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Preface

The electronic version of this report1 makes the included programs and applications available
to the reader. The markings [ER], [CR], and [NR] are promises by the author about the
reproducibility of each figure result. Reproducibility is a way of organizing computational
research that allows both the author and the reader of a publication to verify the reported
results. Reproducibility facilitates the transfer of knowledge within SEP and between SEP
and its sponsors.

ER denotes Easily Reproducible and are the results of processing described in the pa-
per. The author claims that you can reproduce such a figure from the programs,
parameters, and makefiles included in the electronic document. The data must either
be included in the electronic distribution, be easily available to all researchers (e.g.,
SEG-EAGE data sets), or be available in the SEP data library2. We assume you have
a UNIX workstation with Fortran, Fortran90, C, C++, X-Windows system and the
software downloadable from our website (SEP makerules, SEPlib, and the SEP latex
package), or other free software such as SU. Before the publication of the electronic
document, someone other than the author tests the author’s claim by destroying and
rebuilding all ER figures. Some ER figures may not be reproducible by outsiders
because they depend on data sets that are too large to distribute, or data that we do
not have permission to redistribute but are in the SEP data library.

CR denotes Conditional Reproducibility. The author certifies that the commands are in
place to reproduce the figure if certain resources are available. The primary reasons
for the CR designation is that the processing requires 20 minutes or more, MPI or
CUDA based code, or commercial packages such as Matlab or Mathematica.

NR denotes Non-Reproducible figures. SEP discourages authors from flagging their fig-
ures as NR except for figures that are used solely for motivation, comparison, or
illustration of the theory, such as: artist drawings, scannings, or figures taken from
SEP reports not by the authors or from non-SEP publications.

Our testing is currently limited to LINUX 2.6 (using the Intel compiler), but the code should
be portable to other architectures. Reader’s suggestions are welcome. More information on
reproducing SEP’s electronic documents is available online3.

1http://sepwww.stanford.edu/private/docs/sep160
2http://sepwww.stanford.edu/public/docs/sepdatalib/toc html
3http://sepwww.stanford.edu/research/redoc/
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Time-lapse inverse scattering theory

Musa Maharramov and Biondo L. Biondi

ABSTRACT

“Time-lapse inverse scattering theory” that we introduce in this paper focuses on re-
covering changes in physical models without accurate knowledge of model backgrounds.
More specifically, we study the feasibility of recovering low and high-wavenumber com-
ponents of model perturbation using the traditional Born and Rytov scattering approx-
imations, and establish a connection between the Rytov approximation and phase-only
full-waveform inversion (FWI). We provide a theoretical justification for applying reg-
ularized simultaneous time-lapse FWI to problems of applied seismology. We demon-
strate the method’s sensitivity to realistic production effects in seismic data, and its
stability with respect to inaccurate starting models.

INTRODUCTION

This work is dedicated to developing a systematic theory for solving time-lapse inversion
problems that we subsequently refer to as time-lapse inverse theory . The term “time-lapse”
relates to separate observations of physical phenomena taken at discrete time intervals. In-
verse time-lapse theory concerns itself with estimating or inverting changes in the underlying
physical models from such discrete observations.

Problems of time-lapse or “4D” seismic imaging and reservoir geomechanics that arise in
Petroleum Industry(Johnston, 2013; Biondi et al., 1996) provide important applications for
the developed theory, and are the primary target of our work as an exploration geophysicists.
However, many fundamental concepts, constructs and ideas presented in this work, as well
some mathematical, algorithmic and computational byproducts of this research, are appli-
cable beyond the limits of exploration seismology and reservoir geomechanics. We envisage
ubiquitous applications of these results to diverse problems of acoustic and electromagnetic
inverse scattering, imaging sciences and large-scale numerical optimization. Exploration
geophysicists are the primary and key audience of this work, however, we have attempted
to make our narrative accessible to specialists in applied mathematics and mathematical
physics. Although a considerable part of this work is dedicated to providing a robust and
systematic theoretical background for the proposed inversion techniques, we have structured
the material in such a way that a motivated practitioner can go straight to examples and
case studies, as well as the nuts and bolts of specific algorithms as required for immediate
practical application.

If we think of seismic time-lapse analysis as an estimation of changes in subsurface
model parameters1 that occurred between two separate seismic experiments, the “inverse
time-lapse theory” can be simply regarded as a subset of the inverse acoustic scattering

1as a result of petroleum production, fluid injection or environmental phenomena

1
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theory. Indeed, classical scattering theory addresses the problem of estimating properties of
a “scatterer”—a perturbation in the background model—from incident and scattered wave
fields. If production-induced subsurface changes are regarded as a penetrable scatterer, then
the 4D analysis simply becomes a problem of inverse scattering theory. If so, why develop
a new “time-lapse” inverse theory?

The answer is quite simple. In practical time-lapse applications of exploration geophysics
and beyond, the background model is not known accurately. Moreover, errors in our best
estimates of the background model can be of the same magnitude as, or even exceed, the
time-lapse effects that we seek to estimate. Is it even possible to estimate time-lapse changes
when their magnitudes can be easily masked by the effects of measurement noise or errors in
the background model? The main product of this research is a systematic theory of inverting
small (and spatially bounded) time-lapse changes from noisy and insufficient observations.
The proposed “time-lapse inverse theory” differs from inverse theory by placing emphasis
on accurate estimation of relative model changes while ignoring errors in the background
and perturbed models. We provide a toolkit of robust inversion techniques for accurate
inversion of time-lapse changes, and demonstrate them on a synthetic example.

Effective methodologies exist for detecting production-induced reflectivity changes and
translating them into impedance changes due to fluid substitution or reservoir compaction
(Johnston, 2013; Biondi et al., 1996). However, resolving strains in the overburden from
seismic data currently requires extraction of time shifts from cross-equalized surveys and
mapping the estimated time-strains into the overburden (Rickett et al., 2007). Therefore, we
make the primary emphasis of this paper achieving automated recovery of long-wavelength
small-magnitude changes of the subsurface acoustic velocities caused by overburden dilation.
Maharramov and Biondi (2014d, 2015a) proposed a method for a simultaneous multi-scale
inversion of both low and high-wavenumber production anomalies. We demonstrate a hier-
archical approach to multi-scale inversion for the recovery of both long-wavelength blocky
overburden anomalies and short-wavelength reservoir effects.

Figure 1: The true baseline model.
We chose a flat reflector model to
study the sensitivity of FWI of short-
offset reflection data to small veloc-
ity perturbation in the overburden.
[ER] musa2/. truebase

EARLIER WORK

Prevalent practice in time-lapse seismic processing relies on picking time displacements
and changes in reflectivity amplitudes between migrated baseline and monitor images, and
converting them into impedance changes and subsurface deformation (Johnston, 2013).
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This approach requires a significant amount of manual interpretation and quality con-
trol. One alternative approach uses the high-resolution power of full-waveform inversion
(Sirgue et al., 2010) to reconstruct production-induced changes from wide-offset seismic
acquisitions (Routh et al., 2012; Zheng et al., 2011; Asnaashari et al., 2012; Raknes et al.,
2013; Maharramov and Biondi, 2014b; Yang et al., 2014; Maharramov et al., 2015a). How-
ever, while potentially reducing the amount of manual interpretation, time-lapse FWI is
sensitive to repeatability issues (Asnaashari et al., 2012), with both coherent and incoher-
ent noise potentially masking important production-induced changes. The joint time-lapse
FWI proposed by Maharramov and Biondi (2013, 2014b) addressed repeatability issues by
joint inversion of multiple vintages with model-difference regularization based on the L2-
norm and produced improved results when compared to the conventional time-lapse FWI
techniques. Maharramov et al. (2015b) extended this joint inversion approach to include
edge-preserving total-variation (TV) model-difference regularization. The new method was
shown to achieve a dramatic improvement over alternative techniques by significantly re-
ducing oscillatory artifacts in the recovered model difference for synthetic data with re-
peatability issues. Originally, the method was envisaged for applications to large-offset
datasets where FWI is traditionally strong. However, Maharramov and Biondi (2015b);
Maharramov et al. (2015a) applied this method in a Gulf of Mexico case study to resolving
small (1 − 2%) production-induced velocity changes associated with overburden dilation.
The approach used phase-only FWI of reflection-only data with 5 km maximum offset and
target reflectors at about 4 km depth.

Figure 2: The true model difference
is a combination of a positive +300
m/s velocity change in a target re-
flector at a depth of 3900 m, and a
negative velocity change in the over-
burden above the reflector, peaking
at −50 m/s. In this work we inves-
tigate the sensitivity of simultaneous
time-lapse FWI to small and blocky
velocity changes in the overburden.
[ER] musa2/. truediff

While both synthetic and field data experiments involving joint time-lapse FWI with a
model-difference regularization indicate robustness and broad applicability of the proposed
technique, a detailed theoretical analysis of the joint inversion method is highly desirable
for understanding its strengths and limitations.

THEORY

Assuming known background slowness s(x),x ∈ R3 and a slowness perturbation δs(x), the
total wavefield component u(x) for frequency ω satisfies the Helmholtz equation

[
∆ + ω2(s(x) + δs(x))

]
u(x) = −f(x), x ∈ D ⊂ R3, (1)
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where f(x) is the seismic source component for frequency ω. The total wavefield is the sum
of incident and scattered wavefields

u(x) = uI(x) + uS(x), (2)

where the incident wavefield uI satisfies the Helmoholtz equation with the unperturbed
slowness: [

∆ + ω2s(x)
]
uI(x) = −f(x). (3)

Note for well-posedness of (1) and (3) we need to impose an additional condition on the
solution, such as the Sommerfeld radiation condition for a homogeneous medium (Colton
and Kress, 1998). Physically, such a condition requires that the total field be outgoing at
infinity. We will assume that equations (1) and (3) are solved in a domain D ⊂ R3, and
absorbing boundary conditions (Engquist and Majda, 1977) are applied along the domain
boundary, ensuring outgoing propagation of the wavefields.

Figure 3: Time shifts observed
in common-midpoint gathers cen-
tered above the target reservoir
(blue is baseline, red is monitor).
Travel times of the monitor near-
offset reflections traveling through
the negative velocity anomaly of Fig-
ure 2 are slightly delayed. [CR]
musa2/. timeshifts

For time-lapse problems we consider slowness perturbations δs(x) with support wholly
contained in the interior of D. If G(x,y) is Green’s function for the unperturbed Helmholtz
equation (3) in D and absorbing boundary conditions, then equation (1) is equivalent to
the Lippmann-Schwinger integral equation

uS(x,y) = − ω2

∫
D
G(x,y)δs(y) [uI(y) + uS(y)] dy, (4)
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or, equivalently,

uS(x,y) = − ω2

∫
supp δs

G(x,y)δs(y) [uI(y) + uS(y)] dy. (5)

The incident wavefield uI(x) in (4),(5) is assumed known.

Our method does not rely on solving (5). However, we will briefly discuss potential ad-
vantages of solving Lippmann-Schwinger instead of the Helmholtz equation. Three advan-
tages of solving (5) for time-lapse problems instead of solving (1) with absorbing boundary
conditions are immediately evident. First, it suffices to solve the Lippmann-Schwinger equa-
tion in the domain supp δs that in practical applications is much smaller that D (e.g., com-
paction effects are limited to overburden above producing reservoirs). After discretization,
(5) becomes a system of linear equations with a dense modeling operator, and dimension of
the model space is determined by the size of supp δs over the computational grid. Second,
solution to (5) automatically satisfies absorbing boundary conditions along ∂D because the
unperturbed Green’s function G(x,y) already satisfies those conditions. Third, once the
scattered field is computed inside the support of δs, equation (5) can be used to compute
its values outside the perturbation—e.g., at surface receivers.

However, discretization of (5)2 is a dense linear system, and its numerical properties are
highly dependent on the spectral content (smoothness) of δs (Duan and Rokhlin, 2009).
“Sparsifying” preconditioners for (5) are an area of active research (see Ying (2015) for
homogeneous backgrounds) and merit an investigation as a potentially useful technique
for forward modeling of scattered wavefields for spatially bounded perturbations. Another
challenge of using (5) is that it explicitly contains Green’s function for problem (3). However,
spatial boundedness of one of the arguments allows practical application of precomputed
Green’s functions (Etgen, 2012). In (5) both source and receiver arguments belong to
the support of perturbation δs, making use of precomputed Green’s functions feasible for
compact targets. Computation of the scattered wavefield uS(x) outside of supp δs can
be computationally equally efficient as the wavefield is required only at surface receiver
locations.

Figure 4: The parallel difference
method (Maharramov and Biondi,
2014c) fails to resolve the long-
wavelength velocity changes of Fig-
ure 2 changes in the overburden, and
produces negative short-wavelength
artifacts around the target reflector.
[CR] musa2/. pardiff

Assuming that δs = O(ε) where ε is a characteristic magnitude of model perturbation,
and formally representing the scattered wavefield as a series

uS(x) = u
(1)
S (x) + u

(2)
S (x) + . . . , (6)

2using quadratures similar to Duan and Rokhlin (2009) for handling singularities at x = y
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where
u

(i)
S (x) = O(εi), (7)

we obtain

u
(1)
S (x) = − ω2

∫
supp δs

G(x,y)δs(y)uI(y)dy,

u
(i+1)
S (x) = − ω2

∫
supp δs

G(x,y)δs(y)u(i)
S (y)dy, i = 0, 1, . . .

(8)

From (8) we immediately see limitations of the Born series (6) in relating the diffracted
wavefield uS(x) to δs(x) for long-wavelength small-magnitude model perturbations. Indeed,
assuming without a loss of generality, homogeneous background s(x) = s0 and constant and
finite δs, we have

G(x,y) =
exp(iωs0|x− y|)

4π|x− y|
. (9)

Incident plane wave propagating along axis x1 is given by

uI(x) = exp(iωs0x1). (10)

For a sufficiently small diam (supp δs) � x1 the denominator of (9) is asymptotically a
constant factor if y ∈ supp δs, and from (8) we obtain

u
(1)
S (x1, 0, 0) ≈ − δs · ω2

4πx1

∫
suppδs∩R1

exp(iωs0(x1 − y1)) exp(iωs0y1)dy1

= − L · δs · ω2

4πx1
exp(iωs0x1),

(11)

where
L = |suppδs ∩ R1(x1)|, (12)

is the length of model perturbation along axis R1(x1). Equation (11) means that the first-
order Born scattering under our assumptions only affects the amplitude but not the phase
of the scattered wavefield. Indeed, phase changes accumulate in (6) through the effect of
the denominator in (9), requiring exponentially many terms to account for a phase delay or
advance in the scattered (transmitted) wavefield. However, transmission through a constant
perturbation δs of length L would cause a phase change proportional to Lδs, therefore
any technique based on truncated Born scattering would be suboptimal for relating large-
wavelength, or “blocky”, velocity perturbations to measured scattered wavefields. This
is a well-known limitation of the diffraction tomography (Wu and Toksoz, 1987) that is
inherited by full-waveform inversion using L2 misfit (Fichtner, 2011). On the other hand,
Born series is a very good scattering approximation for small-wavelength, large-amplitude
perturbations as, again, demonstrated by equation (11) (compare with Slaney et al. (1984)).

Rytov scattering series (Ishimaru, 1999) based on asymptotic phase expansion of the
scattered wavefield linearly relates phase changes and magnitudes of the slowness change in
first approximation, as does the initial approximation of full-waveform inversion of phase
differences (Fichtner, 2011). Moreover, in time-lapse problems of inverting long-wavelength
small-magnitude model perturbations, Rytov inverse scattering (and phase-only FWI) are
less sensitive to errors in the background model.
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Figure 5: The cross-updated FWI
method (Maharramov and Biondi,
2014c) cross-equalizes the baseline
and monitor model but still fails
to resolve the long-wavelength over-
burden changes of Figure 2. [CR]
musa2/. xdiff

Indeed, assuming for simplicity, but without a loss of generality, a constant background
s0 and constant finite perturbation δs, the phase change for transmitted a plane wave trav-
eling through a perturbation δs of characteristic dimension L is approximately proportional
to Lδs/s0. For significant phase changes phase wraps around 2π, and this happens when
the phase delay is a multiple of the incident wavelength. Fitting peaks and trough of the
modeled and observed scattered wavefields (ignoring the amplitude information) then re-
sults in ambiguity of the total phase change: phase change can be resolved only within an
integer multiple of incident wavelengths. This results in a well known phenomenon of cycle
skipping in FWI: unless the FWI starting slowness model is known within a full wavelength
of the incident wave, the model cannot be resolved from signal phase information alone.

However, for time-lapse problems phase change due to a compact velocity anomaly is
only a fraction of the wavelength. Indeed, translating to the time domain, time shifts due to
dilation in overburden peak at about 10 ms (Rickett et al., 2006; Maharramov and Biondi,
2015b; Maharramov et al., 2015a)—i.e., about a third of the period for a 30 Hz signal
(see Figure 3). Therefore, phase changes (equivalently, time delays) of scattered wavefields
for small-magnitude long-wavelength perturbations that are of interest for us can still be
translated into slowness changes, albeit errors in the background will result in errors in the
estimated slowness perturbation:

δsW =
sW

s0
δs, (13)

where sW is the inaccurate background slowness and δsW is the corresponding estimated
slowness perturbation. Equation (13) means that even with a wrong background a qualita-
tive perturbation magnitude information can still be extracted from the scattered wavefield.
Note that location of the perturbation is determined by the illumination pattern of inci-
dent wavefields. Poor target illumination results in the ambiguity of anomaly characteristic
dimension L versus the perturbation magnitude δs as the two enter in (13) in a product.
For example, lack of reflectors above the velocity anomaly results in an ambiguous vertical
extent of the anomaly.

To implement a practical time-lapse inversion method using phase-only FWI, we can
invert two models (unperturbed baseline and perturbed monitor) simultaneously, imposing
a model-difference regularization. The latter is required to create a common “background”
model for both inversions making the application of (13) possible. Note that baseline and
monitor inversions may still cycle-skip, but the purpose of imposing a model-difference
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Figure 6: Simultaneous FWI with
a total-variation model-difference
regularization (Maharramov and
Biondi, 2014e) resolves the long-
wavelength overburden changes of
Figure 2, but underestimates the
maximum change, depending on
the regularization strength. [CR]
musa2/. tvinverted

regularization is to ensure that they are either equally accurate or equally inaccurate for
wavelengths greater than the characteristic wavelength of the inverted perturbation.

For blocky, long-wavelength anomalies we impose blockiness-promoting total variation
regularization (Maharramov and Biondi, 2014e), while for the recovery of short-wavelength
features we use L2 Tikhonov model-difference regularization (Maharramov and Biondi,
2013).

