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Multi-azimuth velocity estimation

Robert G. Clapp and Biondo Biondi1

ABSTRACT

It is well known that the inverse problem of estimating interval velocities from reflection
data is poorly constrained in 2-D. We show that the interval velocity estimation problem
in 3-D is much better constrained when the velocity function is estimated by jointly in-
verting the data collected along multiple offset-azimuth, even when the azimuth range is
fairly limited. We extend to 3-D the linear operator presented by (Toldi, 1985) for relating
stacking velocities with interval velocities. We then apply a Singular Value Decomposi-
tion (SVD) analysis to the derived operator. This analysis suggests that methods that take
advantage of the azimuth range in the data should yield better velocity functions than cur-
rently used velocity estimation methods that neglect the additional information provided
by multi-azimuth coverage.

INTRODUCTION

In the last 10 years numerous methods have been proposed for estimating interval velocity
from reflection data in two-dimensions. Toldi(1985) presented a method for inverting stacking
velocities. Etgen(1990) used residual migration and Biondi(1992) used beam stacking in con-
junction with prestack migration in iterative inversion schemes to estimate the velocity model.
All these methods suffer from the common reflection tomography problem that the inverse
operator has a large null space (Firbas, 1987; Stork, 1992) due to some components of the
velocity model having no, or very small, effect on the travel-times of the data.

In the case of 3-D data there is a potential to improve the inversion process by exploiting
the fact that data is collected along several offset-azimuths. Common practice is to ignore the
azimuth at which the data was collected or try to account for differences in recorded stack-
ing velocities by introducing an anisotropic component to the velocity field. Seldom is the
azimuth at which data is collected considered in inverting for interval velocity. If we take the
approach that the varying azimuths at which data is collected is another source of information
for estimating interval velocity, rather than a hindrance, there is a potential to improve the in-
version process. We show that in 3-D the interval velocity estimation problem is much better
constrained when the data recorded along multiple azimuths is inverted for simultaneously.

We extend Toldi’s 2-D interval velocity estimation from stacking velocities to 3-D, taking
into account the azimuth in which the data was collected. By analyzing the singular values
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of the SVD, we show that the problem becomes fairly well defined when the data is recorded
along at least two azimuths; the wider the azimuth range the better. However, we show by
applying the method on a series of synthetics, that the multi-azimuth approach is of great help
in improving the resolution and reliability of the velocity estimation even when the range of
azimuths is limited, as is in modern multi-streamer marine acquisition.

THEORY

3-D data is routinely collected along several azimuths. For land surveys, CMP’s contain in-
formation from a wide range of azimuths. In the case of marine surveys, state of the art a few
years ago in marine acquisition (Stone, 1994) resulted in CMP’s whose azimuth information
that varied greatly from CMP to CMP, and was extremely limited in range. As time progresses
there is a growing desire to increase fold, CMP coverage, and azimuth coverage. As a result
we are seeing more cables, wider cable offset, and more overlap in boat paths producing wider
and more uniform azimuth coverage. When velocity varies laterally, the azimuth at which
data is collected has a significant effect on measured stacking velocities. Figure 1 shows the
stacking velocities that would be measured from a planar reflector below a Gaussian anomaly
as function of the azimuth at which the data was collected.

../biondo2/./Figs/azimuth.pdf

Figure 1: Measured stacking velocities versus the azimuths at which they were collected for a
Gaussian interval velocity anomaly.

In the case of a flat layered earth and assuming no ray bending, perturbations in stacking
velocities can be approximated as the linear operation:

1sre f (x, y,zr ,θ ) =

∫
xa

∫
ya

∫
za

G(x, y,zr ,xa, ya,za,θ )1sin(xa, ,ya,za)dzadyadxa (1)
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Where1sre f (x, y,zr ,θ ) is the stacking velocity perturbations measured at the positionx, y,
collected along the azimuthθ , and at the depthzr . 1sin is the interval velocity at the given
(xa, ya,za) point andG is the linear operator relating stacking velocity to interval velocity.
G is equal to the 2-D operator derived by (Toldi, 1985) evaluated along the vertical plane
connecting the source and receiver.G(x, y,zr ,xa, ya,za,θ ) equals:

