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3-D prestack depth migration of common-azimuth data

Biondo Biondi and Gopal Palacharla1

ABSTRACT

We extended the common-azimuth 3-D prestack migration method presented in a pre-
vious report (Biondi and Palacharla, 1994a) to the important case of imaging common-
azimuth data when the velocity field varies laterally. This generalization leads to an ef-
ficient mixed space-wavenumber domain algorithm for 3-D prestack depth migration of
common-azimuth data. We implemented the method using a split-step scheme, and ap-
plied it to the migration of two synthetic data sets: the first data set was generated assum-
ing a vertical velocity gradient, the second one assuming a velocity gradient with both a
vertical and a horizontal component. Common-azimuth migration correctly imaged the
reflectors in both cases.

INTRODUCTION

For 3-D prestack migration, Kirchhoff methods are usually preferred over methods based on
recursive downward continuation because of their flexibility in handling 3-D prestack data
geometries (Audebert, 1994). Kirchhoff methods can be employed to efficiently migrate data
sets with uneven spatial sampling and data sets that are subsets of the complete prestack data,
such as common-offset cubes and common-azimuth cubes. For recursive methods the irreg-
ular sampling problem can be addressed with an interpolation preprocessing step, though in
practice it can be a challenging task. However, in principle the downward continuation of
prestack subsets should be carried out in the full 5-D data space, even when the original subset
is 3-D (common offset) or 4-D (common azimuth). As a result of these constraints on the
dimensionality of the computational domain, most of the computations are wasted on propa-
gating components of the wavefield that either are equal to zero or do not contribute to the final
image. These potential limitations of recursive methods have led the industry to adopt almost
exclusively Kirchhoff methods for 3-D prestack migration (Western and Ball, 1991; Ratcliff et
al., 1994), though recursive methods have some intrinsic advantages over Kirchhoff methods.
First, they are potentially more accurate and robust because they are based on the full wave-
equation and not on an asymptotic solution based on ray theory. Second, when they can be
used to extrapolate the recorded data without increasing their dimensionality (e.g. zero-offset
data), they can be implemented more efficiently than the corresponding Kirchhoff methods.

In a previous report (Biondi and Palacharla, 1994a) we introduced a method for efficiently
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Figure 1: Schematic showing the acquisition geometry of common-azimuth data. The data
are acquired along parallel lines, with all the offset vectors aligned along a common azimuth.
For simplicity, but without loss of generality, we assume that the common offset-azimuth is
aligned along the in-line direction.biondo1-acquis[NR]
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migrating common-azimuth data (see Figure?? for a schematic representation of common-
azimuth acquisition geometry) by recursive downward continuation in the original 4-D space.
An efficient algorithm for migrating common-azimuth subsets has useful practical applica-
tions because common-azimuth data are either the result of a collection of actual physical
experiments (e.g. single-streamer marine survey with negligible cable feather) or they may
be synthesized by preprocessing (Biondi and Chemingui, 1994). However, in the previous
report we applied common-azimuth migration to the case of limited interest when velocity
varies only with depth; we did not address the important issue of applying the method to the
general case when the velocity function is laterally varying. Similarly, Ikelle (1991) devel-
oped (unknown to us at the time we wrote the first report) a linearized inversion method for
common-azimuth data that shares with our previous work the same theoretical basis, but also
shares the same limitations of applicability to a medium with only vertical velocity variations.
In this paper, we overcome these limitations and we generalize common-azimuth migration to
the case of laterally varying velocity.

The generalization of common-azimuth migration presented in this paper is based on two
new theoretical insights. First, we derive common-azimuth migration as a recursive down-
ward continuation by a new operator that continues common-azimuth data recorded at one
depth level to common-azimuth data recorded at the next depth level. The previous derivation
of common-azimuth migration was based on stationary-phase approximation to the whole
process of downward continuation followed by imaging at zero offset. Isolating the common-
azimuth downward continuation from imaging enables us to better understand the assumptions
underlying common-azimuth migration. The second improvement in the theory follows from
a ray-based geometric interpretation of common-azimuth downward continuation. Thanks to
this ray interpretation we derived and justified a more general formulation of the stationary-
phase result that can be applied to downward continuation in presence of lateral velocity vari-
ations. Furthermore, the geometric insight enables us to analyze the errors caused by the use
of common-azimuth continuation in place of full 3-D prestack continuation and to gain an
appreciation of the limitations and strengths of the proposed method.

