
Streaming nonstationary prediction error (II)

Sergey Fomel, Jon Claerbout, Stewart A. Levin, and Rahul Sarkar

ABSTRACT

A PEF can be updated as each new data value arrives. The update costs only
one dot product of vectors the size of the PEF. Typical PEF applications do not
require storing the PEF; it can be used on the fly. This streaming notion could
be merged with a multidimensional helix to produce a nonstationary multidimen-
sional PEF.

INTRODUCTION

Experience shows we have a great need to deal with time and space variable spectra.
Now we are progressing rapidly. In summer 2015 Ruan et al. (2015) developed time
variable deconvolution code by storing the prediction-error filters (PEF)s on a coarse
mesh. At summer’s end Jon proposed an alternate method using streaming. His PEFs
would not be stored, but would be used on the fly. They would be used for achieving
IID residuals in data fitting, accelerating iterative data fitting, and estimating missing
data.

But, Jon was unable to perform a key algebraic step. So, he circulated his idea
among friends. He abandoned that approach and went to another streaming approach.
It takes a fixed block of input and performs one step of steepest descent before moving
the block forward to the next time point. Results are shown earlier in this report in
an article by Claerbout (2016).

Meanwhile Sergey solved the algebraic problem that Jon was unable to solve.
Sergey’s solution is exact. After verifying Sergey’s solution (with help from Stew),
Jon studied it with the goal in mind of coherently explaining for practical purposes
the numerical the choice of an epsilon (now variously gamma and lambda). This
study led him to a simpler and cruder approach: Simply find a gradient and move a
fixed distance down it. It’s not surprising that Jon’s approach is simpler. What is
surprising is that it turns out to be identical to Sergey’s analytical solution! How can
that be? The problem Sergey solved exactly includes an unspecified constant gamma.
This unspecified constant amounts to Jon’s fixed distance.

Crude guesses at this parameter work surprisingly well, very well indeed. Left for
the future is deep learning a deeper philosophical understanding of this parameter
enabling automatic optimal choice for where spectra change rapidly or change slowly.

SEP–163



Fomel et al. 2 Streaming PEFs

JON DEFINES THE PROBLEM

Here I sketch an alternative to the Clapp summer group named TV-IID decon. It
builds the time variable PEF (TV-PEF) while data streams through. Multidimen-
sional data may be handled via a helix. Random numbers can be divided by this PEF
to model data. Restoration of missing data suggests (but does not require) streaming
both forward and backward and merging the results.

Method

The averaging region is not the familiar triangle. The averaging window is something
more like a causal (or anticausal) damped exponential. Here’s how it goes:

Suppose we have a PEF that represents all previous moments in time. Call it
ā = (1, ā1, ā2, ā3, · · · ). Say that ā represents data values (d1, d2, d3, · · · , d98). We seek
to define the a that represents that data with an appended data value d99.

Consider the regression:
d99 d98 d97 d96

γ · · ·
· γ · ·
· · γ ·
· · · γ




1
a1

a2

a3

 ≈ γ


0
1
ā1

ā2

ā3

 (1)

[Jon wrote] I believe the regression (1) will have a simple analytical solution in
terms of a couple dot products. It looks like conjugate-gradient iteration is not
required(!?). I say this because I seem to remember (from Gene Golub?) that it is
easy to append another regression to a family. But I cannot find such an analytic
solution! Would someone please solve regression (1) for me?

SERGEY BEGINS

[Sergey wrote] We can rewrite Jon’s equation (1) as
dn dn−1 dn−2

γ 0 0
0 γ 0
0 0 γ


 a1

a2

a3

 ≈


−dn+1

γ ā1

γ ā2

γ ā3

 (2)

or, in a shortened block-matrix notation, we have the residual to minimize

0 ≈ r =

[
dT

γ I

]
a −

[
−dn+1

γ ā

]
, (3)

SEP–163



Fomel et al. 3 Streaming PEFs

where

d =

 dn

dn−1

dn−2

 , a =

 a1

a2

a3

 ,

and I is the identity matrix.