G(x, y,zr ,xa, ya,za) =
15zr
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2
and arctan

(ya − y)

(xa − x)
= θ

= 0 elsewhere (3)

whereL represents the cable length andL ′ represents the effective cable length. Defined as
the distance at a given reflector depth of the furthest offset on the cable (see Figure 2), or
mathematically as:

L ′
=

[
zr − za

zr

]
L (4)

sheadFourier Analysis Considering the problem in the wavenumber domain provides two

L’

L

x_a

z_a

z_r

Figure 2: L represents the length of the seismic cable. L’ is the cable length atza. Equation 1
integrates over values inside the farthest offset ray-path to the reflector.
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significant advantages over a strict spatial domain analysis. First, if we bring the problem into
the wavenumber domain each wavenumber can be considered independently (making com-
putationally possible the SVD inversion ofG). In addition a Fourier domain analysis better
illustrates why considering multiple azimuths is advantageous. The wavenumbers who have a
low/zero amplitude response will not invert properly, especially when we consider noise. With
multiple azimuths, the number of wavenumbers who have low amplitudes (determined by sum-
ming of the amplitude response at each azimuth) is greatly reduced. To account for multiple
azimuths we need to perform an azimuth rotation. This is accomplished in the wavenumber
domain by:

kx,θ = k
′

x cosθ −k
′

y sinθ (5)

ky,θ = k
′

x sinθ +k
′

y cosθ , (6)

whereθ is equal to the azimuth rotation of the data. The resulting expression for the 3-D
operator is thus:

G(Ekθ ,zr ,θ ,za) =
15zr

L2k5
x,θ

[
(2+2c)k4

x,θ − (34c+6)k2
x,θ +72c

]
sinkx,θ +

15zr

L2k5
x,θ

[
(6+10c)k2

x,θ −72ckx,θ
]
coskx,θ (7)

Wherec is equal to:

c =
L2

4z2
r

(8)

andEk
′

is a normalized (byL ′

2 ) mapping operator that is a function ofθ andkx,θ , specifically
it locates where in model space the azimuth will map to. The discrete version of the operator
in equation (7) can be cast as a matrixG, function of the wavenumberEk

′

. The matrixG has
dimensions ofnstack= nθ ×nre f (number of azimuths multiplied by the number of reflectors
at which stacking velocity is measured) rows andnzslow (number of depth levels in interval
velocity model) columns. Therefore, in matrix notation the vector of stacking slowness per-
turbations1ss can be computed from the vector of interval slowness perturbations1si by the
matrix vector multiplication

1ss

(
Ek

′
)

= G
(
Ek

′
)
1si

(
Ek

′
)

. (9)

Figure 3 showsG
(
Ek

′
)

at a fixedθ , ky, zr andza. The zeros, and all the wavenumbers close

to them represent spatial wavelengths that can not be retrieved in the inversion process for a

single azimuth (the inverse ofG
(
Ek

′
)

would go to infinity). The single azimuth problem is

helped somewhat with multiplezr , because the zeros ofG
(
Ek

′
)

are a function of theeffective

cable length, but as Figure 4 shows the inversion ofG
(
Ek

′
)

for a single azimuth still has

significant artifacts even when stacking velocity is measured at several reflectors. Part of
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Figure 3:G
(
Ek

′
)
, for a singlezr andza, versus effective cable length L’.

Figure 4: Left panel represents the input interval velocity model, the right panel the result of
the single azimuth inversion with stacking velocity measured at three reflectors, two below
and one above the anomaly . The forward model was calculated usingG applied on the left
panel.
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this can be attributed to the first zero ofG
(
Ek

′
)
, which is close to the origin (low spatial

wavelengths), and therefore is not greatly affected by multiple reflectors and the resulting
stretch.

The low spatial wavenumber problem is significantly reduced when multiple azimuths are
considered. To understand why, imagine stacking velocities measured on a planar 3-D surface
below a small velocity perturbation in an otherwise homogeneous earth. In the first case the
data is collected along a single azimuth and the stacking velocity is then 2-D Fourier trans-
formed. In the second, the data is collected along three different azimuths and the amplitude
response of the Fourier transform of the corresponding stacking velocity measurements are
summed. Figures 5 and 6 show the resulting 2-D Fourier sections. In each plot the low val-
ues (dark) represent spatial wavenumbers of the stacking velocity model that are insensitive
to the interval velocity model. As Figure 6 shows, the number of spatial wavenumbers with
low values is significantly reduced. This is a qualitative analysis of the the effect that multiple
azimuths have on the characteristics ofG. In the next section we will show a more rigorous
one, using the SVD ofG.