Figure 7: Simultaneous FWI using
Tikhonov model-difference regular-
ization, with the long-wavelength in-
version of Figure 6 supplied as a
prior. Note that such multiscale ap-
proach can now resolve the short-
wavelength positive-velocity changes
of Figure 2. Strong Tikhonov regu-
larization results in underestimated
velocity changes within the reservoir
but correctly locates the anomalies.
[CR] musa2/. 30multi

METHOD

Full-waveform inversion is defined as solving the following optimization problem (Tarantola,
1984; Virieux and Operto, 2009)

‖Mu− d‖2 → min, (14)

where M,d are the measurement operator and data, u is the solution of a forward-modeling
problem

D(m)u = φ, (15)

where D is the forward-modeling operator that depends on a model vector m as a parameter,
and φ is a source. The minimization problem (14) is solved with respect to either both the
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model m and source φ or just the model. In the frequency-domain formulation of the
acoustic waveform inversion, the forward-modeling equation (15) becomes

−ω2u− v2(x1, . . . , xn)∆u = φ(ω, x1, . . . , xn), (16)

where ω is a temporal frequency, n is the problem dimension, and v is the acoustic wave
propagation velocity. Values of the slowness s = 1/v at all the points of the modeling
domain constitute the model parameter vector m. The direct problem (16) can be solved
in the frequency domain (Virieux and Operto, 2009). The inverse problem (14) is typically
solved using a multiscale approach, from low to high frequencies, supplying the output of
each frequency inversion to the next step (Fichtner, 2011).

FWI applications in time-lapse problems seek to recover induced changes in the sub-
surface model using multiple datasets from different acquisition vintages. For two surveys
sufficiently separated in time, we call such datasets (and the associated models) baseline
and monitor.

Time-lapse FWI can be carried out by separately inverting the baseline and monitor
models (parallel difference), or by inverting them sequentially with, e.g., the baseline sup-
plied as a starting model for the monitor inversion (sequential difference). Another alter-
native is to apply the double-difference method, with a baseline model inversion followed
by a monitor inversion that solves the following optimization problem,

‖ (Ms
mum −Ms

bub)− (Mmdm −Mbdb) ‖2 → min, (17)

by changing the monitor model (Watanabe et al., 2004; Denli and Huang, 2009; Zheng
et al., 2011; Asnaashari et al., 2012; Raknes et al., 2013). The subscripts in equation (17)
denote the baseline and monitor surveys, d denotes the observed data, and the M’s are
measurement operators that project the synthetic and field data onto a common grid. The
superscript s indicates the measurement operators applied to the modeled data. For phase-
only inversion, in all of the subsequent equations, the modeled and observed data differences
should be replaced with the corresponding “phase differences”

u − d =⇒ sin arg u − sin arg d, (18)

where arg is the complex argument function of frequency domain wavefields. Note that
unlike the traditional phase-only inversion (Fichtner, 2011), we evaluate sine of the phase
to avoid phase discontinuities.

In all of these techniques, optimization is carried out with respect to one model at a
time, albeit of different vintages at different stages of the inversion. In our method we invert
for the baseline and monitor models simultaneously by solving either one of the following
two optimization problems:

α‖Mbub − db‖2
2 + β‖Mmum − dm‖2

2 + (19)
γ‖ (Ms

mum −Ms
bub)− (Mmdm −Mbdb) ‖2

2 + (20)
α1‖WbRb(mb −mPRIOR

b )‖2
2 + (21)

β1‖WmRm(mm −mPRIOR
m )‖2

2 + (22)
δ‖WR(mm −mb −∆mPRIOR)‖2

2 → min, (23)
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or

α‖Mbub − db‖2
2 + β‖Mmum − dm‖2

2 + (24)
γ‖ (Ms

mum −Ms
bub)− (Mmdm −Mbdb) ‖2

2 + (25)
α1‖WbRb(mb −mPRIOR

b )‖1 + (26)
β1‖WmRm(mm −mPRIOR

m )‖1 + (27)
δ‖WR(mm −mb −∆mPRIOR)‖1 → min, (28)

with respect to both the baseline and monitor models mb and mm. Problem (19-23) de-
scribes time-lapse FWI with L2 regularization of the individual models (21,22) and model
difference (23) (Maharramov and Biondi, 2014c). The second formulation (24-28) involves
an L1-regularization of the individual models and their difference (Maharramov and Biondi,
2014e; Maharramov et al., 2015b). The terms (24) correspond to separate baseline and
monitor inversions, the term (25) is the optional double difference term, the terms (26) and
(27) are optional separate baseline and monitor inversion regularization terms (Aster et al.,
2012), and the term (28) represents regularization of the model difference. In (26)-(28),
R and W denote regularization and weighting operators respectively, with the subscript
denoting the survey vintage where applicable. If R is the gradient magnitude operator

Rf(x, y, z) =
√
f2

x + f2
y + f2

z , (29)

then (26-28) become total-variation (TV) seminorms. The latter case is of particular inter-
est in this work as the minimization of the L1 norm of gradient may promote “blockiness”
of the model-difference, potentially reducing oscillatory artifacts (Rudin et al., 1992; Aster
et al., 2012).

A joint inversion approach has been applied earlier to the linearized waveform inver-
sion (Ayeni and Biondi, 2012). In Maharramov and Biondi (2013, 2014c,a), a simultaneous
full-waveform inversion problem (19,23) was studied with a single model difference L2 reg-
ularization term (23).

An implementation of the proposed simultaneous inversion algorithm requires solving
a nonlinear optimization problem with twice the data and model dimensions of problems
(14) and (17). The model difference regularization weights W and, optionally, the prior
∆mPRIOR may be obtained from prior geomechanical information. For example, a rough
estimate of production-induced velocity changes can be obtained from time shifts (Hatchell
and Bourne, 2005; Barkved and Kristiansen, 2005) and used to map subsurface regions
of expected production-induced perturbation, and optionally provide a difference prior.
However, successfully solving the L1-regularized problem (24-25) is less sensitive to choice
of the weighting operator W. For example, we show below that the TV-regularization using
(29) with W = 1 recovers non-oscillatory components of the model difference, while the L2

approach would result in either smoothing or uniform reduction of the model difference.

In addition to the fully simultaneous inversion, Maharramov and Biondi (2013, 2014c)
proposed and tested a cross-updating technique that offers a simple but remarkably effective
approximation to minimizing the objective function (19),(23), while obviating the difference
regularization and weighting operators R and W for problem (19,23). This technique
consists of one standard run of the sequential difference algorithm, followed by a second
run with the inverted monitor model supplied as the starting model for the second baseline
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inversion
mINIT →baseline inversion → monitor inversion →

baseline inversion → monitor inversion,
(30)

and computing the difference of the latest inverted monitor and baseline models. Process
(30) can be considered as an approximation to minimizing (19) and (23) because non-
repeatable footprints of both inversions are propagated to both models, canceling out in
the difference. Both the simultaneous inversion and cross-updating minimize the model
difference by tackling model artifacts that are in the null space of the Fréchet derivative of
the forward modeling operatorss. The joint inversion minimizes the effect of such artifacts
on the model difference by either minimizing the model difference term (23) in the simul-
taneous inversion, or by propagating these artifacts to both models in cross-updating (30).
Note that this process is not guaranteed to improve the results of the baseline and monitor
model inversions but was only proposed for improving the model difference. Maharramov
and Biondi (2014c,a) demonstrated a significant improvement of model difference recov-
ery by both the L2-regularized target-oriented simultaneous inversion and cross-updating
compared to the parallel, sequential and double difference techniques. The simultaneous in-
version and cross-updating yielded qualitatively similar results within the inversion target.
Maharramov et al. (2015c) studied the regularized double-difference inversion (25,28).

NUMERICAL EXPERIMENTS AND DISCUSSION

Our previous work (Maharramov and Biondi, 2014e,b) has demonstrated effective recov-
ery of blocky velocity anomalies from long-offset acquisitions in the presence of noise and
repeatability issues. In this work we demonstrate the recovery of blocky anomalies in the
more challenging case of phase-only inversion of narrow-offset reflection data. Conceptually
our synthetic example is similar to the earlier field data case study of Maharramov and
Biondi (2015b); Maharramov et al. (2015a).

Figure 8: True model difference for demonstrating the inversion of multiple overburden
anomalies. [ER] musa2/. twoanom

As a baseline model we use the flat reflector model of Figure 1. The target reflector
(reservoir) is located at a depth of 3900 m, the monitor (perturbed) model has two velocity
anomalies–a positive +300 m/s change due to compaction and fluid substitution within
the reservoir, and a blocky negative velocity change in the overburden above the reservoir,
peaking at −50 m/s (see Figure 2). No physical reflector movement is prescribed.



12 Maharramov and Biondi SEP–160

Figure 9: Inversion of the two long-wavelength overburden anomalies of Figure 8 using
simultaneous time-lapse FWI with total-variation model-difference regularization. [CR]
musa2/. twoanominv

For generating synthetic data we used a towed streamer acquisition geometry with the
maximum offset of 5 km. The results of parallel difference and cross-updating are shown in
Figures 4 and 5. Note that neither result succeeds in recovering the blocky anomaly. The
FWI starting model used in these experiments was a smoothed true model, using a 720 m
smoothing window.

Figure 10: Inversion of the two long-wavelength overburden anomalies of Figure 8 starting
from a bad initial model and using weak regularization (a small regularization parameter).
FWI cycle skipped, and the baseline and monitor inversion diverged, contaminating the
difference with cycle-skipping artifacts. [CR] musa2/. twoanombadweak

The result of simultaneous inversion with a total-variation model-difference regulariza-
tion is shown in Figure 6. The result is qualitatively accurate although peak magnitudes
are underestimated due to regularization. To assess the effectiveness of our inversion, in
Figures 12(a) and 13(b) we show monitor images migrated using the true monitor and true
baseline models, respectively. Note that the overestimated velocities in the overburden re-
sult in a downward reflector shift in Figure 13(b). However, migrating the monitor data
using the sum of the baseline model and the inverted blocky anomaly of Figure 6 results
in the image of Figure 13(a): the downward shift of reflectors in the overburden is now
significantly reduced.

To recover the short-wavelength changes within the reservoir, we supplied the result of
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Figure 11: Inversion of the two long-wavelength overburden anomalies of Figure 8 starting
from a bad initial model but using stronger regularization (a larger regularization param-
eter). FWI still cycle skipped, however, the strong model-difference regularization kept
baseline and monitor within the characteristic wavelength of the overburden anomalies.
The resulting model difference inversion is qualitatively accurate (compare with Figure 9),
albeit stronger regularization has resulted in underestimated velocity magnitudes. [CR]
musa2/. twoanombadstrong

Figure 6 as a model-difference prior to inversion (19,23). Note that the resulting model
features both long and short-wavelength velocity perturbations. The reservoir perturbation
is underestimated due to strong regularization. Maharramov and Biondi (2015a) discuss a
regularization scheme for multi-scale inversion that honors true model magnitudes.

And finally, Figures 8 and 9 demonstrate recovery of two separate overburden anomalies.
In both cases FWI start from a smoothed true velocity. The result of starting FWI with
a wrong velocity resulting in cycle-skipping is shown in Figure 10. We deliberately used a
weak regularization parameter at model-difference regularization to demonstrate the effect
of diverging baseline and monitor models on the inverted model difference. Figure 11
contains the result of using a stronger TV regularization. As described in the Theory
section above, we ensure that the two models cycle-skip “in synchrony” and are still able
to qualitatively recover the anomalies, although with strongly underestimated velocities—
compare with equation (13).

In this work we provided a theoretical justification for the time-lapse inversion methods
of Maharramov and Biondi (2013, 2014e, 2015b) and demonstrated a stable recovery of
both short and long-wavelength velocity anomalies form narrow-offset reflection seismic
data. We envisage wide-spread application of the simultaneous FWI with model-difference
regularization and hierarchical multi-scale inversion in applications ranging from applied
geophysics to electromagnetic and optical scattering.
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(a) (b)

Figure 12: (a) True monitor image. (b) Monitor migrated using the baseline velocity model.
Note that overestimated velocity in the overburden results in a downward reflector shift in
the right image. [CR] musa2/. montrueimg,monwithbase
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(a) (b)

Figure 13: (a) Monitor image migrated using the sum of the baseline model and inverted
model difference of Figure 6. (b) Monitor migrated using the baseline velocity model. Note
that reflector shift in the overburden has been significantly reduced in the left image. [CR]
musa2/. improved,monwithbase
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Dissection of the full-waveform inversion Hessian

Biondo Biondi, Ettore Biondi, Musa Maharramov, and Yinbin Ma

ABSTRACT

We analyze the FWI Hessian and determine that is the combination of two well-
understood operators in seismic imaging: 1) the Gauss-Newton Hessian and 2) a dif-
ferential WEMVA operator. We illustrate this insight with several numerical examples
of applying and inverting the different components of the Hessian operator to images
originating from the waveform inversion of a simple synthetic dataset. We then dis-
cuss possible applications of the theory to making FWI more robust with respect to
incorrect starting models, and to speeding-up the application of target-oriented fully
non-linear seismic inversion.

INTRODUCTION

Improving the robustness and the convergence rate of full waveform inversion (FWI) is an
important goal for any FWI algorithm. It becomes particularly important when we go
beyond simple constant-density acoustic inversion and we aim at estimating several images
representing different parameters, such as elastic properties, anisotropic parameters and
attenuation parameters (Alves, 2015; Biondi and O’Reilly, 2015; Shen, 2015).

Newton-like methods that exploit the information contained in the Hessian matrix of
the objective function (Pratt et al., 1998) are attractive and have been recently the subject
of much research (Tang and Lee, 2010; Fichtner, 2011; Métivier et al., 2012; Baumstein,
2014; Deuzeman and Plessix, 2015). Pratt et al. (1998) presented an efficient frequency-
domain method for evaluating the application of the Hessian to a model-perturbations
vector. Epanomeritakis et al. (2008) presented an equivalent method for time-domain prop-
agation. In this paper we start from the description of the time-domain method for applying
the Hessian to a model-perturbations vector presented by Fichtner and Trampert (2011)
and Fichtner (2011).

In the following section we analyze the full FWI Hessian and show that it is the compo-
sition of well-understood operators in seismic imaging; that is, the Gauss-Newton Hessian
and the WEMVA operator. This new insight has the potential of leading to more robust
and computationally efficient waveform-inversion algorithms. We discuss these potential
applications in the discussion section of the paper, after we illustrate the properties of each
component of the Hessian operator by showing its application to a simple FWI problem.

19
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DISSECTION OF THE FULL FWI HESSIAN OPERATOR

In conventional amplitude-based full waveform inversion (FWI), we minimize the following
objective function:

φ(m) =
1
2
‖dm(m)− do‖2

2, (1)

where m is the vector of model parameters, do is the vector of recorded data, and dm(m)
is the vector of modeled data. The modeled data are given by:

dm(m) = Ru(m), (2)

in which R is a linear operator that extracts the vector of modeled data, dm, from the
vector of propagated wavefield, u. In the following we assume that this wavefield is the
solution of the following scalar wave equation:

L (m,u) =
[
m
∂2

∂t2
−∇2

]
u(x, t,m) = s(x, t), (3)

where m represents the slowness squared, s is the source term, and t and x are the temporal
and spatial coordinates, respectively. However, the insights on the full Hessian presented
in this paper are valid and applicable also when the data are modeled using more complex
wave equations than the one presented in equation 3.

The objective function 1 aims to minimize in a least-squares sense the data residuals,
defined as:

∆d = dm(m)− do. (4)

The Hessian operator has an important role when solving the optimization problem of
minimizing the objective function 1 by a Newton algorithm. If ∇φ is the gradient vector,
an improved search direction ∆m can be obtained by solving the Newton system

H∆m = −∇φ, (5)

where H is the Hessian matrix. Because of the large scale of the FWI problem we seldom
build the Hessian matrix explicitly, and never solve the Newton system directly. On the
contrary, we invert the Hessian iteratively using an iterative method like conjugate-gradient.
Furthermore, we do not iterate the inversion of H to full-convergence, but we stop after
a small number of iterations. This approximate Newton algorithm is often referred as
truncated Newton method.

To invert H iteratively we need only to be able to compute its application to an arbitrary
model perturbations δm. To perform this task we can precompute the Hessian matrix
and perform several matrix-vector operations, or devise an algorithm that evaluates the
application of H to a vector by performing wave propagations and correlations. The latter
way is conceptually similar to the one employed to compute the FWI gradient using adjoint-
state methods, and is the one that we will discuss in this section. In practice, hybrid
schemes (i.e. methods that rely on precomputing some Hessian components and applying
the adjoint-state methods for other components) can be actually the most computationally
efficient solution.
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If we start the iterative inversion of the Hessian matrix from a zero model-perturbations
vector, the first search direction, ∆m1, of a truncated Newton algorithm is equal to,

∆m1 = −H
′∇φ = −H∇φ, (6)

where in equation 6 we use the Hermitian properties of the Hessian matrix.

In the numerical examples section we will show both the results of approximately solving
the Newton system (equation 29), as well as computing the search direction ∆m1 using
equation 6.

The Hessian matrix is the second-order derivative of the objective function with respect
to each model parameter; it can be expressed as follows:

∇m∇mφ(m) = (∇u∇uφ∇mu) · ∇mu + (∇uφ) · ∇m∇mu, (7)

where the first term on the right-hand side of the equation represents the Gauss-Newton
Hessian.

As shown in Fichtner (2011), the application of the full FWI Hessian to a model per-
turbation, δm, can be written as sum of three kernels applied to δm as:

H(m0)δm = [Ka(m0) + Kb(m0) + Kc(m0)]δm, (8)

where m0 is the model around which we are linearizing the nonlinear objective function
and the three kernels are:

Ka(m0)δm =
[∫

t u
′
2 · ∇mL (m0,u0) dt

]
δm, (9)

Kb(m0)δm =
[∫

t u
′
1 · ∇m∇uL (m0,u0)∇mu dt

]
δm, (10)

Kc(m0)δm =
[∫

t u
′
1 · ∇m∇mL (m0,u0) dt

]
δm, (11)

where
∫
t denotes time integration, u0 is the background wavefield that is the solution of:

L(m0,u0) = s(x, t), (12)

and u
′
1 and u

′
2 are the primary adjoint wavefield and secondary adjoint wavefield, respec-

tively.

In equation 3 we parametrized the wave equation in terms of slowness squared; therefore,
we can drop the third kernel of the full Hessian, Kc, because ∇m∇mL is zero. The kernel
Kc would not be zero if more complex wave-equation were employed to model the data and
the medium parameters were present non-linearly in the equation (e.g. Vp and Vs in a fully
elastic wave equation). However, its evaluation would follow a flow similar the one used to
evaluate Kb.

The first step to interpret the two remaining kernels, Ka and Kb, is the analysis of the
two adjoint wavefields, u

′
1 and u

′
2. The primary adjoint wavefield, u

′
1, is the solution of:

∇′
uL

′
u
′
1 = −∇uφ. (13)

Because L is linear with respect to the wavefield, and ∇uφ = ∆d, equation 13 simplifies
into

L
′
(m0,u

′
1) = −∆d. (14)
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The wavefield u
′
1 is obtained by backpropagating the opposite of the data residual with the

background model m0. It is the same wavefield that is computed to evaluate the gradient of
objective function 1, and thus does not need to be recomputed when applying the Hessian
operator.

The secondary adjoint wavefield, u
′
2, is the solution of the following wave propagation

problem:

L
′
(m0,u

′
2) = −

[
∇u∇uφ∇mu +∇u∇mL

′
u1

]
. (15)

Since there are two source terms on the right hand side of equation 15, the secondary
adjoint wavefield can be split into two components, u

′
21 and u

′
22, each solution of a back-

propagation problem; that is:

∇uL
′
u
′
21 = −∇u∇uφ∇mu, (16)

∇uL
′
u
′
22 = −∇u∇mL

′
u1. (17)

Consequently, the kernel Ka can be split in the sum of two kernels:

Ka1(m0)δm =
[∫

t u
′
21 · ∇mL (m0,u0) dt

]
δm, (18)

Ka2(m0)δm =
[∫

t u
′
22 · ∇mL (m0,u0) dt

]
δm. (19)

Next we interpret the first one, Ka1. In equation 16, the derivative of the wavefield with
respect of the model parameters can be written as the solution of the forward first-order
Born scattering problem (Fichtner, 2011); that is:

L(m0, δu) = −∇mL(m0,u0). (20)

Furthermore, in equation 16, ∇u∇uφ is simply R
′
R, which means extracting and reinjecting

δu at the receiver positions.