JON’S OLD MEMORIES

After Sergey shows Jon his analytic solution (equation (13) coming up), Jon remem-
bers an old trail. Old timers attacked problems like this by defining the quadratic
form and finding its gradient. Then repeatedly making small steps down it. How big
are the small steps? Experience will teach us. The quadratic form is rT r. We take
its derivative to find the search direction.

∆a = − (some constant)
∂

∂aT

∣∣∣∣
a=ā

rT r (4)

Form the transpose of the residual (3) and then differentiate by aT . (By aT we mean
the complex conjugate transpose of a.)

∂rT

∂aT
=

∂

∂aT

{
aT [d γI] − [−dn+1 γā]

}
= [d γI] (5)

and multiply that onto r from (3) keeping in mind that dT ā is a scalar.

∂rT

∂aT
r = [d γI]

{[
dT

γ I

]
a −

[
−dn+1

γ ā

]}
(6)

= d(dTa) + γ2a + ddn+1 − γ2ā (7)

∂rT

∂aT

∣∣∣∣
a=ā

r = (dT ā + dn+1)d (8)

Now the old timer has to think about what scale factor he will put on this gradient.
The expression (dT ā+dn+1) is the prediction error. The prediction filter a takes data
to predicted data, so it has no physical units. But the gradient (8) has units of data
squared. So, the gradient needs a normalizing factor of the same units, say a local
average of data squared which we could call an estimated data variance σ̂2

d. Finally
the adjustable constant λ that the old timer will learn from experience.

a = ā − λ

(
prediction error

σ̂2
d

)
d (9)

SERGEY SOLVES THE PROBLEM ANALYTICALLY

Sergey rewrites Jon’s equation (1) without the unity constraint getting equation (3).
Notice the matrix in (3) that multiplies the unknown a. Premultiply by its transpose

SEP–163



Fomel et al. 4 Streaming PEFs

thus obtaining the formal solution, the normal equations.

a =
(
ddT + γ2 I

)−1 (
−dn+1 d + γ2 ā

)
. (10)

Next, we can use the Sherman-Morrison formula1 to transform the inverse matrix in
equation (10) as follows:

(
ddT + γ2 I

)−1
=

1

γ2

(
I− ddT

γ2 + dT d

)
. (11)

This Sherman-Morrison formula (11) is established in an appendix. Substituting
equation (11) into (10) we have the least squares actual solution

a =
1

γ2

(
I− ddT

γ2 + dT d

) (
−dn+1 d + γ2 ā

)
(12)

which Sergey simplifies to the final result:

a = ā−
(

dn+1 + dT ā

γ2 + dT d

)
d . (13)

In an appendix Stew Levin fills in the steps of Sergey’s simplification.

Sergey writes, “Equation (13) confirms Jon’s assertion that,

‘It looks like conjugate-gradient iteration is not required(!?)’ ”

Indeed, computing a from ā and dn+1 according to this method requires only elemen-
tary algebraic operations (vector dot-products) and no iterations.

Choice of gamma

Practitioners hate adjustable parameters without given defaults. The dreadful situ-
ation we often see is someone reporting a numerical value for their ε where they fail
to mention that the ε has physical units, and they don’t tell us what those units are.

A practitioner will need to choose a numerical value for γ. It is our obligation to
supply a default value. We do this by study of equations (1) and (13). Substituting
γ = λσd where σ2

d is the data variance, we now have a dimensionless parameter λ
that we seek to choose so that the bottom block in regression (1) dominates the
top, meaning that all of history should dominate the most recent single data value.
Understanding that the numerical choice of λ is subjective, we can choose to merge
the two denominator terms in equation (13). We may think of γ2+dTd as (Nd+Na)σ

2
d

where Na is the number of coefficients in the PEF and Nd is the quantity of history

1https://en.wikipedia.org/wiki/Sherman-Morrison_formula

SEP–163



Fomel et al. 5 Streaming PEFs

we wish to invoke. We may define σ̂2
t as a leaky integration averaging of recent values

of d2
t .