COMMON-AZIMUTH DOWNWARD CONTINUATION

We first derive a wave-equation operator for downward continuing common-azimuth data by
applying a stationary phase approximation to the frequency-wavenumber domain formulation
of the full 3-D prestack downward continuation operator. Then, we present a ray-based ge-
ometric interpretation of the stationary-phase result, and use this geometric interpretation to
generalize the frequency-wavenumber results to a medium where the velocity function varies
laterally, and to analyze the errors caused by the use of common-azimuth continuation in the
presence of lateral velocity variations.

The acquisition geometry of common-azimuth data is shown in Figure??. Without loss
of generality we assume that the common offset-azimuth is aligned with thex axis (in-line
axis). Since the offset vectors between source and receivers are constrained to have the same
azimuth, common-azimuth data has only four dimensions. The four axes are: recording time,
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two midpoints, and the offset along the azimuthal direction. A common azimuth data set can
be downward continued by applying the full 3-D prestack downward continuation operator,
that in the frequency-wavenumber domain can be expressed as a phase-shift operator, with
the phase given by the 3-D double square root equation (DSR). In 3-D the DSR equation is
a function of five scalar variables: the temporal frequency (ω), the two components of the
midpoint wavenumber vector (km = kmxxm + kmyym), and the two components of the offset
wavenumber evaluation of the phase function (kh = khxxh +khyyh). The downward continua-
tion of common-azimuthC A(ω,km,khx) data from depthz to depthz+dzby full 3-D prestack
continuation can be expressed as

Dz+dz(ω,km,kh) = C Az(ω,km,khx)e
−i 8(ω,km,kh,z), (1)

where the phase function is given by

8(ω,km,kh,z) = DSR(ω,km,kh,z)dz, (2)

and the double-square root equation is equal to

DSR(ω,km,kh,z)

= ω
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wherev(s,z) andv(r ,z) are the velocities evaluated respectively at the source and receiver
locations at depthz. The distinction between velocity at the source and velocity at the receiver
may seem somewhat artificial in the wavenumber domain, but it is important to keep them
as two separate parameters during the stationary-phase approximation to derive a method ap-
plicable to depth migration. A physical interpretation of the significance of the source and
receiver velocity terms is possible after the geometric interpretation of the stationary-phase
results presented in the next section.

The result of the downward continuation with the full 3-D prestack is five dimensional,
although the original common-azimuth data is only four dimensional. This increase in the di-
mensionality of the computational domain causes a drastic increase in the computational and
memory requirements of 3-D prestack downward continuation, making it unattractive com-
pared with other migration methods, such as the ones based on the Kirchhoff integral. How-
ever, the computational cost can be greatly reduced by applying a new downward continuation
operator that evaluates the wavefield at the new depth level only along the offset-azimuth of the
original data. We derive this operator by evaluating the data at the new depth level(z+dz)
at the origin of the cross-line offset axis(hy = 0) by integration over the cross-line offset
wavenumber,

C Az+dz(ω,km,khx)

=

∫
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dkhyC Az(ω,km,khx)e
−i 8(ω,km,kh,z)

= C Az(ω,km,khx)

{∫
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dkhye
−i 8(ω,km,kh,z)

}
, (4)
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and by recognizing that since common-azimuth data is independent ofkhy the integral can be
pulled inside and analytically approximated by the stationary phase method (Bleistein, 1984).
The common-azimuth downward continuation operator can thus be written as

Down(ω,km,khx,z) =
2π√

8
′′

stat(ω,km,khx,z)
e−i 8stat(ω,km,khx,z)+i π

4 . (5)

The phase function8stat is equal to the phase function in equation (2) evaluated along the
stationary path, and is equal to

8stat(ω,km,khx,z) = DSR
[
ω,km,khx,k

′

hy(z),z
]

dz; (6)

where andk
′

hy(z) is the stationary path for the double-square root equation, as a function of
khy. There are two solutions for the stationary path of the double-square root equation; they
are

k̂
′

hy(z) = kmy
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In choosing between these two solutions, we first notice that one solution is the inverse of the
other. Second we consider the limiting case of the in-line offset wavenumber (khx) equal to
zero. In this case one solution diverges while the other (being the one with the minus sign at
the numerator) is equal to zero. We accept this second solution because it is consistent with
the notion that when bothkhx andkhy vanish the double square root equation reduces to the
single square root equation that is commonly used for migrating zero-offset data (Claerbout,
1985).

The implementation of common-azimuth downward continuation as described by equa-
tion (3) through equation (7) yields an algorithm for efficient migration of common-azimuth
data. When the velocity field is only a function of depth the method can be efficiently im-
plemented by a simple phase-shift algorithm. When the velocity field is also function of
the lateral coordinates, and accurate depth-migration is required, the method should be im-
plemented using a mixed space-wavenumber domain migration scheme, such as Phase-Shift
Plus Interpolation (PSPI) (Gazdag and Sguazzero, 1984) or split step (Stoffa et al., 1990).
We implemented the equations using a straightforward generalization of split step to prestack
migration because of its simplicity and computational efficiency; other choices would have
probably been just as effective.