Equation 16 can thus be rewritten as

L
′
(m0,u

′
21) = R

′
Rδu, (21)

where δu is given by equation 20. After cross-correlation with the second time derivative of
the forward propagated background wavefield (∇mL(m0,u0)), as indicated by equation 18,
the application of Ka1 to a model perturbation δm is equivalent to the application of the
forward first-order Born modeling operator followed by the application of its adjoint. In
other words, it corresponds to Born modeling followed by migration. This kernel corre-
sponds to the Gauss-Newton component of the full Hessian. From now on, we will denote
it as HGN.

Next we look at the interpretation of Ka2 and we analyze the source term in equation 17.
This term corresponds to the first-order Born scattering of u

′
1, which is the the backprop-

agated wavefield generated by injecting the data residuals at the receivers (equation 14).
The wavefield u

′
22 is thus obtained by: 1) computing the primary adjoint wavefield, u

′
1,

2) scattering u
′
1 at δm, and then, 3) backpropagating the scattered wavefield backward in
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time. The kernel Ka2 is then evaluated by cross-correlating u
′
22 with the the second time

derivative of the forward propagated background wavefield (∇mL(m0,u0)) as indicated by
equation 19.

The kernel Ka2 is similar to the source side of the adjoint of the conventional WEMVA
operator, with an important difference (Sava and Vlad, 2008). The wavefield u

′
22 is gener-

ated by injecting the data residuals, not the recorded data, as is done for the conventional
WEMVA operator. However, because the operator is linear with respect to the injected
wavefields, it can also be interpreted as the difference of two WEMVA operators: the first,
Wm

s , is obtained by injecting the modeled data dm at the receivers, whereas the second, Wo
s,

is obtained by injecting the observed data do. This second operator is exactly equivalent
to the adjoint of the conventional WEMVA operator.

The next, and final, step of our analysis is to interpret the kernel Kb, as defined by
equation 10. We first notice that because of the linearity of L with respect to the wavefield
we can write the following identity,

∇m∇uL (m0,u0) = ∇mL (m0,u0) . (22)

Then we notice that, as for equation 16, the derivative of the wavefield with respect
to the model parameters is the solution of the forward first-order Born scattering problem
expressed in equation 20. Therefore, the applications of kernel Kb to the model perturbation
δm is evaluated by cross-correlating the forward scattered wavefield δu with the second
time derivative of the backward propagated primary adjoint wavefield u

′
1. This kernel Kb

is similar to the receiver side of the adjoint of the conventional WEMVA operator. As
discussed above for Ka2, the operator Kb can also be interpreted as the difference of two
WEMVA operators: the first, Wm

r , is obtained by injecting the modeled data dm at the
receivers, whereas the second, Wo

r , is obtained by injecting the observed data do.

In conclusions the full Hessian operator H is the composition of familiar operators, as
follows

H = HGN + (Wm
s −Wo

s) + (Wm
r −Wo

r) = HGN + (Wm −Wo) = HGN + HW, (23)

where Wm and Wo are the WEMVA operators obtained by injecting the modeled and
observed data, respectively; HW is the difference between Wm and Wo. We will refer to
this difference as the differential WEMVA component of the full Hessian.

If the wave-equation modeling operator (L) is sufficiently accurate to model all the im-
portant features present in the recorded data, as the inversion process converges to a model
closer to the true model, the modeled data becomes closer to the observed data. In this
situation, the corresponding WEMVA operators Wm and Wo become closer to each other;
their difference becomes negligible and the full Hessian is equivalent to the simple Gauss-
Newton Hessian. However, when the wave-equation modeling operator (L) is too simplistic
to model correctly important wave phenomena (e.g. elastic, multiples, attenuation) the
modeled data does not converge to the recorded data even close to the global minimum of
objective function 1, and consequently the full Hessian may never converges towards the
Gauss-Newton Hessian. The implications of this lack of convergence of the full Hessian
towards the Gauss-Newton Hessian for Newton methods are not obvious, and may deserve
further studies.
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Because the gradient is a linear function of the data injected at the surface, we can
consider the gradient ∇φ as the difference of two terms corresponding to the modeled data
(∇φm) and the observed data (∇φo); that is,

∇φ = (∇φm −∇φo) . (24)

Then, following equation 6, the first search direction, ∆m1, of a truncated Newton algorithm
can be decomposed in 6 terms as follows:

∆m1 = −H∇φ =
− HGN∇φm (25)
+ HGN∇φo (26)
− Wm∇φm (27)
+ Wm∇φo (28)
+ Wo∇φm (29)
− Wo∇φo. (30)

In the numerical example section we will show examples each of these terms and discuss
their roles.

Observations

Equation 23 shows the decomposition of the full FWI Hessian into two operators. We now
discuss each term, and discuss its role in a truncated Newton FWI solution.

Gauss-Newton Hessian

The Gauss-Newton component of the Hessian (HGN) describes the correlation between
model parameters that are caused by the finite-resolution nature of the seismic imaging
process (data-acquisition followed by migration). The resolution limits are determined by
the finite frequency bandwidth and finite aperture of realistic seismic acquisitions, or in
the case of multi-parameter inversion (anisotropic, elastic, visco-acoustic), the trade off
between the parameters used to describe the unknown medium. Using an image-processing
terminology, the application of HGN to a model perturbation is the convolution with non-
stationary point-spread functions which takes into account the finite resolution of the seismic
imaging system. Except in regions of the model that suffer from severe lack of illumination
(i.e. shadow zones) the Gauss-Newton Hessian is diagonally dominant (or block diagonally
dominant in case of multi-parameters inversion). However, HGN is also a singular matrix
and thus its inversion must be regularized.

The application of the Gauss-Newton Hessian (HGN) operator and its approximate
inversion have been discussed in several SEP thesis (Valenciano, 2008; Tang, 2011; Ayeni,
2011) and in the wider literature. It is related to iterative linearized waveform inversion
(Kuehl and Sacchi, 1999; Prucha et al., 2000) and least-squares migration (Jin et al., 1991;
Cole and Karrenbach, 1992; Schuster, 1993; Nemeth et al., 1999).

In a single-parameter acoustic inversion the application of the approximate inverse of
HGN to a migrated image improves resolution and the relative amplitudes among migrated
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reflectors. If appropriate regularization terms are added to the objective function in equa-
tion 1, inverting HGN can compensate for poor illumination caused by complex overburden
(Clapp, 2005; Valenciano, 2008; Tang, 2011; Fletcher et al., 2012), or better equalize time-
lapse images collected with different acquisition geometries (Ayeni, 2011).

When the subsurface is parametrized using more than one parameter, the inversion
of HGN helps the resolution of the the trade off between model parameters and thus it
can substantially improve convergence (Baumstein, 2014; Tang and Lee, 2015). For this
application, HGN can be effectively approximated as a block-diagonal matrix since the
modeling of the cross-talk between different parameters is its crucial contribution.

The application of HGN to a model-perturbations vector δm using the methodology
introduced in this section requires two wavefield propagations: 1) forward propagation of
the wavefield scattered by δm (equation 20), and 2) backward propagation of the scattered
wavefield recorded and reinjected at the receivers (equation 21). Alternatively, because HGN

is diagonally dominant, it can be approximated by a banded matrix and effectively precom-
puted and stored. The computation of the dominant elements of HGN can be approximated
by phase-encoding methods (Tang, 2011; Deuzeman and Plessix, 2015) or by interpolation
of the results of modeling and migrating isolated model perturbations (Fletcher et al., 2012;
Tang and Lee, 2015).

Differential WEMVA component of the Hessian

The differential WEMVA component of the Hessian (HW) describes the interaction between
model parameters caused by multiple-scattering during wave propagation. In particular, the
HW operator models the effects of second-order scattering. This second-order scattering
can be both short range or long range (see Figure 4).

The long-range scattering is related to velocity errors that cause defocusing of the gra-
dient. The application of (HW) to the FWI gradient ∇φ is equivalent to the gradient that
we would obtain from a WEMVA method that aims to maximize the power of the stacked
image, where the image is the FWI gradient itself, with a negative sign. The maximiza-
tion of the image stack power is known to be prone to cycle-skipping problems when the
background velocity is far away from the true velocity and the gradient is substantially mis-
focused. When the background model is far from the true one, the long-range component
of the Hessian operator also cycle skips and points in the wrong direction (Figure 4(d)).

The short-range scattering of the WEMVA operator takes into account the interactions
between nearby scatterers. It is related to amplitude and phase errors in the gradient
caused by the first-order Born approximation. When the nearby scatterers are part of
nearby reflectors, they may create internal multiples that are not modeled correctly by the
first-order Born approximation. When these nearby scatterers are part of the same reflecting
interface, neglecting their influence leads to errors in reflections amplitudes. For example,
it is well-known that when we model reflection amplitudes from a planar interface using
the first-order Born approximation we do not obtain the same amplitudes predicted by the
Zoeppritz equations. Consequently, a linearized-Born inversion yields biased estimates of
elastic properties at interfaces. To remove this bias, we must iterate the linearized-Born
inversion in a fully non-linear algorithm.

The inclusion of the short-range scattering components of HW should improve elastic-
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properties estimates even without additional non linear iterations, and should speed up
the convergence of a fully non-linear iterative inversion. Further analysis and tests will
determine if the improved convergence justifies the additional computational cost.

SYNTHETIC EXAMPLE

To illustrate the effects of applying and inverting the Gauss-Newton and the full Hessian
matrices we conducted several numerical tests based on a 2D synthetic dataset. To model
the data we assumed a velocity model 3.5 km wide and 1 km deep. The background velocity
was 1.5 km/s with a single reflecting layer at depth of 800 m (Figure 1). We modeled 88
regularly spaced sources and recorded the data with a fixed array of 351 receivers. The
source interval was 40 m and the receiver interval was 10 m. To compute the Laplacian
necessary for the wave propagation, we employed a 10th-order approximation; the minimum
wavelength was 30 m and the grid spacing 5 m. As source signature we used a Ricker wavelet
with central frequency of 10 Hz.

To invert the Hessian matrices we relied on the Intel MKL iterative sparse solvers (ISS)
based on the reverse communication interface (RCI) (Dongarra et al., 1995). In our test
we did not add a regularization term to the objective function. However, if necessary, we
could regularize the inversion or apply the Leverberg-Marquardt technique to stabilize the
inversion of the Hessian matrix (Pujol, 2007).

Figure 1 shows the velocity model used to model the data. Figure 2 shows one of the
modeled shot gathers after muting the direct arrival. We run two iterations of FWI, with
different choices of starting models and approximation of the Hessian matrix.

First-iteration results

Figure 3(a) shows the image (opposite of FWI gradient) obtained by assuming the correct
background velocity, but no reflecting interface. The imaged reflector is well focused, though
resolution suffers because of the effects of the finite-bandwidth wavelet. Figure 3(b) shows
the image (opposite of FWI gradient) obtained by assuming a background velocity lower
than the correct one by 2%. The image is not as well focused as in Figure 3(a) and the
phase of the reflector is distorted. Finally, Figure 3(c) shows the image (opposite of FWI
gradient) obtained by assuming a background velocity with a larger error (10%) than in the
previous case; as expected, the phase of the reflector is more distorted than in the previous
case.

Figure 4(a) is the search direction obtained by applying the full Hessian to the image
obtained by assuming a background velocity too low by 2 % (image in Figure 3(b)). As
explained in the previous section, this search direction (∆m1 in equation 6) is the first
search direction of the iterative inversion of the Hessian matrix in a truncated Newton
algorithm. Because we started from a constant model that did not produce any reflections,
the modeled data after muting the first arrival is uniformly zero. Therefore, the application
of the full Hessian to the image corresponds to only two terms out of the general 6 terms;
that is, HGN∇φo (equation 26) and −Wo∇φo (equation 30). Figure 4(b) is the search
direction obtained by applying the Gauss-Newton Hessian (equation 26) to the same image
as the results shown in Figure 4(a). In this case, the long-wavelength component is absent.
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We set the clip to be the same for displaying the two top panels in Figure 4; this clip was
chosen to make visible the effects of applying to the gradient the WEMVA component of
the Hessian easily visible.

Figure 4(c), shows the result of applying the WEMVA component of the Hessian oper-
ator that is, it is the difference between Figure 4(a) and Figure 4(b). The long wavelength
of the model update points towards a negative slowness-squared update, and thus it points
in the correct direction. In contrast, Figure 4(d) shows the result of applying the WEMVA
component of the Hessian operator to the image obtained by assuming a background ve-
locity lower by 10% than the correct one (Figure 3(c)). The long wavelength of the model
update points towards a positive slowness-squared update, and thus it points in the wrong
direction.

Figure 5(a) shows the steepest-descent velocity update after a simple line search. Fig-
ure 5(b) shows the truncated Newton model update after iteratively inverting the Gauss-
Newton Hessian and without line search (i.e. setting the step size to be equal to one).
Figure 5(c) shows the truncated Newton model update after iteratively inverting the full
Hessian and without line search. For both truncated Newton results the updated model
shows a sharper image of the reflector than for the simple steepest descent result.

Figure 6(a) shows a vertical section of the three models shown in Figure 5. The updated
model obtained by inverting the Gauss-Newton Hessian (green line) is similar to the model
obtained by inverting the full Hessian (red line). There is only a small difference in the long-
wavelengths component above the reflector, as shown in the zoomed-in plot displayed in
Figure 6(b). The model updated by inverting the full Hessian has a small positive increase
in the background velocity to correct for the initial error in velocity.

Figure 7(a) shows the normalized norm of the residuals (in model space) during the
iterative inversion of the full Hessian. We did not regularize this inversion that started to
diverge after 4 iterations. Figure 7(b) shows the normalized norm of the residuals during
the iterative inversion of the Gauss-Newton Hessian. In this case the inversion converges
even without regularization.

Figure 8 shows the same comparison shown in Figure 6(a), but corresponding to the
case when the background velocity was correct. Now the inversion of the full Hessian is not
trying to update the background model and the result is similar to the inversion of only
the Gauss-Newton component of the Hessian. The applications of the inverse Hessians had
the expected effect to reduce the side lobes in the image, and the updated models show a
nicely focused reflector.

Second-iteration results

We computed the gradient and Hessian components for a second iteration of a FWI process.
The background model for the second iteration was the one obtained by using steepest de-
scent at the first iteration; that is, the one that is shown in Figure 5(a). Figure 9 illustrates
the contributions to the total search direction (opposite of the gradient) of the two compo-
nents of the data residuals: the modeled and the observed data (equation 24). Figure 9(a)
shows the contribution of the modeled data, whereas Figure 9(b) shows the contribution
of the observed data. The latter search direction contains a long-wavelength component
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Figure 1: True velocity model with
a single reflector (background 1.5
km/s perturbation .4 km/s) [ER]
biondo1/. true-model

Figure 2: Common-shot gather of
the observed data. Shot and receiver
interval is 40 m and 10 m, respec-
tively. [ER] biondo1/. true-data

that correctly tries to increase the background velocity (decrease slowness squared). Fig-
ure 9(c) shows the sum of the two components. As for Figure 4, we set the clip to be the
same for displaying all the panels in Figure 9 and this clip was chosen to make visible the
long-wavelength components of the images.

Figure 10 shows the application of the Gauss-Newton component of the full Hessian to
the search direction obtained by computing the total gradient; that is, the search direction
shown in Figure 9(c).

Figure 11 shows the application of the four components of the differential WEMVA op-
erator to the search direction shown Figure 9(c): Figure 11(a) shows the −Wm∇φm term
(equation 27), Figure 11(b) shows the +Wm∇φo term (equation 28), Figure 11(c) shows
the +Wo∇φm term (equation 29), and Figure 11(d) shows the −Wo∇φo term (equa-
tion 30). Notice that only the mixed terms ( (Wm∇φo and Wo∇φm) contain significant
long-wavelength components; these components have opposite signs between the two pan-
els. Fortunately, the term that has the correct sign (Wm∇φo) prevails and the application
of the full Hessian (Figure 12) shows a long-wavelength component pointing in the correct
direction.

DISCUSSIONS

The theoretical insight presented in the first section of the paper, and illustrated in the last
section, has several potential applications. In this section we speculate and elaborate some
of these potential applications.
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(a) (b)

(c)

Figure 3: (a) Image computed with the correct background of 1.5 km/s. (b) Image obtained
with a background with a negative velocity error of 2.0%. (c) Image obtained when the
background error is -10%. [ER] biondo1/. true-image,image,image-10
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(a) (b)

(c) (d)

Figure 4: (a) Full and (b) Gauss-Newton Hessian applied to first search direction of Figure
3(b) (i.e., −H∇φ). (c) Difference between full and Gauss-Newton Hessians. Panel (a) and
(b) have the same clipping value and they correspond to the first search direction during
the Hessian inversion. (d) Hessian WEMVA component applied to the first search direction
when the velocity error is -10% (Figure 3(c)). Because of the large velocity error in this
case, the WEMVA search direction is pointing toward the incorrect velocity update. [CR]
biondo1/. Full-Newton-g0,Gauss-Newton-g0,Hessian-diff-g0,Hessian-wemva-g0-10



SEP–160 FWI Hessian 31

(a)

(b)

(c)

Figure 5: (a)Updated model using steepest descent with line search (parabolic fit-
ting). (b) Updated model by inverting the Gauss-Newton Hessian without perform-
ing line search. (c) Same as panel (b) but inverting the full Hessian. [CR]
biondo1/. steppest-model,GN-model,NW-model
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(a)

(b)

Figure 6: (a) Vertical section along middle position in the model for comparing updated
model using the three different schemes. (b) Close-up on the depth sections from 200 m
to 400 m. Notice that the full-Newton update starts updating also the low-wavenumber
component of the model above the reflector. (SD=steepest descent, GN=Gauss-Newton,
FN=full-Newton) [CR] biondo1/. compare-models,compare-models-zoom
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(a) (b)

Figure 7: (a) full Hessian iterative inversion convergence, after four iterations the inver-
sion starts diverging. (b) Gauss-Newton Hessian iterative inversion convergence. [CR]
biondo1/. NW-convergence,GN-convergence

Figure 8: Vertical section along middle position in the model for comparing updated
model using steepest descent, the Gauss-Newton, and full-Newton methods using the cor-
rect velocity background. As expected Hessian inversions is deconvolving the wavelet
effect present in the steepest descent model. It is worth noticing that using the cor-
rect background the Gauss-Newton and full-Newton inversion schemes provide almost the
same velocity updates. (SD=steepest descent, GN=Gauss-Newton, FN=full-Newton) [CR]
biondo1/. compare-true-models
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(a) (b)

(c)

Figure 9: Search direction at the second iteration using the model of Figure 5(a). (a)
Search direction given by the modeled data (i.e., −∇φm). (b) Search direction given by
the observed data (i.e., ∇φo). (c) Sum of panel(a) and panel(b) that is the total search
direction (i.e., −∇φ = ∇φo − ∇φm). The long-wavelengths of the total search direc-
tion try to decrease the slowness (and increase velocity) on top of the reflector. [CR]
biondo1/. second-image-dmod,second-image-dobs,second-image
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Figure 10: Gauss-Newton Hessian applied to the second search direction (Figure 9(c)).
[CR] biondo1/. GN-second-iter

(a) (b)

(c) (d)

Figure 11: Terms of the WEMVA component of the full Hessian at the
second iteration: (a) −Wm∇φm (equation 27). (b) +Wm∇φo (equation
28). (c) +Wo∇φm (equation 29). (d) −Wo∇φo (equation 30). [CR]
biondo1/. WEMVApre-mod,WEMVApre-obs,WEMVAobs-mod,WEMVAobs-obs
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Figure 12: Full Hessian applied to the second search direction (Figure 9(c)). [CR]
biondo1/. second-full-hessian

One application could be the improving the convergence of a truncated Newton FWI
algorithm when the starting model is inaccurate. As demonstrated in one of the examples
above, the WEMVA component of the full Hessian is not immune from cycle skipping when
the starting model is sufficiently inaccurate. However, in contrast with the cycle-skipping
occurring when the data residuals are backprojected into the gradient, it would be easier
to avoid the cycle-skipping of the Hessian. A natural way of avoiding cycle skipping could
be to extend the model as it is done in conventional WEMVA and TFWI. Furthermore,
the detailed analysis of all the four terms in the WEMVA Hessian (equations 27–30 and
Figure 11) could lead to new ways of avoiding the cycle-skipping problem.

