time-lapse seismic monitor data.
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Figure 9: A difference section of the Base Survey prestack migration subtracted from the
Monitor 2 prestack migration.david3-mig13[NR]

CONCLUSION

I have discussed the physical theory relevant for three-phase fluid flow in a producing oil
reservoir, and rock physics transformations of fluid-flow pressure, temperature and pore-fluid
saturation values to seismic P-wave and S-wave velocity. I have linked fluid-flow physical
parameters to seismic reflection data amplitudes and traveltimes through elastic wave equation
modeling and imaging theory. I have demonstrated with both synthetic and field data examples
that changes in fluid-flow can be monitored and imaged in certain conditions from repeated
seismic surveys acquired at varying production calendar times.
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Figure 10: Inline profile-view sections cut from a 3-D migration cube. The left panel is before
steam injection, the right panel is after 5 months of steam injection. Steam near the central
injection well causes bright reflection amplitudes and time delay of underlaying events. The
polarity reversal on the base of reservoir reflection at 200 ms is probably due to the presence
of a transient pressure front.david3-inline-migs-ann[NR]
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Figure 11: Time slice map-view sections cut from a 3-D migration cube. The top panel is
before steam injection, the lower panel is after 5 months of steam injection. The steam zone
“S” is located within the bright amplitude disk with a diameter of 50 m, and a pressure transient
“P” is outlined by the black polarity reversal.david3-tslice-migs-ann[NR]
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