In the next two sections, we analyze common-azimuth downward continuation by using a
ray-theoretical interpretation of the method. The goal is to understand the underlying assump-
tions, and to understand the accuracy limitation of the method when velocity variations cause
ray bending.

Geometric interpretation of common-azimuth downward continuation

The common-azimuth downward continuation operator derived by stationary phase has a
straightforward geometric interpretation in terms of propagation directions of the rays of the
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continued wavefield. In Appendix A we show that expression for the stationary path of equa-
tion (7) is equivalent to the relationship

psy

psz
=

pr y

prz
, (8)

among the ray parameters for the rays downward propagating the sources
(
psx, psy, psz

)
and

the ray parameters for the rays downward propagating the receivers
(
pr x , pr y, prz

)
. This re-

lationship between the ray parameters constrains the direction of propagation of the source
and receiver rays, for each possible pair of rays. In particular, the source ray and the receiver
ray must lie on the same plane; with all the possible propagation planes sharing the line that
connects the source and receiver location at each depth level. This geometric relationship con-
strains the sources and receivers at the new depth level to be aligned along the same azimuth
as the source and receivers at the previous depth level, consistently with the condition that we
imposed for the stationary phase derivation of the common-azimuth downward continuation
operator [equation (4)]. Figure?? shows a graphical representation of the geometric interpre-
tation of common-azimuth downward continuation. The source ray and the receiver ray must
lie on any of the slanted planes that share the line connecting the source and receiver locations.

In Appendix A we show that from equation (8) it is possible to derive the ray parameter
equivalent of the stationary-path expression of equation (7); that is,

(
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(
pr y + psy

) √ 1
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r x +

√
1

v(s,z)2
− p2

sx

. (9)

In this expression the distinction between the velocity at the source location, and the velocity
at the receiver location introduced in equation (3), and formally carried through the station-
ary phase approximation, is now physically meaningful. It implies that the source rays and
receiver rays must lie on the same plane, notwithstanding different local velocities and ray
bending.

Common-azimuth downward continuation and ray bending

As we previously discussed (Biondi and Palacharla, 1994b), when the propagation velocity is
constant common-azimuth downward continuation is exact, within the limits of the stationary-
phase approximation. In this case, there is no ray bending and the source and receiver rays
propagate straight along the slanted planes shown in Figure?? at every depth level, until
they meet to image a diffractor at depth. However, when ray bending occurs, it seems that
common-azimuth downward continuation introduces an error. This conclusion would be in
contradiction with the accurate results obtained by the application of common-azimuth mi-
gration shown in the next section, and it requires a closer examination. We first discuss the
simpler case of velocity varying with depth, and then the general case of velocity varying
laterally.

Inspection of the stationary-phase results [equation (7) and equation (9)] shows that in a
horizontally stratified medium the cross-line ray parameters for the source and receiver rays
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(
psy, pr y

)
change across boundaries between layers with different velocities. This result con-

tradicts Snell’s law that states that the horizontal ray parameters must be constant when the
velocity varies only vertically. In common-azimuth downward continuation, by imposing the
constraint that the source and receiver ray must lie on the same plane, we force the source and
receiver rays to bend across interfaces in a way that may not be consistent with Snell’s law.
In particular, the ray bending determined by common-azimuth continuation is incorrect when
the velocity variations would prescribe the source ray to bend differently than the receiver ray
along the cross-line direction. This error in the ray bending can be analyzed by evaluating
the difference between the values of

(
pr y − psy

)
across an interface where the upper layer has

velocity V1 and the lower layer has velocityV2
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It is straightforward to show from (10) that the error is equal to zero, if and only if, one of the
following conditions is fulfilled,

|pr x | = |psx| (11)

pr y = −psy (12)

V1 = V2 . (13)

The first condition is fulfilled when either the source ray is parallel to the receiver ray (e.g.
zero offset data), or the two rays converge and form opposite angles with the in-line axisx
(e.g. flat reflections along the in-line midpoint axis). The second condition is fulfilled in the
case of vertical propagation (2-D), while the third condition confirms that when the velocity is
constant common-azimuth downward continuation is kinematically exact.

