previous up next print clean
Next: From elastic constants to Up: FORWARD MAPPING Previous: From elastic constants to

From elastic constants to phase velocities near the vertical axis

Expanding equation (1a) around $\theta = 0$ and neglecting terms in $\sin^4 \theta$, results in:
\begin{eqnarray}
2 W_{P,SV} (\theta) & = & (W_{33} + W_{44}) \cos^2 \theta + (W_...
 ...} + W_{44})^2}{W_{33} - W_{44}} \sin^2 \theta 
\right). 
\nonumber\end{eqnarray} (2)

Choosing the positive root yields the P-wave phase velocity near the vertical axis, as follows:
\begin{displaymath}
W_{P} (\theta) \ =\ W_{P,z} \ c^2 + W_{P,xnmo} \ s^2 ,\end{displaymath} (3)
where $c \ =\ \cos \theta$, $s \ =\ \sin \theta$,
\begin{displaymath}
W_{P,z} \ =\ W_{33},\end{displaymath} (4)
and
\begin{displaymath}
W_{P,xnmo} \ =\ W_{44} + \frac{(W_{13} + W_{44})^2}{W_{33} - W_{44}}.\end{displaymath} (5)
WP,z is the vertical P-wave phase velocity squared and WP,xnmo is the horizontal normal moveout (NMO) phase velocity squared.

Choosing the negative root in equation (2) yields SV-wave phase velocities near the vertical axis, as follows:
\begin{displaymath}
W_{SV} (\theta) \ =\ W_{SV,z} \ c^2 + W_{SV,xnmo} \ s^2,\end{displaymath} (6)
where
\begin{displaymath}
W_{SV,z} \ =\ W_{44},\end{displaymath} (7)
and
\begin{displaymath}
W_{SV,xnmo} \ =\ W_{11} - \frac{(W_{13} + W_{44})^2}{W_{33}- W_{44}}.\end{displaymath} (8)

The previous expressions for the NMO velocities agree with the results of Thomsen (1986) and Vernik and Nur (1992).

The expression for SH-wave phase velocities near the vertical axis is
\begin{displaymath}
W_{SH} (\theta) \ =\ W_{SH,z} \ c^2 + W_{SH,xnmo} \ s^2,\end{displaymath} (9)
where
\begin{displaymath}
W_{SH,z} \ =\ W_{44},\end{displaymath} (10)
and
\begin{displaymath}
W_{SH,xnmo} \ =\ W_{SH,x} \ =\ W_{66}.\end{displaymath} (11)


previous up next print clean
Next: From elastic constants to Up: FORWARD MAPPING Previous: From elastic constants to
Stanford Exploration Project
11/17/1997