The decomposition of the Hessian into a Gauss-Newton and a WEMVA component
enables the separation of the long wavelengths of the model (velocity) from the short wave-
lengths (reflectivity) during the inversion. We could subtract the result of applying the
inverse of the Gauss-Newton Hessian to the gradient from the application of the whole Hes-
sian, as we did to create the images shown in Figures 4(c) and 4(d). The model updates
resulting from this subtraction is dominated by the long-wavelength components of the to-
tal update. After the long-wavelengths of the model are accurately estimated, conventional
FWI could be safely applied to estimate all the wavelengths in the model.

Another possible application of the insight presented in this paper is to reduce sub-
stantially the computational cost of target-oriented fully non-linear elastic FWI solution.
Such a solution is attractive because it should lead to a more accurate estimation of elastic
reservoir parameters and thus improve reservoir characterization.

If the background model can be assumed to be accurate, the Gauss-Newton component
of the Hessian can be precomputed applying one of methods presented by Tang (2011);
Deuzeman and Plessix (2015); Fletcher et al. (2012); Tang and Lee (2015), and only the
near-range scattering of the differential WEMVA operator needs to be taken into account.
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Substantial computational savings can be achieved because repeated applications of the
near-range scattering components of the differential WEMVA operator require only local
propagation of wavefields. Once the background source wavefield (u0 in equation 12) is
propagated from the source to the target and the data residuals are backpropagated (u

′
1

in equation 14) from the surface to the target the application of Ka2 and Kb to a model
perturbation require only the propagations and scattering of wavefields within the target
volume. Therefore, after precomputing the Gauss-Newton component and the wavefields
u0 and u

′
1, the full Hessian can be iteratively inverted only by local propagation and scat-

tering. Although in this paper we discussed only the FWI Hessian related to the acoustic
wave equation, this requirement of only local computations holds also in the case of the
elastic wave equation. Consequently, expensive long-range elastic propagation are needed
only at each non-linear iteration and are not needed for the iterative inversion of the full
Hessian. This observation could lead to the development of computationally affordable
target-oriented fully-elastic inversion algorithms.
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SEPLib nonlinear solver library – Manual
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Musa Maharramov and Alejandro Cabrales-Vargas

ABSTRACT

We created an SEPLib nonlinear solver library that serves as the infrastructure for
many inversion implementations. The library targets gradient-based inversion schemes
with a focus on ease of use, flexibility, reusability and expandability. This was achieved
by taking advantage of modern language features in object-oriented programing. This
manual is divided in three parts. First, we detail what the library components are and
explain all the abstract parts. Second, we show how to use each component of the
library. Third, we show examples of different inversion implementations.

INTRODUCTION

The purpose of this manual is to provide a reference for the SEPLib nonlinear inversion
library. The design of the library is based on a divide and conquer approach where we
separate the inversion into four parts:

• Problem definition which includes the details of how the objective function and
gradient are computed

• Stepper which finds a proper scalar to a given search direction to reduce the objective
function

• Terminator which determines when to stop the inversion

• Solver which runs the iterative inversion by using the other three parts

Our goal is to make each part independant from the other parts. This separation increase
reusability of any part that doesn’t need to be changed between different inversion problems.

Each part has an abstract object that define its interface, variables and procedures. By
starting with an abstract base, it is possible to create as many implementations as we need
as long as they adhere to the abstract object requirements. This design allows for an easy
expansion of the library with more implementations in the future. We also created several
concrete implementations of each abstract object using conventional inversion techniques.
Moreover, we created a driver, i.e. a wrapper, that uses all the concrete implementations
of the library.

The manual is divided in three sections. The first section details the library components
and explains all the abstract objects for the users interested in the computer science part
of the library. The second section shows how to create a concrete implementation of each
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abstract object and lists all implementation we created so far. This section targets users
that are interested in creating their own solver and steppers or want to define their objective
function with a nonconventional norm or residual. The third sections shows examples of
different inversion problems targetting users that want to run the existing implementations.

ABSTRACT COMPONENTS

problem

The problem abstract objects mainly store functions pointers that calculate objective func-
tion, the residual, the gradient and the change in residual. However, the library separates
different components of the inversion which can potentionally cause some recalculations to
occur. Therefore, we decided to prevent such recalculation by following an encapsulation
approach with this abstract object such that it stores a private local copy of the input and
output variables with “get” procedures that output the needed variable. We added a sim-
ple dependency between the variable with “updated” logical flags such that changing the
dependencies causes the variables to be recalculated. We decided to add output procedure
that writes the local variables to disk as the inversion is running. Finally, we added counters
to keep track of the number of evaluations and writes that occured so far since this is the
object where the calculations occur.

The following shows the definition of the abstract object:

type, abstract :: prob_obj
private
integer, public :: nmodl = 0, ndata = 0
integer :: fevals = 0, counter = 0
logical :: obj_updated = .false., res_updated = .false.
logical :: grad_updated = .false., dres_updated = .false.
double precision :: obj = 0.
real, dimension(:), allocatable :: modl, res, grad, dmodl, dres
character(256), public :: rnorm = ’’, mmov = ’’, gmov = ’’, rmov = ’’

end type

The variables nmodl and ndata store the size of the model and data space. The variables
fevals and counter keep track of the number of evaluations and writes, the variables ending
with updated are the update flag for each local variable. The variable modl is the model,
res is the residual which depends on modl, obj is the objective function value which depends
on both modl and res, grad is the gradient which depends on modl and res, dmodl is the
model update and dres is the change in residual which depends on modl and dmodl. The
variables rnorm, mmov, gmov and rmov are the output tags for the residual norm, model
movie, gradient movie and residual movie, respectively.

The procedures of this abstract object are:

procedure :: objf, resf, gradf, dresf
procedure :: alloc, set_modl, output
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procedure :: get_obj, get_res, get_grad, get_dres
procedure :: get_fevals, get_counter, get_rnorm, get_gnorm

The procedures objf, resf, gradf and dresf will store the user functions that calculate
each respective variable. Notice that we did use deferred procedures although we need the
user to impelment these functions. The reason will be explained later. The alloc procedure
checks that the sizes were provided then allocates all the local variables as follows:

integer function alloc(this)
class(prob_obj) :: this
if(this%nmodl < 1 .or. this%ndata < 1) then
call erexit("problem: nmodl or ndata is not correct")

end if
allocate(this%modl(this%nmodl))
allocate(this%res(this%ndata))
allocate(this%grad(this%nmodl))
allocate(this%dres(this%ndata))
allocate(this%dmodl(this%nmodl))
alloc = 0

end function

The set modl procedure, which is intended to be used internally in this object, checks
whether the provided model is different than the local model and updates the local copy if
needed. Also, this procedures changes the update flags accordingly as follows:

integer function set_modl(this, modl)
class(prob_obj) :: this
real, dimension(:) :: modl
if(any(this%modl .ne. modl)) then
this%modl = modl
this%obj_updated = .false.
this%res_updated = .false.
this%grad_updated = .false.
this%dres_updated = .false.

end if
set_modl = 0

end function

All the get procedures do three steps. First, check if the size of the input is consistent
with the local sizes. Then, use the procedure set modl to update the local model (if needed),
and finally, calculate the requested variable if it is not updated and add the number of
evaluations to fevals. If it is updated, the procedure will simply output the local variable.
For instance, the following code shows the set grad procedure:

integer function get_grad(this, modl, grad)
class(prob_obj) :: this



42 Almomin et al. SEP–160

real, dimension(:) :: modl, grad
integer :: stat
if(size(modl) .ne. this%nmodl .or. size(grad) .ne. this%nmodl) then
call erexit("problem: size of modl or res is not correct")

end if
stat = this%set_modl(modl)
if(.not. this%grad_updated) then
stat = this%get_res(this%modl, this%res)
stat = this%gradf(this%modl, this%res, this%grad)
this%fevals = this%fevals + 2
this%grad_updated = .true.

end if
grad = this%grad
get_grad = 0

end function

The output procedure outputs the variables if their corresponding tag is used while
using counter to keep track of how many times it wrote to disk. When writing for the first
time, it also creates the history file for the output. The code of the procedure is:

integer function output(this, modl)
class(prob_obj) :: this
real, dimension(:) :: modl
integer :: stat
this%counter = this%counter + 1
if(this%counter .eq. 1) then
if(this%mmov .ne. ’’) then
call to_history("n1",this%nmodl,this%mmov)
call to_history("label1","Model index",this%mmov)
call to_history("label2","iteration",this%mmov)

end if
end if
if(this%mmov .ne. ’’) then
call to_history("n2",this%counter,this%mmov)
call srite(this%mmov, modl, 4*size(modl))

end if
output = 0

end function

The procedure objf, and similarly resf, gradf and dresf, is impelmented as follows:

integer function objf(this, res, obj)
class(prob_obj) :: this
real, dimension(:) :: res
double precision :: obj
call erexit("ERROR: objf was not overridden")
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objf = 0
end function

This implementation can be viewed as an optional deferred such that the user does not
have to implement functions, such as dresf, unless needed by inversion. For the needed
functions, the user should overwrite the procedure. While this approach is flexible, it has
the downside that the errors will happen in run-time instead of compile-time.

stepper

The stepper abstract object has been designed in such a manner to allow for a variety of
steppers to be implemented. In addition to this flexibility, this design also requires very
little knowledge from the user when using any one of the steppers. In general, to describe
our abstract stepper, we have decided to allow the user to clip the model by specifiying
a model maximum (mmax) and minimum (mmin) in the procedure clip modl. We also
included a deferred run procedure that should do the actual execution of the stepper. The
implementation of this design is shown in the following code:

type, abstract :: stepper_obj
real, dimension(:), pointer :: mmin => null(), mmax => null()

contains
procedure(stepper_function), deferred :: run
procedure :: clip_modl

end type

The abstract interface for the run routine is shown in the following code:

abstract interface
integer function stepper_function(this, modl, prob, dmodl, &

alpha, success)
import :: stepper_obj, prob_obj
class(stepper_obj) :: this
class(prob_obj) :: prob
real,dimension(:) :: dmodl, modl
double precision :: alpha
logical :: success

end function
end interface

The abstract interface for the run routine requires the user to provide the model array
modl, a problem object explained before prob, the search direction dmodl, an alpha variable
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to return the computed step size, and lastly a logical success variable used by the solver
to check if the stepper has sucessfully computed a proper step size. If it does not find a
proper step size, then when the solver finds that success is .false., it will terminate the
program.

The clip modl procedure has a simple implementation such that the bounds are op-
tional, as shown in the following function:

integer function clip_modl(this, modl)
class(stepper_obj) :: this
real, dimension(:) :: modl
if(associated(this%mmin)) where(modl < this%mmin) modl = this%mmin
if(associated(this%mmax)) where(modl > this%mmax) modl = this%mmax
clip_modl = 0

end function

terminator

The terminator abstract object is composed of a deferred test function and it is defined as
follows:

type, abstract :: terminate_obj
contains
procedure(terminate_test), deferred :: test

end type

where abstract interface of this function is written as:

abstract interface
logical function terminate_test(this, iter, prob)
import :: terminate_obj
import :: prob_obj
class(terminate_obj) :: this
class(prob_obj) :: prob

end function
end interface

The test procedure requires the iteration number iter and a problem object prob. The
problem object is required because some stopping criteria depend on the residuals or the
gradient of the problem.

solver

The solver abstract object is very simple. In fact, this object is composed only by a deferred
run function and it is defined as follows:
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type, abstract :: solver_obj
contains
procedure(run_solver),deferred :: run

end type

where abstract interface of this function is written as:

abstract interface
integer function run_solver(this, modl, prob, stpr, term)
import :: solver_obj, stepper_obj, terminate_obj
import :: prob_obj
class(solver_obj) :: this
real, dimension(:) :: modl
class(prob_obj) :: prob
class(stepper_obj) :: stpr
class(terminate_obj) :: term

end function
end interface

and requires as input the model array modl, a problem object explained before prob, a
stepper object stpr, and a terminator object term. We decided to construct the abstract
solver object without any initial variable to give more flexibility to a user that wants to
construct its own solver. In fact, by including a variable in the abstract object, the user
must declare this component in an actual solver object. It is also worth noticing that
we separated the solver from the stepper. In this manner we can use different stepper
algorithms in combination with an actual solver.

IMPLEMENTATIONS

problem

The problem objects contains the details of how to calculate the residuals, objective fucntion,
gradient, and changes in the gradient. When creating a concrete implementation of this
object, the user needs to do the following steps:

1. extend the abstract object

2. set the values of the variables ndata and nmodl

3. run the alloc procedure

4. overwite the procedures objf, resf, gradf and dresf

The first two steps can be done with a user-defined constructor and the last step need
to be included as type-bound procedures. As long as these steps are satisfied, the user is
free to add modify any number of variables or procedures for the inversion problem.



46 Almomin et al. SEP–160

We created a concrete implmentation that minimizes a nonlinear objective function of
the form:

J(m) =
1
2
‖Wd (F(SWmm)− dobs)‖2

2, (1)

where Wd is a data weighting operator, F is a nonlinear forward operator, S is a precon-
ditioning operator, Wm is a model weighting operator, m is the model and dobs is the
observed data. We made all the operators, except the foward modeling operator, optional
by initializing them to an identity operator. For this problem, the object definition is:

type, extends(prob_obj) :: prob_nl_l2_diff
private
integer :: nsop
real, dimension(:), pointer :: data
real, dimension(:), allocatable :: temp_data, temp_modl, temp_prec
procedure(oper), nopass, pointer :: fop, lop, wdop, wmop, sop
procedure(update), nopass, pointer :: uop

contains
private
procedure :: objf, resf, gradf, dresf

end type

where nsop is the size of the preconditioned variable, data is the observed data, temp are
temporary variables, and the op pointers are procedure pointers to the operators. Notice
that we added two operators: lop to contain the linearized operator required to calculate
the gradient and uop to contain the operator that updates the model for the operators. We
then defined an interface block to create a user-defined constructor and specify the interface
of all the operators as:

interface prob_nl_l2_diff
module procedure const

end interface
interface
integer function oper(adj, add, modl, data)
real,dimension(:) :: modl,data
logical :: adj,add

end function
integer function update(modl)
real,dimension(:) :: modl

end function
end interface

where the interfaces follow the conventional SEPLib operators. The user-defined constructor
satisfy the requirements we mentioned earlier as follow:

type(prob_nl_l2_diff) function const(fop, uop, lop, nmodl, ndata, data, &
wdop, wmop, sop, nsop)
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optional :: wdop, wmop, sop, nsop
procedure(oper) :: fop, lop, wdop, wmop, sop
procedure(update) :: uop
integer :: nmodl, ndata, nsop, stat
real, dimension(:), target :: data
const%fop => fop
const%uop => uop
const%lop => lop
const%nmodl = nmodl
const%ndata = ndata
const%data => data
const%wdop => identity_op
const%wmop => identity_op
const%sop => identity_op
const%nsop = nmodl
if(present(wdop)) const%wdop => wdop
if(present(wmop)) const%wmop => wmop
if(present(sop)) const%sop => sop
if(present(nsop)) const%nsop = nsop
allocate(const%temp_data(const%ndata))
allocate(const%temp_modl(const%nmodl))
allocate(const%temp_prec(const%nsop))
stat = const%alloc()

end function

The only thing left is to calculate each variable using its function. The objective function
is calculated using the residual in objf is:

integer function objf(this, res, obj)
class(prob_nl_l2_diff) :: this
real, dimension(:) :: res
double precision :: obj
obj = 0.5*(sum(dprod(res,res)))
objf = 0

end function

The residual is calculate using the model in the resf function as:

integer function resf(this, modl, res)
class(prob_nl_l2_diff) :: this
real, dimension(:) :: modl, res
integer :: stat
stat = this%wmop(F, F, modl, this%temp_modl)
stat = this%sop(F, F, this%temp_modl, this%temp_prec)
stat = this%fop(F, F, this%temp_prec, this%temp_data)
this%temp_data = this%temp_data - this%data
stat = this%wdop(F, F, this%temp_data, res)
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resf = 0
end function

The gradient is calculated using the model and residual in the gradf function as:

integer function gradf(this, modl, res, grad)
class(prob_nl_l2_diff) :: this
real, dimension(:) :: modl, res, grad
integer :: stat
stat = this%uop(modl)
stat = this%wdop(T, F, this%temp_data, res)
stat = this%lop(T, F, this%temp_prec, this%temp_data)
stat = this%sop(T, F, this%temp_modl, this%temp_prec)
stat = this%wmop(T, F, grad, this%temp_modl)
gradf = 0

end function

The change in residual is calculate using the model and model update in the dresf function
as:

integer function dresf(this, modl, dmodl, dres)
class(prob_nl_l2_diff) :: this
real, dimension(:) :: modl, dmodl, dres
integer :: stat
stat = this%uop(modl)
stat = this%wmop(F, F, dmodl, this%temp_modl)
stat = this%sop(F, F, this%temp_modl, this%temp_prec)
stat = this%lop(F, F, this%temp_prec, this%temp_data)
stat = this%wdop(F, F, this%temp_data, dres)
dresf = 0

end function

We also created an implementation for linear problems and another implementation that
combines two problems by summing them.

stepper

The abstract stepper class has been extended to several more specific stepper classes, such
as the backtracking or parabolic steppers. In general, a stepper class derived from the
abstract class is done as follows:

type, extends(stepper_obj) :: mystepper
contains
procedure :: run

end type
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Regardless of the stepper, it must override the run procedure that it inherits from the
abstract class. This is done by first declaring the run function in the derived type as seen
above, and later within the function definition the user writes the actual stepper algorithm.
One example of this can be shown with the parabolic stepper class. In the following code
listing, we have derived the stepper parab type (specific stepper) from the stepper obj
type (abstract stepper) we omit the definition of run for brevity:

type, extends(stepper_obj) :: stepper_parab
integer :: c1 = 1.0, c2 = 2.0
double precision :: ntry = 10, r = 0.25, alpha = 0.
double precision :: alpha_min = 0.25, alpha_max = 4.0
real, dimension(:), allocatable :: modl, res, dres

contains
procedure :: run

end type

If the user then desires to implement their own stepper they can do so with a simple call
(again using the parabolic stepper as the example):

type(stepper_parab) :: parab1

and can make changes to the members of the parab1 object via the following calls:

parab1%ntry=1000
parab1%c1=-200.0
parab1%c2=200.0

We create one concrete line search class based on backtracking method. The method
looks for a model update that satisfies Wolfe condition, as follows:

J(mi + α∆mi) ≤ J(mi) + c1αgi
T∇J(mi) (2)

|gi
T∇J(mi) + α∆mi| ≤ c2gi

T∇J(mi), (3)

where c1 and c2 need to be set. The backtracking method start from α = αmax and then
α×ρ→ α at each step until the Wolfe condition is satisfied or we reached minmum allowed
αmin.