The previous analysis shows that common-azimuth downward continuation introduces an
error in the ray bending across velocity interfaces. However, this consideration does not nec-
essarily leads to the conclusion that common-azimuth continuation is inaccurate. On the
contrary, we argue that the error in the ray bending causes only second order errors in the
continuation results. This claim can be simply verified by recognizing that for downward con-
tinuing common-azimuth data we evaluate the phase function8(ω,km,kh,z) [equation (3)] at
its stationary point̂k

′

hy(z) [equation (7)] with respect to the cross-line offset wavenumberkhy.

Since the phase function is stationary atk̂
′

hy(z) the first order term of its Taylor expansion as

a function ofkhy aroundk̂
′

hy(z) is equal to zero. Therefore, an error inkhy has only a second
order effect on the evaluation of the phase function8stat(ω,km,khx,z) [equation (6)]. In other
words, the error introduced by the incorrect ray bending has second order effects on the con-
tinuation results, and consequently on the migration results. This conclusion is supported by
the accuracy of the migrated images shown in the next section.

When the velocity field varies laterally, the previous analysis becomes more complex be-
cause the incorrect ray bending causes errors in the evaluation of the phase function not only
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through errors in the cross-line offset wavenumberk̂
′

hy(z), but also through errors in the hor-
izontal locations where the velocity function is evaluated. The arguments that support the
conclusion that the errors in the phase function caused by error ink̂

′

hy(z) are of second order
are still valid for the general case of lateral velocity variations. However, the magnitude of the
error introduced by the mispositioning of sources and receivers at depth when evaluating the
velocity function cannot be neglected in principle. These errors are dependent on the spatial
variability of the velocity function, and cannot be readily analyzed analytically. In the follow-
ing section we show accurate migration results obtained over a velocity function varying both
laterally and vertically. These results are encouraging and suggest that the range of application
of common-azimuth migration to depth migration problems is fairly large.

y

x
X

SR azimuth

X

Figure 2: Schematic showing the ray geometry for common-azimuth downward continuation.
For each pair of source ray and receiver ray, both rays are constrained to lie on the same
slanted plane. All the propagation planes share the line connecting the source and the receiver
locations. biondo1-stconv[NR]

MIGRATION RESULTS

We tested common-azimuth migration by imaging two synthetic data sets generated by a mod-
eling program based on the Kirchhoff integral. The Green functions are computed analytically
assuming velocity functions with a constant spatial gradient. In both cases the velocity at the
origin of the spatial coordinates is equal to 1.7 km s−1. The first data set is generated assum-
ing a vertical gradient of 1.0 s−1 while the second data set is generated assuming a gradient
with the horizontal component equal to 0.2 s−1 and the vertical component equal to 0.25 s−1.
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The horizontal component of the gradient is oriented at an angle of 45 degrees with respect
to the offset azimuth (in-line direction) of the acquisition geometry. The reflectivity model is
a constant reflectivity function positioned along a half-spherical dome superimposed onto a
horizontal planar reflector.

The acquisition geometry has 128 midpoint along both the in-line and cross-line directions;
with midpoint spacing of 25 m in both directions. Each midpoint gather has 64 offsets, spaced
every 40 m; the nearest offset traces are actually recorded at zero offset. The offset-azimuth
of the data is aligned with the in-line direction. Figure?? and?? show two in-line zero-offset
sections extracted from respectively the vertical gradient data set and the oblique gradient data
set. The effects of the lateral component of the velocity gradient are evident in both the tilting
of the horizontal reflector, and in the asymmetry of the quasi-hyperbolic reflections from the
dome.

Figures?? and?? show an in-line section and a depth slice of the results of migrating the
vertical gradient data set. The in-line section (Figure??) is taken across the middle of the
dome, while the depth slice (Figure??) is taken across the base of the dome(z = 1.75 km).
Common-azimuth migration has accurately imaged the data; both the in-line section and the
depth slice show a perfect focusing of the reflectors. To visually verify the isotropic response
of common-azimuth migration we overlaid a circle onto the depth slice. The migrated dome
is perfectly circular, notwithstanding the ray bending caused by the strong vertical velocity
gradient.

Figures?? and?? show the result of migrating the oblique gradient data set. The in-line
section (Figure??) shows that common-azimuth migration has correctly positioned the re-
flectors. The planar reflector has been flattened, and the spherical dome has been properly
focused. A spatial variability in both the frequency content and the amplitude of the migrated
reflector is noticeable in the depth slice. The frequency variability is expected, and it is caused
by the widening of the spatial wavelength of the wavefield caused by higher propagation ve-
locities. The wavelet is narrower closer to the origin (upper-left corner) where velocity is
lower and it is wider where the velocity is higher (lower-right corner). The amplitude vari-
ations cannot be readily explained, and further analysis is needed to determine whether they
are artifacts of common-azimuth migration. The combined frequency and amplitude effects
creates an “anisotropic” appearance to the migrated image. However, by overlaying a circle
onto the plot of the seismic data we see that the migrated dome, though not perfectly circular,
it is very close to circular. The comparison of these results with the results from the vertical
gradient data set confirm the accuracy of common-azimuth migration even in the presence of
strong lateral velocity gradients.