Figure 5: Amplitude of the 2-D Fourier transform of calculated stacking velocity for a planar
reflector below the velocity anomaly for a single azimuth.

Inversion

As stated earlier, we are not interested in the forward operation, instead we are attempting
to obtain interval velocities. The interval velocity function can be estimated by inverting
equation (9). In general, the rank of the matrixG is lower than the dimensionality of the
unknown vector (1si ), and thusG is not exactly invertible, illustrated by the large side lobes
in Figure 4. There are two main reasons for the rank deficiency ofG. First, the number of
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Figure 6: Summed amplitude response for 2-D Fourier transformed stacking velocity mea-
sured on a plane below velocity anomaly for data collected at 0, 60, 120 degrees. Notice the
significantly reduced area with small amplitudes compared to the single azimuth case.

data points (rows) is usually lower than the number of unknowns (columns). Second, even
if enough reflectors and/or azimuths were present,G would be still rank deficient because
of fundamental velocity ambiguities along the vertical axis. We are however interested in an
approximate inverse ofG, not in its exact inverse. For practical purposes, the quality of the
velocity estimation can be greatly improved if the null-space ofG is reduced; we will show
that this happens when data with multiple azimuths are considered.

To analyze the property ofG, and of its inverse we will perform a Singular Value Decom-
position (SVD) of the matricesG at each wavenumberEk

′

and study their singular values and
singular vectors. We will also use the SVD ofG to invert it in some interesting cases.

SINGULAR VALUE DECOMPOSITION OF G
(

EK
′
)

A rectangular matrix, such asG, can be decomposed by SVD into

G
(
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′
)

= UT
(
Ek

′
)
3
(
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′
)

V
(
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′
)

, (10)

whereU andV are orthogonal matrices that respectively contain the data singular vectors and
model singular vectors, while3 contains its singular values.

Once the SVD of a matrix is computed, its least-square inverse, orpseudoinverseis simply
computed by,
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U
(
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, (11)
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Because some of the singular values are close to zero, in presence of noisy data the pseudoin-
verse must be damped. To better constrain the high spatial wavenumbers in the solution, we
chose to have a damping factor that is function of the absolute value of the wavenumber. The
expression that we used for evaluating the inverse is thus

G†
(
Ek

′
)

= VT
(
Ek

′
)(

3
(
Ek

′
)

+ ε| Ek
′

|

)−1
U
(
Ek

′
)

, (12)

SVD Analysis of G
(
Ek

′
)

To analyze the properties ofG and of its pseudoinverse we introduce the concept ofeffective
rank of G as a function of the wavenumbers. The concept of effective rank of a matrix is
linked to the concept ofcondition number(Golub and Loan, 1983). The condition number is
defined as the ratio between the largest and the smallest singular values. When inverting real
data, matrices with too large of a condition number are effectively rank deficient; an upper
limit must be set on the condition number. The effective rank of a matrix is equal to the order
for which the ratio between the largest singular value and the singular value of that order, is
less than the set upper limit on the condition number.

Figure 7 show the effective rank of the inverted matrix at each wavenumber when stacking
velocity is measured along a single azimuth. At almost all wavenumbers the effective rank of
the matrix is three, with small portions of the data going as low as two. When three azimuths
at 60 degrees are considered in the inversion problem the effective rank, and therefore the
inversion is significantly improved. Figure 8 illustrates this point, few spatial wavenumbers
have ranks of two or three, while many have effective ranks as high as nine. For computing
the effective rank we have set the upper limit on the condition number to be equal to 10.

SYNTHETIC MODEL TESTS

To test the effectiveness of the method we tested it on two models. We first apply the forward
operator (equation 7) on the interval velocity model and then attempted to recover the interval
velocity model by applying the damped inverse, equation (12). In each case we used an interval
velocity model that was, 6.4 km in each direction (x, y, andz), sampled every 100 m, and cable
length of 2 km.