Notice that the numerator in equation (13) is simply the prediction error. In
summary, equation (13) is saying

a = ā −
(

prediction error

(Nd + Na) σ̂2
d

)
d (14)

which says little chunks of recent data are simply added into or subtracted from the
prediction filter in proportion to then current prediction error. The practitioner need
supply only Nd and Na. The cost of updating the filter matches the cost of applying
it. A bargain!

The challenge for the next generation is learning the scale factor, the adaptation
rate, from the data itself. Instead of relying on a data analyst to play around in each
case and choose a constant for it we should learn it from the residuals so we can adapt
to spectral changes as they occur. Deep Learning we may call this.

THE BIG PICTURE

In data modeling we have two main goals, a data fitting goal and a model styling
goal. The data fitting goal requires a PEF and its adjoint. We’ve got those. The
model styling goal soon leads us to preconditioning where an inverse PEF is needed.

The inverses to our PEFs are not assuredly stable. We’ve had that issue for years,
but now having adaptive filters will tempt us to weaker statistical control. Luckily
the exact inverse is not required for our main applications. The preconditioning
application is a transformation to speed convergence of iterative data fitting. For
that application, any stable variation of the estimated PEF should be satisfactory.
Missing data filling is a related case. A divergent inverse PEF should not be a problem
if we do not extrapolate too far.

Averaging region

In Claerbout (2016) in this report the region of statistical averaging is very clearly
defined as a 2-D patch of size (b1,b2). Sergey’s method intrinsically gives us a
one dimensional patch (on a helix!) that is two dimensional only in the sense that
adaptation rate can be chosen very small so multiple loops of the helix are included.
But that ruins the notion of nonstationarity on the first axis! Sarkar (2016) in this
report investigates path dependence and seems yet not to overcome this problem.
This is a serious problem. We had first imagined Sergey’s idea would speed things by
a factor of b1 × b2. Now we fear we have lost this feature.

Now 28 hours after this progress report deadline Jon feels he has a solution. We
need two adjustable λ parameters to manage the size and shape of a two-dimensional

SEP–163



Fomel et al. 6 Streaming PEFs

averaging region. All we need is to define a new ā. Let ā = λtat−1,x + λxat,x−1. This
change requires storing one column of previously calculated PEFs, not a memory
burden.

Rahul identifies the adjoint of the TV-PEF

Those of us with a long history of filtering think of a filter adjoint as running the
filter backwards. That view arises with recursive filters whose adjoint must indeed
run backwards. With nonrecursive filters, such as prediction error, there is a more
basic view. In a (nonrecursive) linear operator program, the inputs and outputs can
be exchanged to produce the adjoint, namely

do iy = 1, ny {
do ix = 1, nx {

if operator itself
y(iy) = y(iy) + b(iy,ix) × x(ix)

if adjoint
x(ix) = x(ix) + b(iy,ix) × y(iy)

}}

Visually, the adjoint PEF is simply the backwards PEF. We commonly need to apply
a PEF (to a residual) and then immediately apply the adjoint PEF. There is no need
to store the PEF coefficients between the two stages. We simply recompute them
the second time when they are needed again. This situation arises while computing a
model perturbation ∆m. A residual Fm−d is first filtered with a PEF A, and then
hit with its adjoint ∆m = FTATA(Fm−d). On the second pass we would have two
data inputs, the first input Fm− d for again finding the PEF, the second input for
applying its adjoint AT to A(Fm− d).

CONCLUSION

We are panting in anticipation. What we have long wanted is coming into view.
Nonstationarity! Wall Street collapsed because its wizards assumed spectral statistics
are time invariant. My GIEE interpolation of Madagascar assumed topography was
stationary where clearly it is not. Seismic velocity analyses show truncation effects
at both inner and outer offsets. Soon we should be able to get a far more realistic
grip on these problems.