Therefore we extend the line search method as:

type, extends(stepper_obj) :: stepper_backtrack
double precision :: decrease_coef = 0.01, curvatur_coef = 0.5
double precision :: alpha = 0., alpha_min = 0.25, alpha_max = 4
double precision :: rho = 0.5
real, dimension(:), allocatable :: modl, res, dres, grad

contains
procedure :: run

end type
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where c1 (decrease coef), c2 (curvatur coef), ρ, αmin and αmax are specific to back
tracking line search method. Those parameters has default value and can also be set by the
experienced users.

We also created a few more line search implementations, such as the a sampling line
search and a parabolic interpolation which is Brent’s method. For Brent’s method we have
input a and b and try to find a ≤ αb that minimize the objective function. The algorithm
keep shrinking the interval [a, b] until J(m + a∆m) − J(m + b∆m) or |a − b| is below a
certain threshold.

terminator

The terminator object determines when to stop the inversion. This is done by the procedure
test which returns a logical value on whether the inversion should be terminated. We
created a concrete implementation that gives the user the option to stop using one of the
following criteria: number of iterations, number of evaluations, number of hours passed,
size of residual norm and size of gradient norm. The object definition is:

type, extends(terminate_obj) :: terminate_simple
integer :: niter = 0, maxfevals = 0
real :: maxhours = 0.
double precision :: tolr = 1.0d-20
double precision :: tolg = 1.0d-20
integer(kind=8), private :: timer0 = 0, rate = 0

contains
procedure :: test

end type

Because we need to keep track of time, we created a user-defined constructor that initializes
the time passed as follows:

interface terminate_simple
module procedure const

end interface

type(terminate_simple) function const(niter, maxfevals, maxhours, tolr, tolg)
optional :: niter, maxfevals, maxhours, tolr, tolg
integer :: niter
integer :: maxfevals
real :: maxhours
double precision :: tolr
double precision :: tolg
if(present(niter)) const%niter = niter
if(present(maxfevals)) const%maxfevals = maxfevals
if(present(maxhours)) const%maxhours = maxhours
if(present(tolr)) const%tolr = tolr
if(present(tolg)) const%tolg = tolg
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call system_clock(const%timer0, const%rate)
const%rate = const%rate * 3600.

end function

The implementation of the test procedure checks if the user provided any stopping
criteria and then test for that criteria accordingly as follows:

logical function test(this, iter, prob)
class(terminate_simple) :: this
integer :: iter
class(prob_obj) :: prob
real :: hours_passed
integer(kind=8) :: timer1
test = .false.
if(this%niter > 0 .and. iter > this%niter) then
test = .true.
write(0,*) "Terminate: maximum number of iterations reached"

end if
if(this%maxfevals > 0 .and. prob%get_fevals() >= this%maxfevals) then
test = .true.
write(0,*) "Terminate: maximum number of evaluations"

end if
if(this%maxhours > 0.) then
call system_clock(timer1)
hours_passed = 1.*(timer1-this%timer0)/this%rate
if(hours_passed >= this%maxhours) then
test = .true.
write(0,*) "Terminate: maximum number hours reached", &

hours_passed, this%maxhours
end if

end if
if(prob%get_rnorm() < this%tolr) then
test = .true.
write(0,*) "Terminate: minimum residual tolerance reached", &

real(prob%get_rnorm()), real(this%tolr)
end if
if(prob%get_gnorm() < this%tolg) then
test = .true.
write(0,*) "Terminate: minimum gradient tolerance reached", &

real(prob%get_gnorm()), real(this%tolg)
end if

end function

solver

When implementiong the solver object, the user needs to do the following in a loop:
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1. run the problem object procedure output

2. calculate the search direction

3. run the stepper by the procedure run and test its success

4. check the terminator procedure test to determine when to stop the loop

If the solver doesn’t require a line search, then the user need to implement the stepper
procedure clip modl every time the model is modified.

To show how a user can define an actual solver object, we describe the extension of the
abstract solver to a non-linear conjugate-gradient solver object. First, we need to declare
the extension of the abstract solver object as follows:

type, extends(solver_obj) :: solver_nlcg
character(20) :: beta_type=’FR’
contains
procedure :: run

end type

where the string beta type defines how the step length is computed at a given iteration
with the previous search direction and the current gradient. We see that in the children
object solver nlcg contains a run function as the abstract solver object. In this actual
object we cannot define just a simple abstract interface. In fact, we need to implement the
solver function keeping the same interface of the abstract interface (i.e., integer function
run(this, modl, prob, stpr, term)). In this function we declare all the temporary
variables that we need to run the solver. In our case this interface is written as follows:

class(solver_nlcg) :: this
integer :: stat
real, dimension(:) :: modl
class(prob_obj) :: prob
class(stepper_obj) :: stpr
class(terminate_obj) :: term
double precision :: beta, alpha, f
integer :: iter
logical :: success
real, dimension(:), allocatable :: grad, grad0, dmodl

where alpha is the step size, beta is the conjugate gradient ration between current and
previous search directions, f is the objective function value, grad is the gradient, grad0 is
the previous gradient and dmodl is the search direction. The inversion loop is very simple
and it is implemented as:

beta = 0.
iter = 1
do
grad0 = grad
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stat = prob%get_grad(modl, grad)
stat = prob%output(modl)
if(iter > 1) beta = betaf(grad, grad0, dmodl)
if(beta < 0.) beta = 0.
dmodl = beta*dmodl - grad
stat = stpr%run(modl, prob, dmodl, alpha, success)
if(.not. success) then
write(0,*) "Stepper couldn’t find a proper step size"
exit

end if
stat = prob%get_obj(modl, f)
write(0,*) "iter", iter, " obj =", real(f), " feval =", prob%get_fevals()
iter = iter + 1
if(term%test(iter, prob)) exit

end do

First, we start the loop by placing the previous gradient into the grad0 variable. Then,
we retrieve or compute the current gradient calling the problem object’s function get grad
and output the previous model calling the prob%output function. After these steps, we
compute the conjugate search direction with the betaf function. At the first iteration the
search direction is equal to the current gradient that means stepping with the steepest
descent direction. Having computed the search direction we can now call the stepper and
find the step length with the stat = stpr%run(modl, prob, dmodl, alpha, success)
line. From the result of the stepper contained in the success variable, we can decide whether
a better model has been found or not. The last steps are to print some useful information
to screen and test if the termination criteria has been achieved. The beta function is
implemented separately from the solver run function (see the file solver nlcg.f90 in the
Src directory). The reader interested in the mathematical details of non-linear conjugate
gradient can find them in Dai and Yuan (1999).

We also created an implementation for the L-BFGS solver and the linear conjugate-
gradient solver.

driver

We created a driver to simplify using a library, particularly for users that only want to use
one of the concrete implementations in the library. This driver allows the user to either
provide objects for each of the solver, stepper and terminator or just specify the number of
each object. The driver has one function which has the following interface:

integer function nlsolver(modl, prob, nsolver, nstepper, niter, &
solver, stepper, term)

optional :: nsolver, nstepper, niter, solver, stepper, term

The variable modl is the model, prob is the problem definition object, nsolver is the
solver number, nstepper is the stepper number, niter is the number of iterations, solver
is the solver object, stepper is the stepper object and term is the terminator object. If
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both the number and the object are provided, the driver will prioritize the object using a
local pointer. If neither is provided, the driver will pick the default options which are the
nonlinear conjugate-gradient solver and back-tracking stepper. The following is an example
of picking the solver:

if(present(solver)) then
solverl => solver

else
nsolverl = NLCG
if(present(nsolver)) nsolverl = nsolver
if(nsolverl .eq. NLCG) then
solver1 = solver_nlcg()
solverl => solver1

else if(nsolverl .eq. BFGS) then
solver2 = solver_lbfgs()
solverl => solver2

else if(nsolverl .eq. LCG) then
solver3 = solver_lcg()
solverl => solver3

end if
end if

After setting the solver, stepper and terminator, the driver will run the solver as:

stat = solverl%run(modl, prob, stepperl, terml)

To execute the driver, all we need is to run the following line:

stat = nlsolver(modl, prob1, NLCG, PARAB, niter=10)

EXAMPLES

Example 1

The first example we demonstrate is a linear missing data problem from chapter three of
Geophysical Image Estimation by Example (GEE). The problem boils down to the following:
given the filter in Figure 2 and the data in Figure 1, how can we “ensure that the restored
data, after specified filtering, has minimum energy”? Now with the problem in mind, we
form the following fitting goal:

0 ≈ FJm + Fmknown

where F is the transient convoultion operator, J is a masking operator, m is a vector
that contains all of the points shown in Figure 1 and mknown is a vector containing only the
known data points. For a full derivation of this fitting goal, please refer to GEE page 72.
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Figure 1: The data which we are attempting to restore. [ER] ali2/. datamiss

Figure 2: The filter which will be used to restore the data. [ER] ali2/. mlines

While this problem can be readily solved with a linear optimization scheme, for the
purpose of this report, we solve this problem with a non-linear conjugate gradient solver
and a parabolic fitting stepper. Also, we use the transient convolution and mask operators
defined within GEELIB and supply these operators to our solver. To solve this problem
with our linear solver, we will need two files. One of the files will be our main program
that will do the I/O and call the solver as well as other necessary routines. The second file
serve to define our problem object. In total, in order to solve this problem, the user would
be required to write less than 30 lines of code. Here we go describe the code in detail:

Main program

Without the I/O and usual operator initialization, the call to perform the nonlinear opti-
mization is shown in the following lines of code:

type(prob_datafill) :: prob
prob = prob_datafill(nmodl=nmodl,ndata=ndata,na=nain,data=datain)
stat = prob%alloc()
stat = nlsolver(modl, prob, NLCG, PARAB, niter=50)

In the first line, we create an instance of our problem object which we need to define
in another module file (explained later). Then we can call our prob object’s constructor
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to assign it the necessary variables (the arguments passed to the constructor). Then, with
the call prob%alloc(), we allocate our model, residual, gradient, dmodel, and dresidual
arrays that will be used in our non-linear conjugate gradient solver. With the last line, we
call the non-linear solver passing it the modl array, the user-defined prob object, the type
of solver, the type of stepper and finally the number of iterations. It is important to note
that the only two required arguments for this nlsolver are the modl and prob arguments.
The remainder can be left out and will be left out and will be handled by the solver. Also,
while it was not done in this example, we can create stepper and solver objects that will
allow us to to override default parameters set in the solvers and steppers.

In the second file, we must define the prob datafill class as was shown previously in
the problem section of this report. This means defining the previously mentioned objfunc,
resfunc, gradfunc, and dresfunc functions, as well as a user-defined constructor that
allows the user to pass additional values to the solver.

Once we have defined the main program as well as our prob datafill class, we can
implement our solver which prints the following at the command line:

Bin/Data_fill.x < ./Dat/datamiss.H filtin=./Dat/mlines.H > fill_lines.H
iter 1 obj = 0.6250000 feval = 11
iter 2 obj = 0.5392157 feval = 16
iter 3 obj = 0.4687500 feval = 21
iter 4 obj = 0.4417293 feval = 26
iter 5 obj = 0.4227941 feval = 31
iter 6 obj = 0.4129246 feval = 36
iter 7 obj = 0.4102488 feval = 41
iter 8 obj = 0.4096886 feval = 46
iter 9 obj = 0.4089912 feval = 51
iter 10 obj = 0.4089340 feval = 56
iter 11 obj = 0.4089286 feval = 64
iter 12 obj = 0.4089285 feval = 72
Stepper couldn’t find a proper step size, will terminate solver

where iter is the iteration number, obj is the value of the objective function, and feval
is the number of function evaluations.

In addition to diagnostic messages shown above, it gives us the result shown in Figure
3(a). In comparing this result to Jon’s original result, we can observe that they are nearly
equivalent.

Example 2

Rosenbrock function

To test our nonlinear solver we implement the well-known Rosenbrock function. The mul-
tidimensional Rosenbrock function is expressed as follows:

f(x) =
N−1∑
i=1

[
(1− xi)2 + 100(xi+1 − x2

i )
2
]
, (4)
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(a)

(b)

Figure 3: (a) Missing data fill with the non-linear solver and (b) missing data fill from
Claerbout’s GEE. [ER] ali2/. fill-lines,jon-fill-lines
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where f is the objective function and x is the optimization parameter. In 2D this function
reduces to:

f(x, y) = (1− x)2 + 100(y − x)2, (5)

and is shown in Figure 4. The 2D Rosenbrock function is know to have a single global
minimum at x = 1 and y = 1 inside a broad minimum valley. When we start the optimiza-
tion from x = −1 and y = −1 our nonlinear conjugate gradient algorithm converges in 92
iteration to x = 1.000112 and y = 1.000224. The optimization path is displayed in Figure 4
by the cyan line and the tested points are indicated by the purple stars. As shown by this
path the algorithm has found the correct minimum and stopped close it. The source code
for running the example is in the Src directory and named Rosenbrock test.f90. This
program handles multidimensional Rosenbrock functions.

Figure 4: Bidimensional Rosenbrock function. Red and blue colors indicate high and
low function values respectively. The cyan line with the purple stars is the optimiza-
tion path followed when the starting solution is the point x = −1 and y = −1. [ER]
ali2/. Rosenbrock-figure
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Example 3

Deghosting

Deghosting, together with debubbling, is one of the fundamental preprocessing techniques
necessary for dealing with marine datasets. If we know the filter that generates the ghost
frequency notch in the data is easy to suppress its effect. One of the biggest challenge is
actually to estimate the filter coefficient for the ghost. The ghost effect for a single trace
and vertical propagation can be expressed in the frequency domain as:

d(ω) = m(ω)(1−Reωτ ), (6)

where d(ω) represents the ghosted trace, m(ω) is unghosted data, R is the reflection coef-
ficient at the water surface, and τ is the two-way traveltime from the source to the water
surface. Knowing the R and τ in this simple 1D case is easy to eliminate the ghost effect
by deconvolving d(ω) with the filter (1−Reωτ ). However, estimating these two parameters
is not a simple task in the real work. In fact, the ghost, in this case the source ghost, can
be hidden by the bubble, and other physical phenomena. In addition, the water surface re-
flection coefficient can be frequency dependent. In this simple example where are assuming
that R is independent of the frequency.

In order to estimate the two physical parameters of the ghost filter we need to decide
an objective function to minimize. A good target to reach is minimizing the energy of the
deghosted trace, since the unghosted data should contain less energy than the ghosted one.
This objective function can be written as follows:

E(R, τ) =
∫

d∗d(ω)
(1− 2cos(ωτ) +R2)

dω, (7)

where E is the energy of the deghosted data, and d∗d(ω) is the amplitude spectrum of
the ghosted trace. Knowing the analytical expression of the objective function (equation
7) is trivial to compute the partial derivative with respect each parameter and perform a
gradient-based nonlinear inversion. We test the nonlinear solver library on two synthetic
cases and one real case.

The left panel of Figure 5 shows a synthetic Gaussian impulse with 15Hz as central
frequency, we consider this wavelet our unghosted trace. The right panel of the same figure
displays this wavelet after applying a ghosting filter with R = 0.6 and τ = 50ms. Since we
know analytical expression of the objective function, we can compute it for certain range of
values of the two parameters. Figure 7 shows the objective function computed for different
value of the reflection coefficient and ghosting lag, it exhibits a clear global minimum,
particularly elongated along the R-axis. The shape of the global minimum reflects the well-
known fact that the energy of deghosted data is less sensitive to the water surface reflection
coefficient. This observation is also shown by the superimposed optimization path that
does not change in R as we progress toward the minimum when we start with R = 0.5 and
τ = 70ms. On the left panel of Figure 7 is shown a section of the energy fixing τ to the
correct value. We see that close to the true reflection coefficient the gradient of the function
is close to zero. In fact, the solver does not change the R model from the starting point.
On the other hand, since the gradient is higher for the τ parameter, the solver can find a
solution close to the correct value. In the right panel of Figure 7 is displayed the deghosted
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data using inverted parameter (R = 0.499 and τ = 51.845ms). Most of the ghost energy
has been canceled; however, since the R value is not correct we are introducing undesired
ringing effects.

In the second synthetic case we use a different wavelet than before (left panel on Figure
8). In this case the wavelet is composed of two impulses of the same amplitude. We apply
the ghost filter used in the previous case and we obtain the trace shown in the right panel of
Figure 8. In this case we have obtain a wavelet similar to a Ricker. We can again compute
the objective function for different values of the filter (Figure 9). In this case we notice that
we have a more complex valley. This shape is caused by the presence of the second impulse
in the original wavelet that is considered as a ghost effect. In this case if we start the solver
from R = 0.4 τ = 55ms optimizes both model parameters. For this example because the of
the presence of the second impulse, the minimum is centered on higher value of R respect
to the correct solution (left panel of Figure 10). Deconvolving the ghosted trace with the
optimized filter parameter, we eliminate most of the ghost energy but we obtain ringing
effects as before.