CONCLUSIONS

We have shown that common-azimuth migration (Biondi and Palacharla, 1994b) can be suc-
cessfully applied to imaging 3-D prestack data with laterally varying velocity. This important
generalization of common-azimuth migration was made possible by two theoretical insights.
The first one led us to recast common-azimuth migration as a recursive application of a new
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../biondo1/./Fig/Mod-vz.pdf

Figure 3: In-line zero-offset section extracted from the synthetic data set modeled assuming a
constant vertical gradient in velocity equal to 1.0 s−1.

../biondo1/./Fig/Mod-grad.pdf

Figure 4: In-line zero-offset section extracted from the synthetic data set modeled assuming
a constant velocity gradient with the horizontal component equal to 0.2 s−1 and the vertical
component equal to 0.25 s−1.
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../biondo1/./Fig/Ph3D-vz-sy.pdf

Figure 5: In-line section of the migration results for the vertical gradient data set. This section
passes through the middle of the dome.

../biondo1/./Fig/Ph3D-vz-sz-circ.pdf

Figure 6: Depth slice of the migration results of the vertical gradient data set. A circle is
overlaid onto the seismic data to visually verify the isotropy of the migrated dome.
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../biondo1/./Fig/Ph3D-grad-sy.pdf

Figure 7: In-line section of the migration results for the oblique gradient data set. This section
passes through the middle of the dome.

../biondo1/./Fig/Ph3D-grad-sz-circ.pdf

Figure 8: Depth slice of the migration results of the oblique gradient data set. Frequency
content and amplitude variations are evident along the circular reflector. However, the imaged
reflector is fairly close to be circular.



SEP–84 3-D common-azimuth depth migration 13

common-azimuth downward continuation operator. The second one is a ray-theoretical inter-
pretation of common-azimuth downward continuation that enables us to analyze the errors in
presence of ray bending caused by velocity inhomogeneities.

We implemented common-azimuth depth migration by downward continuation in mixed
space-wavenumber domain using a split-step scheme. The application of our depth migration
algorithm to a data set with a strong horizontal component of the velocity gradient resulted in
an accurate imaging of the reflectors.
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APPENDIX A

The purpose of this Appendix is to demonstrate the equivalence of the stationary phase deriva-
tion of the common-azimuth downward continuation operator [equation (7) in the main text]
and the constraint on the propagation directions of the source rays

(
psx, psy, psz

)
and receiver

rays
(
pr x , pr y, prz

)
expressed in equation (8).

We start by showing that equation (8) is directly derived by imposing the condition that
the source ray and the receiver ray lie on the same plane. For this condition to be fulfilled,
the components of the two rays in the direction of the cross-line axisy must be equal. From
elementary geometry, these components are

dys = v(s,z)psydls =
psydz
psz

dyr = v(r ,z)pr ydlr =
pr ydz
prz

, (B-1)

wheredls,dlr are the differential ray-paths lengths for the source and receiver rays,dys,dyr are
their components along they axis, anddz is the component along the depth axis, constrained
to be the same for the source and receiver rays. By equating the two equations in (B-1) we
immediately derive equation (8); that is,

psy

psz
=

pr y

prz
. (B-2)

The second step is to eliminatepsz and prz from equation (B-2) by using the following
relationships among the ray parameters

p2
sx+ p2

sy+ p2
sz =

1
v(s,z)2

p2
r x + p2

r y + p2
rz =

1
v(r ,z)2

. (B-3)

After a few simplifications we get the equivalent of the stationary path relationship [equa-
tion (7)] but expressed in terms of ray parameters,

(
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)
=
(
pr y + psy

) √ 1
v(r ,z)2

− p2
r x −

√
1

v(s,z)2
− p2

sx√
1

v(r ,z)2
− p2

r x +

√
1

v(s,z)2
− p2

sx

. (B-4)

To derive equation (7) from equation (B-4) it is sufficient to substitute for the ray parame-
ters by applying the relationships

kmx = kr x +ksx = ω (pr x + psx)

kmy = kr y +ksy = ω
(
pr y + psy

)
khx = kr x −ksx = ω (pr x − psx)

khy = kr y −ksy = ω
(
pr y − psy

)
(B-5)
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