These new tools are fast. The cost of finding and applying the new nonstationary
PEFs merely doubles that of simple static stationary filters. These are small filters,
and they will easily be multidimensional. Wow! Hooray!

SEP–163



Fomel et al. 7 Streaming PEFs

Conceptual opportunities arise from the lightning speed. We’ll easily be able
to afford multiple realizations. Such realizations should enable us to learn about
optimal parameter choice. Data analysts, often not deep in understanding the theory,
need to chose operational parameters. The astonishing new speed will allow deep
learning, where the process itself contributes to the choosing of its parameters. Those
parameters too can be nonstationary. Meanwhile, all this is dreams, so for now what
we must do is push forward with test cases of increasing diversity and complexity.

It is not clear how much in the way of applications we will be able to pull together
by the SEP report deadline, but it is our goal to merge our preliminary papers. This
on-going work is not on Claerbout’s website (yet) and will not be until maybe after
the coming SEP sponsor meeting.

REFERENCES

Claerbout, J., 2016, Streaming nonstationary prediction error (I) : SEP-Report, 163,
265–269.

Ruan, K., J. Jennings, E. Biondi, R. G. Clapp, S. A. Levin, and J. Claerbout, 2015,
Industrial scale high-performance adaptive filtering with pef applications: SEP-
Report, 160, 177–188.

Sarkar, R., 2016, TV-PEF Design : Algorithmic Aspects, A Fast Update Scheme
And 2D Path Dependence : SEP-Report, 163, 279–296.

JON CHECKS THE SHERMAN-MORRISON FORMULA

Sergey states the Sherman-Morrison formula (11). It’s far from obvious.

(
ddT + γ2 I

)−1
=

1

γ2

(
I− ddT

γ2 + dT d

)
. (A-1)

We rewrite it in product form preparing to expand and cancel terms.

γ2 I =
(
ddT + γ2 I

) (
I− ddT

γ2 + dT d

)
(A-2)

γ2 I =
(
ddT + γ2 I

)
−

(
ddT + γ2 I

) (
ddT

γ2 + dT d

)
(A-3)

γ2 I =
(
ddT + γ2 I

)
−

(
(ddT + γ2 I)ddT

γ2 + dT d

)
(A-4)

γ2 I =
(
ddT + γ2 I

)
−

(
ddTddT + γ2 ddT

γ2 + dT d

)
(A-5)

SEP–163



Fomel et al. 8 Streaming PEFs

dTd is a scalar, so it escapes the confinement inside d(dTd)dT .

γ2 I =
(
ddT + γ2 I

)
− ddT

(
dT d + γ2

γ2 + dT d

)
(A-6)

γ2 I = γ2I (A-7)

STEW CHECKS SERGEY’S SIMPLIFICATION

From the least squares solution (12)

a =
1

γ2

(
I− ddT

γ2 + dTd

) (
−dn+1d + γ2ā

)
(B-1)

a =
1

γ2

(
−dn+1d + γ2ā +

dn+1ddTd− ddT γ2ā

γ2 + dTd

)
(B-2)

a = ā − 1

γ2

dn+1d(γ2 + dTd) + ddT γ2ā− dn+1ddTd

γ2 + dTd
(B-3)

a = ā − 1

γ2

dn+1dγ2 + dn+1ddTd + ddT γ2ā− dn+1ddTd

γ2 + dTd
(B-4)

a = ā − 1

γ2

dn+1dγ2 + ddT γ2ā

γ2 + dTd
(B-5)

a = ā − dn+1d + d(dT ā)

γ2 + dTd
(B-6)

Since dT ā is a scalar, we can interchange it with d.

a = ā − dn+1d + (dT ā)d

γ2 + dTd
(B-7)

a = ā −
(

dn+1 + dT ā

γ2 + dTd

)
d (B-8)

which is Sergey’s final result (13).

SEP–163