The last test is performed on a real trace recorded in the Seneka lake from airgun testing
(Figure 11). Looking at the energy plot as function of R and τ (Figure 12), we can see
multiple minima for short delay time. These minima are cause by the presence of the bubble
effect in the trace. However, we can easily estimate the correct delay thanks to presence of
a precursor and its ghost at approximately 60ms and 92ms respectively. In fact, if we start
from a starting parameters equal to R = 0.4 and tau = 33ms the solver find the minimum of
the valley where we start the optimization. However, the presence of the bubble influences
this minimum and does not allow us to find the optimal deghosting filter (see right panel
of Figure 13).
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Figure 5: (left) Original unghosted trace. (right) Ghosted trace with ghosting parameters
equal to R = 0.6 and τ = 50ms. [ER] ali2/. problem-1
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Figure 6: Energy of the ghosted trace of right panel Figure 5 as function of R and τ .
Overlaid is the optimization path when the starting solution is R = 0.5 and τ = 70ms.
[ER] ali2/. ghost-prob-1
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Figure 7: (left) Section of the objective function of left panel of Figure 6 for τ = 50ms.
(right) Deghosted trace using the optimized parameters from the solver (R = 0.499 and
τ = 51.845ms). [ER] ali2/. solution-1
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Figure 8: (left) Original unghosted trace for the second synthetic case. (right) Ghosted
trace with ghosting parameters equal to R = 0.6 and τ = 50ms. [ER] ali2/. problem-2
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Figure 9: Same plot of Figure 6 but for the ghosted trace on the right panel of Figure 8.
[ER] ali2/. ghost-prob-2
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Figure 10: Section of the objective function of left panel of Figure 9 for τ = 50ms.
(right) Deghosted trace using the optimized parameters from the solver (R = 0.78 and
τ = 49.95ms). [ER] ali2/. solution-2
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Figure 11: Real trace recorded during a airgun testing. The ghost delay is easily detectable
and is approximately 33ms. [ER] ali2/. wavelet-3
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Figure 12: Energy plot and optimization path for the real trace test. [ER]
ali2/. ghost-prob-real
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Figure 13: Section of the objective function of left panel of Figure 12 for τ = 32.3055ms.
(right) Deghosted trace using the optimized parameters from the solver (R = 0.7564650
and τ = 32.30554ms). [ER] ali2/. solution-real
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Simultaneous inversion of velocity and Q using
wave-equation migration analysis

Yi Shen

ABSTRACT

I develop a method for simultaneous inversion of velocity and Q models. This method
poses the simultaneous estimation problem as an optimization problem that seeks op-
timum velocity and Q models by minimizing user-defined image residuals. Numerical
tests on a modified SEAM model with two gas clouds demonstrates the necessity of
using such simultaneous inversion, when the existent velocity and Q models are inac-
curate. The results show that this simultaneous inversion method is able to retrieve
both velocity and Q models, as well as correct and compensate the distorted migrated
image caused by inaccurate velocities and Q models.

INTRODUCTION

Because strong attenuation and low-velocity anomalies are present in gas pockets or clouds,
they present notoriously challenging problems for reservoir identification and interpretation
(Billette and Brandsberg-Dahl, 2005). Attenuation degrades the seismic image quality by
damping the image amplitude, lowering the image resolution, distorting the phase of events,
and dispersing the velocity. A wrong velocity estimation for the low-velocity anomalies also
results in imaging problems, such as mis-positioning of events and discontinuity of the
imaged structures. These problems impede accurate image interpretation for hydrocarbon
production and well positioning. To mitigate the effects of such gas accumulations on the
image and improve imaging of the subsurface, it is important to understand the properties
of these gas pockets or clouds. Compressional velocity (V) and compressional quality factor
(Q) play an important role in correcting and compensating for the gas-induced distortion
in the image.

Shen et al. (2013, 2014) developed a method, wave-equation migration Q analysis
(WEMQA), to produce a reliable Q model. This method analyzes attenuation effects from
the image space, and uses wave-equation Q tomography to estimate Q models. However,
this method requires highly accurate velocity models. An inaccurate velocity model used
by WEMQA easily distorts the spectra of the migrated events and causes errors in spec-
tral analysis for estimating the attenuation effects. Therefore, it is necessary to invert for
both velocity and Q models if neither of these models is correct. Thus, such an inversion
compensates for the errors in Q estimation caused by inaccurate velocities.

In this paper, I initially develop a method for simultaneous inversion of velocity and Q
models based on the previous workflow of WEMQA (Shen et al., 2013, 2014). Then I test
this method on a synthetic dataset to demonstrate its benefit and effectiveness.

71
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THEORY

I pose the simultaneous estimation problem as an optimization problem that seeks optimum
velocity and Q models by minimizing user-defined image residuals:

J = Jv(v,Q) + βJQ(v,Q), (1)

where β is a weighting parameter that balances two user-defined image residuals Jv(v,Q)
and JQ(v,Q), and can be changed through iterations. The image residuals Jv(v,Q) and
JQ(v,Q) are functions of the current velocity and Q models. However, Jv(v,Q) emphasizes
more on the kinematic changes in an image caused by an inaccurate velocity model, while
JQ(v,Q) emphasizes more on the amplitude spectral change in an image caused by an
inaccurate Q model.

I use the normalized differential semblance optimization (DSO) (Tang, 2011) as the
criterion to mainly estimate the velocity. This objective function normalizes the square of
the root-mean-squared (RMS) image amplitudes to reduce the influence of image amplitude
variations caused by attenuation and uneven illumination. The normalized DSO objective
function is in the subsurface-offset h domain:

Jv =
1
2

∑
x

∑
h

|h|2 |m (x,h)|2∑
h

|m (x,h)|2
, (2)

where m (x,h) is the migrated image with the current velocity and Q models in the
subsurface-offset domain. The physical interpretation of the subsurface-offset-domain DSO
is that it optimizes the models by penalizing energy at non-zero subsurface offset, taking
advantage of the fact that seismic events should focus at zero-subsurface offset if migrated
using accurate models.

By definition for JQ, the image residual primarily coming from attenuation is the dif-
ference between the background image computed with the current background models and
the attenuation-free image. In fact, instead of computing the difference between these two
images, I calculate the spectral change of the images:

JQ =
∑
x

|ρ (x)|2. (3)

The change in the spectrum can be indicated by the steepness of the slope ρ (x) computed
by the spectral ratio method (Tonn, 1991), between a number of selected, windowed events
in the background image and those in the reference windows. These reference windows are
carefully selected from the background image to not be contaminated by attenuation. All
the windows in this method are large and have the same size; therefore, the influence of the
interfering reflectivities on the spectra are statistically the same over all windows. Based
on the assumption that the amplitude spectra have the same frequency content over the
windows if the models used for imaging are accurate, this method minimizes the spectral
differences between the selected windows and the reference windows.

These user-defined residuals are mapped to the perturbations in the current velocity
and Q models by the wave-equation velocity and Q tomography operators (Tang, 2011;
Shen et al., 2013, 2014). I use the mapped perturbation as gradient directions to conduct
a line-search in optimization schemes, to obtain both velocity and Q models.
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NUMERICAL EXAMPLE

To demonstrate this methodology, I use a portion of the SEAM synthetic velocity, adding
two gas clouds with lower velocity than the surrounding sediments, as shown in Figure 1(a).
The Q model (in logarithmic scale) shown in Figure 1(b) also includes these two gas clouds
with high attenuation. I generate a 2D synthetic data with 56 shots with 100 m spacing,
137 receivers with 40 m spacing, and a Ricker source wavelet with 12 Hz central frequency.

(a) (b)

Figure 1: True models: (a) A part of a modified SEAM velocity model with two
gas clouds; (b) Q model (in logarithmic scale) with two gas clouds. [CR]
yishen1/. seam2D.vel.2gas,seam2D.Q

The first test in this example is to invert for the Q model with the inaccurate velocity
model shown in Figure 2(a). The inaccurate velocity in Figure 2(a) has the same background
velocity as that in Figure 1(a). However, the velocity of the left gas cloud in Figure 2(a)
is slightly higher than the true velocity in Figure 1(a) and is set to be the same as the
surrounding sediments; while the velocity of the right gas cloud in Figure 2(a) remains
unchanged from the true velocity in Figure 1(a).

The initial model for Q inversion is a model without attenuation. Figure 2(b) shows
the inversion results (in logarithmic scale) using WEMQA (Shen et al., 2013, 2014). The
results show that this Q inversion method with adequately accurate velocity information
of the right part of the model, as shown in Figure 2(a), sufficiently recovers the location
and value of the right gas cloud, as shown in Figure 2(b). However, this method with
inaccurate velocity in the left part of the model, as shown in Figure 2(a), fails in retrieving
the left gas cloud. The main reason for this failure is the inaccurate velocity that distorts
the kinematics of the migrated structures, and subsequently degrades the accuracy of the
spectra analysis for Q inversion. Therefore, simultaneous inversion of both velocity and Q
models is needed to obtain a reasonable inversion results, if accurate information of these
models is not available.

To simultaneously invert for velocity and Q models, the initial velocity model has the
same background velocity and right gas velocity, as shown in Figure 1(a), but without the
velocity drop in the left gas cloud. The initial Q model is a model without attenuation.
Figure 3(a) is the inverted velocity model and Figure 3(b) is the inverted Q model. Si-
multaneous inversion successfully retrieves the locations and values of both gas clouds in
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(a) (b)

Figure 2: (a) Inaccurate initial velocity model for Q inversion with only one gas cloud
instead of two. Initial Q is constant. (b) Inverted Q model using inaccurate velocity model
in Figure 2(a). [CR] yishen1/. seam2D.vel.1gas,seam2D.iQ.xvel

velocity and Q models, as shown in Figure 3.

(a) (b)

Figure 3: Simultaneous inversion results: (a) The inverted velocity model. Note how the
gas cloud on the left has been recovered. (b) The inverted Q model. The Q value of the
left gas cloud has been recovered. [CR] yishen1/. seam2D.ivel,seam2D.iQ

Figure 4(a) is the migrated image using the initial velocity and Q models. The initial
velocity model has a larger velocity in the left gas cloud, which causes the events below
to be pushed downward and discontinuous. Attenuation caused by these two gas clouds
degrades the quality of the deep imaged structures in Figure 4(a), in terms of dimming
the amplitudes, making the events incoherent and stretching the wavelets. Figure 4(b) is
the migrated image using the inverted models in Figure 3. Migration with the improved
velocity model in Figure 3(a) moves the events below the left gas cloud upward and makes
the events there more coherent. Also, compensation with the inverted Q model shown in
Figure 3(b) makes the events sharper and more balanced in both phase and amplitudes, as
shown in Figure 4(b).

Figure 5(a) and Figure 5(b) are the angle domain common image gathers(ADCIG)
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(a)

(b)

Figure 4: (a) The migrated image using the initial velocity and Q models; (b)The
migrated image using the inverted models in Figure 3. The kinematics and the am-
plitudes under the gas cloud are corrected for by the inverted model. [CR]
yishen1/. seam2D.bimg.bvbq,seam2D.img.iviq
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extracted from the left gas cloud location (x= 1500 m) and obtained with the initial models
and the inverted models in Figure 3, respectively. The inaccurate large velocity causes the
events to be unflattened, as shown in Figure 5(a). The inverted velocity model shown in
Figure 3(a) corrects such kinematics error caused by such wrong velocity and flattens the
events in Figure 5(b). In addition, migration with the inverted Q model in Figure 3(b)
compensates for the energy loss that appears especially strong at the near angle as shown
in Figure 5(a), and therefore makes the amplitude of the events more balanced in Figure
5(b).

(a) (b)

Figure 5: (a)The angle domain common image gathers(ADCIG) extracted from the left gas
cloud location (x= 1500 m) and obtained with the initial models. The vertical axis is depth
with unit of meter. (b) The angle domain common image gather(ADCIG) extracted from
the left gas cloud location (x= 1500 m) and obtained with the inverted models shown in Fig-
ure 3. The vertical axis is depth with unit of meter. The events are flattened, and the low an-
gle amplitudes have been recovered. [CR] yishen1/. seam2D.bang.lgas,seam2D.iang.lgas

Figure 6(a) and Figure 6(b) are the angle domain common image gathers(ADCIG)
extracted from the right gas cloud location (x= 3800 m) and obtained with the initial
models and the inverted models in Figure 3, respectively. The near angles in Figure 6(a) have
low amplitudes, stretched wavelets and unflattend events caused by attenuation, although
the velocity used in this region is correct. Imaging with the inverted Q model in Figure
3(b) compensates the high frequency loss caused by attenuation, therefore, it recovers the
amplitudes and sharpens the events at the near angles in Figure 6(b). In addition, such
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compensation corrects the phase distortion and velocity dispersion caused by attenuation.
Subsequently, the events in Figure 6(b) become more flattened and more coherent than the
events in Figure 6(a).

(a) (b)

Figure 6: (a)The angle domain common image gathers(ADCIG) extracted from the right gas
cloud location (x= 3800 m) and obtained with the initial models. The vertical axis is depth
with unit of meter. (b) The angle domain common image gather(ADCIG) extracted from
the right gas cloud location (x= 3800 m) and obtained with the inverted models in Figure 3.
The vertical axis is depth with unit of meter. Imaging with the inverted Q model recovers
the amplitudes and sharpens the events at the near angles. Such compensation also corrects
the phase distortion and velocity dispersion caused by attenuation, which makes the events
more flattened and more coherent. [CR] yishen1/. seam2D.bang.rgas,seam2D.iang.rgas

CONCLUSION

I developed a method for simultaneous inversion of velocity and Q models. This method
poses the simultaneous estimation problem as an optimization problem that seeks optimum
velocity and Q models by minimizing user-defined image residuals. The numerical tests
on a modified SEAM model with two gas clouds demonstrate the benefit of using such
simultaneous inversion, when the existing velocity and Q models are inaccurate. The results
show that this simultaneous inversion method is able to retrieve both velocity and Q models,
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and to correct and compensate the distorted migrated image caused by inaccurate velocity
and Q models.
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Two-way wave-equation operators for non-constant density
acoustic isotropic media

Ettore Biondi and Ossian O’Reilly

ABSTRACT

We derive two-way wave-equation operators in the time domain for isotropic non-
constant density media with a finite-difference scheme. We present the chains of linear
operators necessary for non-linear modeling, linearized modeling, and non-constant
density migration. We also show that radiation patterns obtained from linearized
modeling agree with theoretical results. With these correct forward-adjoint operators,
multi-parameter full waveform inversion for non-constant density media can be pursued.

INTRODUCTION

Seismic data inversion is and has been one of the most challenging problems encountered by
geophysicists. Since its first envision by Tarantola (1984), full waveform inversion (FWI) was
derived in the isotropic non-constant density acoustic approximation. Moreover, it is known
that multi-parameter FWI is now essential to correctly match real data amplitudes (Operto
et al., 2013). Therefore, having reliable non-linear modeling operators for non-constant
density is very important in case of acoustic approximation. In addition, obtaining accurate
adjoint operators is fundamental to achieve optimal convergence rates during seismic data
inversion (Ji, 2009).

We implement a chain of linear operators for two-way wave-equation non-linear and
linearized modeling for non-constant density media. The derivation is carried out in the
time domain with a staggered-grid finite-difference scheme. For the linearized modeling
operator the radiation patterns are compared with the theoretical ones (Aki and Richards,
2002). These accurate operators are extremely important in case we perform modeling and
FWI in acoustic approximation.

ACOUSTIC WAVE EQUATION AND BORN APPROXIMATION

As shown in the Appendix, the non-constant density wave equation for acoustic media can
be derived assuming that shear stresses are null and can be written as:[

1
K(r)

∂2

∂t2
−∇ · 1

ρ(r)
∇

]
p(r, t) = s(r, t), (1)

where K(r) and ρ(r) are the medium’s bulk modulus and density, respectively; p(r, t) is the
propagating pressure, s(r, t) is the source term and r is the position vector defining each
point in the medium. By perturbing the medium’s properties and neglecting the higher-
order terms in the equation we can derive the linearized wave equation, also known as the

79



80 Biondi and O’Reilly SEP–160

Born approximation. This wave equation is linear with respect to property perturbations
δK(r) and δp(r), and is defined as follows:[

1
K0(r)

∂2

∂t2
−∇ · 1

ρ0(r)
∇

]
δp(r, t) =

δK(r)
K0(r)2

∂2p0(r, t)
∂t2

−∇ · δρ(r)
ρ0(r)2

∇p0(r, t), (2)

where K0(r) and p0(r) are the background medium’s properties, p0(r, t) is the pressure field
propagated through the background medium, and δp(r, t) is the scattered pressure field.
In Equation 2 the two right-hand side terms are also commonly called secondary sources.
These two terms represent the pressure scattering off perturbations in the bulk modulus
and density respectively. Because our model is composed of K and ρ, we have two different
imaging conditions for the two parameters, and are given by:

δK̃(r) =
1

K0(r)2

[
∂2p0(r)
∂t2

? δp′(r)
]

(0), (3)

δρ̃(r) =
1

ρ0(r)2
[
∇p0(r) ?· ∇δp

′(r)
]
(0), (4)

where [f ? g](0) and [f ?
·
g](0) denote the zero-lag crosscorrelation and the zero-lag crosscor-

relation of the scalar product of two functions respectively, and:

δp′(r, t) =
Nd∑
i=1

g̃(r, t, ri;K, ρ) ∗ δd(ri, t), (5)

in which δp′(r, t) represents the back-propagated data perturbations or residual during
an inversion, obtained by convolving the δd(ri, t) with the anticausal Green’s function
g̃(r, t, ri;K, ρ) for all the Ng receivers and a given source. The reader interested in the
derivation of these equations can find them in the Appendix.

FORWARD AND ADJOINT PROPAGATION

The non-constant density wave equation in acoustic approximation (1) is linear with respect
to the source term on the right-hand side. In fact, as shown by Almomin (2013) for the
constant-density case, we can write a linear operator as:

d = F̃w, (6)

where d is model data, F̃ that is the propagator which is non-linear with respect to bulk
modulus and density, and w is the source wavelet. The propagator can be split into a chain
of linear operators as:

d = R∗L∗
gFLsRw, (7)

where R is a time interpolator that resamples the source wavelet from seismic sampling to
finer sampling to have stable propagation; Ls is a space interpolation to inject the wavelet
at the source position into the model, F is the operator that solve equation 1; L∗

g is again
a space interpolator that extracts the pressure field at the receiver location; and R∗ is the
adjoint of the time interpolator that transforms the extracted data from fine sampling to
seismic sampling.
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To derive the actual form of F, we need to discretize both time and space in equation
1. Using a simple second-order approximation for the time derivative (i.e., using a leapfrog
time integrator), we can write the following recursive equation for each point in the model
grid:

p(it) = q(it− 1) + Cp(it− 1)− p(it− 2), (8)

where p(it) denotes the pressure field at the time step it, q(it − 1) is the scaled source
wavelet obtained as follows:

q(it− 1) = Sw(it− 1) = K∆t2w(it− 1), (9)

and the operator C is given by:

C = K∆t2∇ · 1
ρ
∇, (10)

in which K is a diagonal operator containing the bulk modulus of the medium; ∆t is the fine
propagation time sampling; and ∇ · 1

ρ∇ denotes an operator that computes the divergence
of a density-scaled gradient of p(it−1). It is known that central different operators produce
inaccurate derivative computation that introduces numerical error during the propagation
(Mattsson, 2012); therefore, we implement the ∇ · 1

ρ∇ operator on a staggered grid (Figure
1). This operator in 2D can be written as follows:

∇ · 1
ρ
∇ = D−

x BxD+
x + D−

z BzD+
z , (11)

where D+ and D− are the forward and backward first-order derivative operators respec-
tively, and B operators are diagonal matrices that contain the staggered inverse of the
density values along the main diagonal. To compute these values we use a simple average
on the inverse of the density along each direction.

Figure 1: 2D staggered-grid scheme used for computing the ∇ · 1
ρ∇. The pressure and the

output of this operator lay on the regular grid (red circles). Instead, the first-order derivative
in the two spatial dimension and their density-scaled versions are computed on two different
staggered grids (blue and green triangles). [NR] ettore1/. staggered-grid-scheme
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The adjoint operator of F̃ can be easily obtained by taking the adjoint of the chain of
operators of Equation 7 that is:

w̃ = R∗L∗
sSP∗LgRd, (12)

where we have split the propagation operator as:

F = PS, (13)

which is a chain of a scaling operator S and a recursive operator P. The adjoint of the
recursive operator is given by:

q(it) = p(it+ 1) + C∗q(it+ 1)− q(it+ 2), (14)

where we are back-solving a system of equations for q, which corresponds to back propagate
the data from the receivers; and the adjoint of C is written as follows:

C∗ =
(
∇ · 1

ρ
∇

)∗
K∆t2. (15)

The adjoint divergence of the scaled gradient is defined as:(
∇ · 1

ρ
∇

)∗
= D+

x
∗BxD−

x
∗ + D+

z
∗BzD−

z
∗
. (16)

As shown in the Appendix, if we assume the pressure field is null outside the computational
domain, we have:

D+∗ = −D−, (17)
D−∗ = −D+, (18)

that cause the operator ∇ · 1
ρ∇ to be self-adjoint.