For our first test we placed a Gaussian velocity blob within a uniform half space. The blob
had an approximate radius of 300 m and was centered at a depth of 2.5 km in the model of
the survey. Stacking velocities were measured (by applyingG to the interval velocity model)
at three reflectors, two bounding the anomaly and one significantly below. Figure 4 shows a
2-D slice through the Gaussian blob and the result of the inversion when stacking velocities
are measured along one azimuth. We then attempted the inversion with multiple azimuths.
Figure 9 shows the inversion result when stacking velocities are measured along: one azimuth;
two azimuths at 90 degree (common land survey design); three azimuths at 60 degrees; and
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Figure 7: Rank for data collected along one azimuth (0 degrees)

Figure 8: Rank when 3 azimuths are used at 0, 60, and 120 degrees. Note the substantially
higher effective rank, helping to constrain the inversion process.
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three azimuths at 8 degrees (marine survey). As expected the result with three azimuths at 60
degrees is superior, but note the significant improvement over the one azimuth inversion for
both the land and marine simulation. The blob is better constrained in the horizontal direction,
and shows improvement in the vertical direction. In addition the artifacts evident in the one
azimuth approach are reduced, and the recovered amplitudes better approximate the starting
model.

Figure 9: Inversion result for Gaussian anomaly. a) inversion result for one azimuth b) 3
azimuths at -60,0,60 degrees c) 2 azimuths at 0,90 degrees d) 3 azimuth at -8,0,8

Buried River Channel Model

Our second test tried to invert for a buried river channel, Figure 10. For the test, we added
to a uniform half space, a velocity anomaly, with an approximate width of of 1 km and depth
of 400 m. We simulated measured stacking velocities at 3 depths, one immediately above the
river and two below (at intervals of 700 m). Figure 11 shows the result of the inversion along
1 azimuth, while Figure 12 shows the improvement when stacking velocities are measured
along 3 azimuths at 60 degrees, and Figure 13 the result when the azimuth range is limited.
All three methods successfully located the center of the river channel, but, again, when the
multiple azimuths are considered the lateral extent of the anomaly are much better defined
along with improved recovery of amplitudes, evident when amplitudes are compared along an
arbitrary horizontal line (Figure 14).
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Figure 10: Starting interval velocity model. The stream channel is parabolic in shape with
amplitude decaying exponentially as function of the distance from the center of the channel.

Figure 11: Result of inversion measuring stacking velocities along one azimuth
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Figure 12: Inversion results when stacking velocities are measured along 3 azimuths at 60 de-
grees. Note the improved recovery of the edge of the river channel and amplitude information.

Figure 13: Inversion results when stacking velocities are measured along 3 azimuths at 8
degrees. Improvement is not as vivid as in the case of the wide azimuth range, but still signif-
icantly improved over the one azimuth case.
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Figure 14: Amplitude versus position from a horizontal line intersecting two bends in the river
chanel. The curves represent: solid - input velocity model; dots - land simulation; dash-dot -
marine simulation; and dash - one azimuth.

CONCLUSIONS

In this paper we present a 3-D extension of a common 2-D interval velocity estimation scheme
from stacking velocities. The method uses the multi-azimuth component of 3-D surveys to
reduce the null space inherent in the inversion process. We show that the inversion scheme is
effective in reducing the null space by analyzing theeffective rankof the forward operator. The
method is then tested on a series of synthetic models. The test on the synthetic models show
significantly improves the inversion result even when azimuth range is limited. The resulting
interval velocity model is both improved in horizontal and vertical resolution.

FUTURE WORK

In the future we plan to further test our current scheme and to apply what we have learned in
this problem to further enhance our ability to estimate interval velocity in 3-D. As a first step
we plan to test the current method using 3-D ray tracing to calculate travel times (and from that
stacking velocities), instead of applying the forward operator to calculate stacking velocities.
We also plan to test the current method on real data which has a gentle dip. And eventually to
generalize the method to account for 3-D dips. Finally, the success of the method, indicates
that other 2-D interval velocity estimation methods, might be extended into 3-D in a similar
fashion, further improving velocity estimation.
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