Forward and adjoint propagation examples

We run two numerical experiments in which we created a model with two velocity constrasts,
one case these variations are caused by density changes only; whereas, in the second case
we vary the bulk modulus only. Figure 2 shows the two models used for the numerical tests.
In these tests we use a single source placed at the origin, and evenly spaced receivers at the
surface with receiver interval of 50 m. In both examples we use a Ricker wavelet with central
frequency of 10Hz. We use 8th-order accuracy staggered-grid operators and 5 points per
wavelength for the minimum one which is 30m. Moreover, as explained in Almomin (2013),
to damp spurious reflections from the model boundary, we add the absorbing boundaries
described by Israeli and Orszag (1981) in the recursive equations used for propagating the
pressure field. Figure 3 displays the data obtained from the two numerical simulations.
In the top panel, we observe the data generated by propagating the source in the varying
density model; in the bottom panel, we show the data for the varying bulk modulus. In
both data, we clearly distinguish the direct arrival and two primary reflections. It is notable
that for the varying density case the impedance contrasts are negative; and also that phase
rotations are present as we increase receiver offset. When we vary the compressibility only,
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(a)

(b)

Figure 2: Density and bulk modulus models used in two different numerical experiments
having the same velocity contrasts. (a) Density model used in the first experiment where
the bulk modulus is kept constant and equal to 2.2GPa. (b) Bulk modulus model used in
the second experiment where the density is 1000kg/m3 [ER] ettore1/. rho-1,bulk-2
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(a)

(b)

Figure 3: Data resulting from the numerical tests. (a) Data from the varying density model
of Figure2a. In this case the impedance contrasts are negative and we also observe phase
rotations for increasing offset. (b) Data from the varying density model of Figure 2b. In this
model the impedance contrasts are positive. Moreover, we do not observe phase rotations.
[ER] ettore1/. data-1,data-2
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using the same velocity contrasts of the varying density case, we obtain positive impedance
contrasts and do not observe any phase rotations for increasing offset.

Since we also have at our disposal the adjoint operator of the propagator (Equation 12),
we run an adjoint experiment with the varying density model and the data of Figure 3a. As
expected, for a simple geometry, where a single source and multiple receivers are deployed,
the output of the adjoint operator is a scaled version of the source wavelet injected for
recording the data of Figure 3a (Figure 4). We also plot the forward and adjoint pressure
fields for three different times in Figure 5. The forward pressure field is propagating in
the positive time direction; whereas, the adjoint field is collapsing at the receiver locations
as we increase the propagation time. In both cases we have reflections coming from the
two contrasts. In the adjoint wavefield, we notice the propagating receivers have a strong
directed arrival because this wave is in phase for all the receivers.

Figure 4: Adjoint source wavelet obtained using the adjoint propagator on the modeled
data of Figure 3a with the varying density model of Figure 2a. [ER] ettore1/. back-data

BORN AND RTM OPERATORS

To write the chain of linear operators for the Born approximation and its adjoint operator
(also known as RTM operator), we can use most of the operators employed in forward and
adjoint propagation. However, we need to take care of the scattering condition and its
adjoint shown in Equations 2, 3, and 4. The Born operator can be written as follows:

∆d = B∆m = B
[

∆K
∆ρρρ

]
, (19)
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(a)

(b)

(c)

Figure 5: Forward (left panels) and adjoint (right panels) pressure fields at (a) 0.4s, (b)
0.7s, and (c) 1.0s. Since we back-solve the system of equations for the propagation, the
adjoint wavefield is running backward in time. [ER] ettore1/. fields-1,fields-2,fields-3
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where we obtain perturbed data ∆d from model perturbations ∆m in the background
compressibility and density. In this equation ∆K and ∆ρρρ represent two vectors containing
the bulk modulus and density perturbations for all the points in the model, respectively.
The operator B is expanded into the following series of linear operators:

∆d = R∗L∗
gFR

[
P̈0 P̃0

] [
MK 0
0 Mρρρ

] [
∆K
∆ρρρ

]
, (20)

where we notice part of the forward chain of operators used in Equation 7, which takes care
of propagating the scattered pressure coming from the other operator on the right of it.
The matrix of operators containing MK and Mρρρ is a scaling-spreading operator that scales
the two model perturbations with the inverse of the square of the background property (i.e.,
1/K0(r)2 and −1/ρ0(r)2 in Equation 2) and spreads these scaled perturbations to all time
steps. The two stacked operators P̈0 and P̃0 contain both the forward propagated pressure
field in the background properties K0 and ρρρ0 obtained as follows:

p0 = R∗FLsRw (21)

downsampling the propagated source wavefield by applying R∗ to save computational time
when calculating the scattered pressure. Note that after scattering, we need to resample
it with R. To maintain the same amplitudes, we need to have R∗R ≈ I. The scattering
operator P̈0, which accounts for perturbations in the compressibility, is obtained as:

diag(P̈0) = D2p0, (22)

where D2 outputs the second-order time derivative of the forward pressure field. The other
scattering operator P̃0, which accounts for density perturbations, is more complex than the
P̈0 operator, and compose a chain of linear operators written as follows:

P̃0 =
[
D−

z D−
x

] [
diag(D+

z p0) 0
0 diag(D+

x p0)

] [
G+

z

G+
x

]
, (23)

where the first stacked operators G stagger the density perturbations into the two staggered
grids shown in Figure 1. Then, we multiply the staggered density perturbations with
the gradient of the pressure field and afterward compute the divergence with the two D−

operators in the respective direction. The RTM operator is simply the adjoint of the chain
of operator of Equation 20 that is:[

∆K̃
∆ρ̃ρρ

]
=

[
M∗

K 0
0 M∗

ρρρ

] [
P̈0

P̃∗
0

]
R∗F∗LgR∆d, (24)

where P̈0 is self-adjoint, because it is a real diagonal operator, and the chain R∗F∗LgR is
back-propagating data perturbations in the background model. The matrix of operators at
the end of the chain is scaling the result of the output from the chain on the right of it, and
taking the sum of it for each model point, which corresponds to zero-lag cross-correlation.
We then clearly see that the chain M∗

KP̈0R∗F∗LgR is computing Equation 3.

We have to verify that the chain M∗
ρρρP̃

∗
0R

∗F∗LgR is actually equal to Equation 4. To
this end we take the adjoint of equation 23 that is equal to:

P̃∗
0 =

[
G+∗

z G+∗
x

] [
diag(D+

z p0)∗ 0
0 diag(D+

x p0)∗

] [
D−∗

z

D−∗
x

]
, (25)
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and using the property of staggered-grid operators (17 and 18), it can be rewritten as:

P̃∗
0 = −

[
G+∗

z G+∗
x

] [
diag(D+

z p0)∗ 0
0 diag(D+

x p0)∗

] [
D+

z

D+
x

]
, (26)

where we see that we are calculating the gradient of the back-propagated data perturbations;
and then multiplying it with the gradient of forward pressure field with both gradients
computed on the staggered-grids. We apply the adjoint of the stacked staggering operators
G that shift the inputs from the staggered grids to the regular grid and compute the sum
of the two outputs. All together we now see that the chain M∗

ρρρP̃
∗
0R

∗F∗LgR is computing
Equation 4.

Numerical tests of linearized operator and its adjoint

To test the Born operator, we run two simple experiments with same background medium’s
properties that we used in the previous example, where we perturb only the compressibility
or the density, and we use the same acquisition geometry used in the previous propaga-
tions. We use constant background values equal to 2.2GPa and 1000kg/m3 and two single
perturbations of 0.2GPa and 100kg/m3 for bulk modulus and density respectively. With
these experiments we want to verify the following relations:

f(K0 + ∆K, ρρρ0)− f(K0, ρρρ0) ≈ B∆K, (27)
f(K0, ρρρ0 + ∆ρρρ)− f(K0, ρρρ0) ≈ B∆ρρρ, (28)

where f(K, ρρρ) represents the data generated by the propagation through the medium’s
properties K and ρρρ. Here, we are verifying that the linearized data perturbations are
actually modeled by the implemented Born operator. To verify this observation we need to
have small model perturbations. Figure 6a shows the comparison of the data perturbation
when we add a compressibility change in the model; while Figure 6b displays the comparison;
but when we perturbe only the density model. The same clipping value is used for all the
panels, and we can clearly see that for a single model perturbation the linearized scattered
data matches the non-linear data perturbations.

To understand the reason why we observe different amplitude variations for increasing
offsets only when perturb the density, we need to analyze the scattering pressure from
the single diffraction point. Figure 7 shows the comparison of the scattered pressure and
the theoretical radiation pattern (Aki and Richards, 2002) in case we perturb the bulk
modulus. We observe that we have an isotropic energy scattering, which results in an
isotropic back-scattered energy at the receivers (Figure 6a). Otherwise, if we look at the
scattered energy from a density perturbation (Figure 8), we see an anisotropic scattered
pressure. This observation is also confirmed by comparing this scattered pressure with the
theoretical radiation pattern (Figure 8b). In fact, in the experiment of Figure 6b, because
we are hitting the scatter not vertically, the scattered energy recorded at the receivers is
affected by this anisotropic radiation pattern.

The last performed test is to apply the RTM operator to data perturbations. We
apply this operator to the perturbed data obtained from a density perturbation (Figure
6b). Figure 9 shows the result of this application. We see that even if we have data
generated only by a density perturbation some of the energy is leaking into the bulk modulus
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(a)

(b)

Figure 6: Comparison of the correct data perturbation given by the difference of the
data obtained from a perturbed model and an unperturbed model (left panels), and
the linearized data perturbation generated by the Born model operator (right panels).
(a) Data comparison when we perturbe only the compressibility of the model (equation
27). (b) Same comparison but perturbing only the density model (equation 28). [ER]
ettore1/. born-compare-2,born-compare-1
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(b)

Figure 7: (a) Radiated energy from a single bulk modulus perturbation point. [ER](b)
Theoretical radiation pattern of a vertical incident wave on a bulk modulus perturbation
(Aki and Richards, 2002). [NR] ettore1/. scatter-bulk,radiation-bulk
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Figure 8: (a) Radiated energy from a single density perturbation point. [ER](b) Theoretical
radiation pattern of a vertical incident wave on a density perturbation (Aki and Richards,
2002). [NR] ettore1/. scatter-density,radiation-density
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image. This effect is well known as parameter cross-talk (Operto et al., 2013). It is also
important to notice that the energy of the density image is higher than in the compressibility
image. One possible explanation could be because data contains both amplitude and phase
information entangle together, and during FWI we are trying to simultaneously invert the
two information that depend on a combination of physical parameters. In fact, it is known
FWI gradient does not provide the correct amplitude of the model perturbations, first
because the gradient does not have the correct units of the model perturbation and second
because the gradient associated with one parameter can be affected by crosstalk from the
other parameters. Hessian-matrix based inverse methods could be possible solutions to
solve this problem (Innanen, 2014).

Figure 9: Images obtained applying the non-constant density RTM operator. The images
look the same but the scales are different. The density image (right panel) is stronger than
the bulk modulus image (left panel) by six orders of magnitude. [ER] ettore1/. images

CONCLUSIONS

We implemented and discussed the two-way wave-equation operators for non-constant den-
sity isotropic media. We explain that non-linear and linearized modeling can be obtained as
a chain of simple linear operators. Synthetic tests illustrate how these operators work and
also that scattered pressure field is consistent with the theoretical radiation patterns. These
consistent linearized wave-equation operators are important when applying a gradient-based
inverse scheme in the context of a multi-parameter FWI.
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APPENDIX

In this Appendix we derive most of the results used in the paper.
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Derive the acoustic wave equation from elastodynamic equations

First, it is important to derive the acoustic wave equation in non-constant density media
such that we fully understand the approximations made when considering acoustic propa-
gation. From Newton’s second law of motion we can write:

ρ(r)
∂2ux(r, t)

∂t2
=
∂τxx(r, t)

∂x
+
∂τxy(r, t)

∂y
+
∂τxz(r, t)

∂z
+ fx(r, t),

ρ(r)
∂2uy(r, t)

∂t2
=
∂τyx(r, t)

∂x
+
∂τyy(r, t)

∂y
+
∂τyz(r, t)

∂z
+ fy(r, t), (29)

ρ(r)
∂2uz(r, t)

∂t2
=
∂τzx(r, t)

∂x
+
∂τzy(r, t)

∂y
+
∂τzz(r, t)

∂z
+ fz(r, t),

where ρ(r) is the density of the medium, ui(r, t) is the particle displacement in the i direc-
tion, τii(r, t) and τij are the normal and shear stresses applied to the orthogonal plane to i
direction, respectively; and fi(r, t) represents the external forces along the i direction. Be-
cause we are considering only acoustic isotropic media the shear stresses can be neglected,
and the normal stresses are given by the following constitutive relations:

τxx(r, t) = λ(r)
(
∂ux(r, t)
∂x

+
∂uy(r, t)
∂y

+
∂uz(r, t)
∂z

)
+ 2µ(r)

∂ux(r, t)
∂x

,

τyy(r, t) = λ(r)
(
∂ux(r, t)
∂x

+
∂uy(r, t)
∂y

+
∂uz(r, t)
∂z

)
+ 2µ(r)

∂uy(r, t)
∂y

, (30)

τzz(r, t) = λ(r)
(
∂ux(r, t)
∂x

+
∂uy(r, t)
∂y

+
∂uz(r, t)
∂z

)
+ 2µ(r)

∂uz(r, t)
∂z

,

where λ(r) is the Lamé’s first parameter, and µ(r) is the Lamé’s second parameter also
known as shear modulus of the medium.

If we consider isotropic stress fields the pressure field is equal to each normal stress, and:

p(r, t) = τxx(r, t) = τyy(r, t) = τzz(r, t). (31)

Therefore, the scalar pressure field can be expressed as:

p(r, t) =
1
3
(τxx(r, t) + τyy(r, t) + τzz(r, t)) + ps(r, t), (32)

where ps(r, t) is an external pressure source; therefore, using Equation 30, we have:

p(r, t) =
(
λ(r) +

2
3
µ(r)

)
∇ · u(r, t) + ps(r, t) = K(r)∇ · u(r, t) + ps(r, t), (33)

where we have introduced a new elastic property of the mediumK(r) called bulk modulus or
compressibility, which measures the medium’s resistance to uniform compression. Because
K(r) is time independent, taking the second-order time derivative of equation 33, and
substituting Newton’s second law (i.e., Equation 29) we can write:

∂2p(r, t)
∂t2

= K(r)∇ · 1
ρ(r)

∇p(r, t) +
∂2ps(r, t)
∂t2

+∇ · f(r, t)
ρ(r)

. (34)
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Reordering Equation 34 we can express it as the common wave equation:[
1

K(r)
∂2

∂t2
−∇ · 1

ρ(r)
∇

]
p(r, t) = s(r, t), (35)

where s(r, t) represents both the volume injection and external force per unit volume (i.e.,
last two right-side terms in Equation 34, respectively). From this last relation, we can easily
derive the well-known acoustic isotropic constant-density wave equation.

Born approximation and adjoint conditions for non-constant density media

Before deriving the Born approximation and the adjoint conditions for non-constant density,
we first introduce the Green’s function of Equation 35:[

1
K(r)

∂2

∂t2
−∇ · 1

ρ(r)
∇

]
g(r, t, r′, t′;K, ρ) = δ(r− r′)δ(t− t′). (36)

Considering time invariant medium’s properties the solution of the acoustic non-constant
density wave equation can be expressed as:

p(r, t) =
∫
g(r, t, r′;K, ρ) ∗ s(r′, t)dr′, (37)

where ∗ denotes time convolution. During active seismic experiments sources can be con-
sidered as points in space with a given source signature w(t) (i.e., s(r, t) = w(t)δ(r− rs)),
therefore, the previous equation becomes:

p(r, t) = g(r, t, rs;K, ρ) ∗ w(t). (38)

Finally, because seismic receivers can be considered as recording points, the data are given
by:

d(rg, t) = p(r, t)δ(r− rg). (39)

To derive the Born approximation for non-constant density isotropic acoustic media we
perturbe the background medium’s properties K0(r) and ρ0(r):

K(r) = K0(r) + δK(r), (40)
ρ(r) = ρ0(r) + δρ(r), (41)

where δK(r) and δρ(r) are the bulk modulus and density perturbations respectively. Consid-
ering small perturbations respect to the background properties, we can assume the pressure
field propagating in the perturbed medium is given by:[

1
K0(r) + δK(r)

∂2

∂t2
−∇ · 1

ρ0(r) + δρ(r)
∇

]
(p0(r, t) + δp(r, t)) = s(r, t). (42)

After expanding all terms in the left-side of the previous equation and dropping high-order
terms, the perturbed pressure field δp(r, t) is given by:[

1
K0(r)

∂2

∂t2
−∇ · 1

ρ0(r)
∇

]
δp(r, t) =

δK(r)
K0(r)2

∂2p0(r, t)
∂t2

−∇ · δρ(r)
ρ0(r)2

∇p0(r, t), (43)
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where we have used:

1
m0(r) + δm(r)

=
1

m0(r)
− δm(r)
m0(r)2

, (44)

and p0(r, t) corresponds to the pressure field propagated in the background medium:[
1

K0(r)
∂2

∂t2
−∇ · 1

ρ0(r)
∇

]
p0(r, t) = s(r, t). (45)

In Equation 43 the right-side two terms describe the scattered pressure caused by a com-
pressibility and density perturbations, respectively; and they can be considered as secondary
sources generated by the energy coming from the primary source s(r, t). The Born modeled
data are then obtained as:

δd(rg, t) = δp(r, t)δ(r− rg). (46)

To simplify the discussion we continue it in the frequency domain and discretize both
in time and space all the variables so far introduced. Given these two observations we can
write Equation 38 as:

P (xi, ωk) = G(xi, ωk,xs;K, ρ)W (ωk) i = 1, . . . ,M k = 1, . . . , Nt, (47)

which provides the pressure field for all M points in space and Nt frequencies. Assuming
Equation 39, seismic data are found as:

D(xg, ωk) = P (xi = xg, ωk) g = 1, . . . , Ng, (48)

where Ng denotes the number of active receivers for a given source.

The solution of Equation 43 can be found by multiplying the unperturbed Green’s
function with the two secondary source terms for all the points in space:

∆P (xi, ωk) =
∑M

j=1G(xi, ωk,xj ;K0, ρ0)(
∆K(xj)
−K0(xj)2

ω2 −∇ · ∆ρ(xj)
ρ0(xj)2

∇
)
G(xj , ωk,xs;K0, ρ0)W (ωk) (49)

Because we want to find two separate linear kernels for compressibility and density pertur-
bations we write the total perturbed pressure field as:

∆P (xi, ωk) = ∆PK(xi, ωk) + ∆Pρ(xi, ωk), (50)

where

∆PK(xi, ωk) = −
M∑

j=1

G(xi, ωk,xj ;K0, ρ0)ω2G(xj , ωk,xs;K0, ρ0)W (ωk)
∆K(xj)
K0(xj)2

, (51)

∆Pρ(xi, ωk) = −
M∑

j=1

G(xi, ωk,xj ;K0, ρ0)∇ · ∆ρ(xj)
ρ0(xj)2

∇G(xj , ωk,xs;K0, ρ0)W (ωk). (52)

In Equation 52, the perturbed pressure field depends on the divergence of the product of the
density perturbation and gradient of the background pressure field. This operation is linear;
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however, it contains multiple terms that can be eliminated under certain assumptions. We
can rewrite this equation using the following relation:

ψ∇ · (v) = −(∇ψ) · v +∇ · (ψv), (53)

as:

∆Pρ(xi, ωk,xs;K0, ρ0) =∑M
j=1

∆ρ(xj)
ρ0(xj)2

∇G(xi, ωk,xj ;K0, ρ0) · ∇G(xj , ωk,xs;K0, ρ0)W (ωk) (54)

−
∑M

j=1∇ · ∆ρ(xj)
ρ0(xj)2

G(xi, ωk,xj ;K0, ρ0)∇G(xj , ωk,xs;K0, ρ0)W (ωk).

Using the divergence theorem, the second right-side term of Equation 54 can be written
as a surface integral along the medium’s boundaries; assuming homogeneous conditions or
only internal density perturbations this term vanishes. Therefore, knowing that we are
recording data only at the surface (Equation 46), we can write two linear kernels respect to
the medium perturbations as:

∆DK(xg, ωk) =
M∑

j=1

[
∂∆PK(xg, ωk)
∂∆K(xj)

]
∆K(xj), (55)

∆Dρ(xg, ωk) =
M∑

j=1

[
∂∆Pρ(xg, ωk)
∂∆ρ(xj)

]
∆ρ(xj), (56)

where the total data perturbation of Equation 46 is given by:

∆D(xg, ωk) = ∆DK(xg, ωk) + ∆Dρ(xg, ωk). (57)

The Born operator is applied to model perturbations and is returning data perturbation
∆D(xg, ωk) for all frequencies Nt and receivers Ng. Therefore, the adjoint of it is applied to
data perturbation and provides back model perturbations, that mathematically corresponds
to:

∆K̃(xj) =
Nt∑

k=1

Nd∑
i=1

[
∂∆PK(xg, ωk)
∂∆K(xj)

]∗
∆D(xi, ωk), (58)

∆ρ̃(xj) =
Nt∑

k=1

Nd∑
i=1

[
∂∆Pρ(xg, ωk)
∂∆ρ(xj)

]∗
∆D(xi, ωk). (59)

Substituting Equations 51 and 54 into the two previous relations we have:

∆K̃(xj) = − 1
K0(xj)2

∑Nt
k=1

∑Nd
i=1 ω

2W (ωk)∗G(xj , ωk,xs;K0, ρ0)∗

G(xj , ωk,xi;K0, ρ0)∗∆D(xi, ωk) (60)

∆ρ̃(xj) = 1
ρ0(xj)2

∑Nt
k=1

∑Nd
i=1 [∇G(xj , ωk,xs;K0, ρ0)W (ωk)]

∗ ·
∇G(xj , ωk,xi;K0, ρ0)∗∆D(xi, ωk), (61)

where we have used the reciprocity property of the Green’s function:

G(xi, ωk,xj ;K0, ρ0) = G(xj , ωk,xi;K0, ρ0). (62)
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Equations 60 and 61 in the time and continuous domain are:

δK̃(r) =
1

K0(r)2

Nd∑
i=1

[
∂2p0(r)
∂t2

? δp′i(r)
]

(0), (63)

δρ̃(r) =
1

ρ0(r)2

Nd∑
i=1

[
∇p0(r) ?· ∇δp

′
i(r)

]
(0), (64)

where [f ? g](0) and [f ?
·
g](0) denote the zero-lag crosscorrelation and the zero-lag crosscor-

relation of the scalar product of two functions, respectively; p0(r, t) is given by Equation
38, and δp′i(r, t) is obtained as:

δp′i(r, t) = g̃(r, t, ri;K, ρ) ∗ δd(ri, t), (65)

in which we are convolving the anticasual Green’s function with the data perturbation.
Because we are considering a single source, we can rewrite Equations 63 and 64 as:

δK̃(r) =
1

K0(r)2

[
∂2p0(r)
∂t2

? δp′(r)
]

(0), (66)

δρ̃(r) =
1

ρ0(r)2
[
∇p0(r) ?· ∇δp

′(r)
]
(0), (67)

where:

δp′(r, t) =
Nd∑
i=1

g̃(r, t, ri;K, ρ) ∗ δd(ri, t). (68)

Property of staggered-grid operators

Staggered-grid derivative operators have a useful property that can be used when applying
their adjoints. We define the forward and backward first-order derivative with second-order
accuracy as:

df(x)
dx

∣∣∣∣
x

i+1
2

=
f(xi+1)− f(xi)

∆x
, (69)

df(x)
dx

∣∣∣∣
x

i− 1
2

=
f(xi)− f(xi−1)

∆x
, (70)

respectively. If we assume the function f(x) vanishes outside the computational domain, we
can write the operator matrix D+ of Equation 69 using transient convolution (Claerbout,
2014) as:

D+ =



−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
0 0 −1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −1 1
0 0 0 0 · · · 0 −1


. (71)
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Taking the adjoint of this operator we have:

D+∗ =



−1 0 0 · · · 0 0 0
1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1


=

−



1 0 0 · · · 0 0 0
−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


= −D−, (72)

where D− denotes the operator matrix of Equation 70. From relation 72 follows that:

D−∗ = −D+. (73)

These equalities hold also in case higher-accuracy finite-difference operators are used.

REFERENCES

Aki, K. and P. G. Richards, 2002, Quantitative seismology, volume 1.
Almomin, A., 2013, Accurate implementation of two-way wave-equation operators: SEP-

Report, 149, 281–288.
Claerbout, J. F., 2014, Geophysical image estimation by examples.
Innanen, K. A., 2014, Reconciling seismic avo and precritical reflection fwi–issues in multi-

parameter gradient-based updating: Presented at the 76th EAGE Conference and Exhi-
bition, European Association of Geoscientists and Engineers.

Israeli, M. and S. A. Orszag, 1981, Approximation of radiation boundary conditions: Journal
of Computational Physics, 41, 115–135.

Ji, J., 2009, An exact adjoint operation pair in time extrapolation and its application in
least-squares reverse-time migration: Geophysics, 74, H27–H33.

Mattsson, K., 2012, Summation by parts operators for finite difference approximations of
second-derivatives with variable coefficients: Journal of Scientific Computing, 51, 650–
682.

Operto, S., Y. Gholami, V. Prieux, A. Ribodetti, R. Brossier, L. Metivier, and J. Virieux,
2013, A guided tour of multiparameter full-waveform inversion with multicomponent data:
From theory to practice: The Leading Edge, 32, 1040–1054.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation:
Geophysics, 49, 1259–1266.



Stanford Exploration Project, SEP160-2, October 20, 2015

Reverse-time migration: Comparing three numerical solvers

Alejandro Cabrales-Vargas

ABSTRACT

I compare the results of three numerical schemes for seismic modeling and reverse-time
migration: the rapid expansion method, the Lax-Wendroff method, and the pseudo-
analytical method. The rapid expansion method uses coarse time steps without de-
veloping instabilities, but it can present frequency dispersion when using coarse grids.
Moreover, its implementation is difficult. The Lax-Wendroff method can avoid such
limitations at the expense of time step refinement, thereby more Laplacian computa-
tions. Both methods allow the representation of the space derivatives either in the
spatial domain (finite differences method) or in the Fourier domain (pseudospectral
method). The pseudo-analytical method offers an accurate solution and easy imple-
mentation, but it is restricted to the Fourier domain.

INTRODUCTION

During the last decade, reverse-time migration (RTM) has been adopted as the ultimate
solution for imaging very complex geology. Although geoscientists have known about RTM
potential for 30 years (Baysal et al., 1983; Kosloff and Baysal, 1983; McMechan, 1983;
Gazdag and Carrizo, 1986), it only recently became affordable. However, it is still com-
putationally intensive, so the search of cheaper and more accurate implementations of the
two-way wave equation continues. This fact is particularly crucial when thinking of forward
and reverse-time propagation as the main engines behind state-of-the-art iterative solutions,
such as least-squares migration and full-waveform inversion.

Traditionally, second-order time derivatives in the wave equation have been approxi-
mated using second-order finite differences (Baysal et al., 1983; Kosloff and Baysal, 1983;
Gazdag and Carrizo, 1986; Dablain, 1986). This scheme is easy to implement and con-
ceptually simple. However, for the sake of stability the Courant-Friedrichs-Lewy (CFL)
criterion usually requires time step refinements (Dablain, 1986). Computations increase in
proportion to the interpolation factor. Making the grid coarser solves the problem, but
reducing the maximum frequency that can be handled without dispersion. The balance
between stability and numerical dispersion for the second-order approximation is stringent
because it originates from a Taylor series expansion with only two terms, thus assuming
small time steps in relation to the grid size.

One obvious solution to relax the stability threshold is to implement better approxi-
mations that tolerate less refinements of time steps. In the limit, we may want an ap-
proximation that does not require refinement altogether. Incorporating more terms to the
approximation in principle achieves this goal, but high-order times derivatives appear. For-
tunately, we can compute such time derivatives by means of second-order spatial derivatives
according to the wave equation. The Lax-Wendroff method (LWM) (Dablain, 1986; Chen,
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2007; Zhang et al., 2007; Pestana and Stoffa, 2010) makes use of this technique approx-
imating the fourth-order time derivative by cascading the Laplacian operator (multiplied
by the medium velocity) twice. On the contrary, the rapid expansion method (REM) (Tal-
Ezer et al., 1987; Kosloff et al., 1989; Jastram and Behle, 1991; Tessmer, 2011; Stoffa and
Pestana, 2009; Pestana and Stoffa, 2010; Araujo et al., 2014) takes a further step, using an
expansion in Chebyshev polynomials and cascading as many terms as required to achieve
convergence. The number of terms is tied to the time step, so that any time step can be used
when enough terms are incorporated. The spatial derivatives in LWM and REM can be
computed using finite differences (Jastram and Behle, 1991) or the pseudospectral method
(Tal-Ezer et al., 1987; Kosloff et al., 1989; Jastram and Behle, 1991; Tessmer, 2011; Stoffa
and Pestana, 2009; Pestana and Stoffa, 2010; Araujo et al., 2014)

A relatively new solution is the pseudo-analytical method (PAM), originally proposed by
Etgen and Brandsberg-Dahl (2009), and later modified by dos Santos and Pestana (2012).
The original propose uses so-called pseudo-Laplacians to propagate constant-velocity wave-
fields, which are subsequently interpolated to incorporate velocity variations. In their mod-
ified version, dos Santos and Pestana (2012) compute a pseudo-Laplacian that ”pivots”
around a reference constant velocity (usually the minimum or the maximum in the model),
and introduces velocity variations by means of perturbations of such reference velocity. The
advantage of this method is that it is almost as simple as the second-order time marching
scheme, but keeping stability at coarser time steps, and almost free of frequency dispersion.
It is considerably easier to implement than the REM. One drawback is that it only can be
implemented in the Fourier domain.

In the following section I briefly present the theory of the three methods. Next, I
compare their performance in modeling and migration applied to a synthetic, normal fault
model. Finally, I present the conclusions of this report.

LAX-WENDROFF METHOD

Given an exploding source, f(x, t), ignited in an acoustic, constant density medium, the
propagation wavefield satisfies the 2D acoustic wave equation:

∂2u
∂t2

= −L2u + f , (1)

where u(x, t) is the displacement field, and −L2 = v(x, z)2∇2 constitutes the Laplacian
scaled by the squared of the interval velocity. The corresponding expressions in the physical
domain and in the Fourier domain are, respectively,

−L2 = v(x, z)2
(
∂2

∂x2
+

∂2

∂z2

)
, (2)

and
−L2 = −v(x, z)2(kx

2 + kz
2), (3)

where kx and kz are the spatial wavenumbers. Note that in the last equation we mixed
physical domain variables with Fourier domain variables. While formally violating the
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assumption of constant velocity, in practice this artifice eases maneuvering the equations,
and the conclusions extracted are fundamentally correct.

The solution the homogeneous version of Equation 1 (source term equals to zero) subject
to non-zero initial conditions is

∂2u
∂t2

= −L2u, (4)

u(t = 0) = u(0),
∂u(t = 0)

∂t
= u̇(0), (5)

where u(0) and u̇(0) constitute the initial displacement field and its first time derivative,
respectively. Thus, the formal solution of Equation 4 for forward propagation in time is

u(t) = u(0) cos (Lt) + u̇(0)
sin (Lt)

L
. (6)

Likewise, the solution for backward propagation in time is

u(−t) = u(0) cos (Lt)− u̇(0)
sin (Lt)

L
. (7)

Adding Equation 6 to Equation 7 eliminates the derivative of the initial displacement:

u(t) + u(−t) = 2 cos (Lt)u(0). (8)

Using Taylor series expansion to approximate the cosine operator:

u(t) + u(−t) =
[
2 + t2L2 +

t4

12
L4 + ...

]
u(0). (9)

Finally, replacing the reference time, t = 0, for any time, t, and propagating the solution
in time steps, ∆t, we obtain:

u(t+ ∆t) + u(t−∆t) =
[
2 + ∆t2L2 +

∆t4

12
L4

]
u(t). (10)

In Equation 10 I have truncated the series beyond the fourth-order term, therefore it
constitutes a fourth-order approximation of the second derivative in time. Equation 10 is the
classical solution of the acoustic wave equation using the Law-Wendroff method (Dablain,
1986; Chen, 2007). Operator L2 can be implemented in the Fourier domain (pseudospectral)
or with finite differences (Equations 2 and 3, respectively).

RAPID EXPANSION METHOD: ONE-STEP APPROACH

The formal solution of the acoustic wave equation (Equation 1) subject to zero initial
conditions is (Tal-Ezer et al., 1987; Kosloff et al., 1989)

u(x, t) =
∫ t

0

sin (L(t− τ))
L

f(x, τ)dτ. (11)
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The numerical approximation to Equation 11 when the source is separable, f(x, t) =
g(x)s(t), is

u(x, t) = 2
M∑

k=0

b2k+1(t)
R

iL
Q2k+1

(
iL
R

)
g(x), (12)

where Qk are modified Chebyshev polynomials of first kind and order k (the coefficients
are positive, whereas in original polynomials they have alternating signs), and R is a scalar
larger than the largest eigenvalue in L, therefore keeping the norm of the polynomials
argument less than 1. Function g(x) is an impulse spike in space that indicates the position
of the source, and

bk(t) =
1
R

∫ t

0
Jk(τR)s(t− τ)dτ, (13)

where Jk are Bessel functions of first kind and order k, and s(t) is the source signature.
Note that only odd k values are required in the series. The value of R can be calculated as

R =
1.1πVmax

√
2

min(∆x,∆z)
. (14)

Summation 12 converges for M > Rtmax expansion terms. Given recording times of typical
seismic surveys, subsurface velocities, and grid sizes, the value of M would be the order of
thousands. This fact discourages the explicit computation of the Chebyshev polynomials
coefficients. Instead, the polynomials are recursively calculated for the source position
function g(x), initializing with

R

iL
Q1

(
iL
R

)
g(x) = g(x), (15)

R

iL
Q3

(
iL
R

)
g(x) = 3g(x)− 4

(
L
R

)2

g(x), (16)

and calculating successive terms according to

R

iL
Q2k+1

(
iL
R

)
g(x) = 2

[
1− 2

(
L
R

)2] R
iL
Q2k−1

(
iL
R

)
g(x)− R

iL
Q2k−3

(
iL
R

)
g(x). (17)

The factor R
iL makes the odd terms of the series contain only even powers of iL

R , yielding
flipping signs instead of imaginary numbers.

The computation of the bk(t) coefficients is time consuming. Fortunately, they are
independent of the source position, which means they are computated once for all the shots
in a survey, or everytime the source signature significantly varies with position.

As mentioned before, one-step REM approach assumes separability of the source in two
independent time and space functions. Such assumption stands for forward propagation of
the source wavefield, but breaks down for backward propagation of the receiver wavefield.
We can use the recursive implementation of the REM for this case.
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RAPID EXPANSION METHOD: RECURSIVE APPROACH

Equation 8 can be approximated by expanding the cosine operator with Chebyshev poly-
nomials:

u(t) + u(−t) =
M/2∑
k=0

C2kJ2k(Rt)Q2k

(
iL
R

)
u(0), (18)

where coefficients C0 = 1, and Ck = 2 for k > 0. The main differences between Equations 12
and 18 are the use of the Bessel functions instead of the bk coefficients, and the even terms
in the summation. The computation can be performed in a single step as shown before.
Alternatively (Pestana and Stoffa, 2010; Tessmer, 2011), substituting smaller time steps,
∆t, for the total time, t, and an arbitrary time, t, for the reference time, t =0, yields

u(t+ ∆t) + u(t−∆t) =
M∑

k=0

C2kJ2k(R∆t)Q2k

(
iL
R

)
u(t), (19)

which can be solved recursively in time. The initial conditions are injected at each time
step. The number of terms required to ensure convergence is M > R∆t, which is usually
less than 20. Therefore, the explicit computation of the Chebyshev polynomials coefficients
becomes affordable in recursive REM.

Now we re-order terms of Equation 19 in factors of
(
L
R

)2:

u(t+ ∆t) + u(t−∆t) =
M∑

k=0

A2k

[
iL
R

]2k

u(t), (20)

where

Ak =
M∑
l=k

ClJl(R∆t)qk,l (21)

and qk,l represents the l coefficient of the Chebyshev polynomial of order k.

Notice that Equation 20 represents a polynomial expansion in even powers of the Lapla-
cian operator. Moreover, if we set R = 1, and instead of using Equation 21 we define
coefficients Ak as

A0 = 2; A2 = 1; A4 =
1
12

; Ak = 0 ∀ k > 4, (22)

we obtain the representation of the LWM (Equation 10).

PSEUDO-ANALYTICAL METHOD

Following the variant of the PAM proposed by dos Santos and Pestana (2012), we can use
the time step marching version of Equation 8,

u(t+ ∆t) + u(t−∆t) = 2 cos (L0∆t)u(t). (23)

Here I substitute the operator L0 for L to indicate the use of a constant reference velocity,
usually defined as the minimum or maximum velocity in the model (dos Santos and Pestana,
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2012). The cosine term is recast using the well known trigonometric identity, cos (2θ) =
1− 2 sin2 (θ), so we obtain

u(t+ ∆t)− 2u(t) + u(t−∆t) = −2 sin2

(
L0∆t

2

)
u(t). (24)

Multiplying and dividing by the appropriate terms, the sine function becomes a sinc function
[sinc(θ) = sin (θ)

θ ]:

u(t+ ∆t)− 2u(t) + u(t−∆t) = −∆t2L2
0sinc2

(
L0∆t

2

)
u(t). (25)

In the limit as ∆t→ 0, Equation 25 becomes the constant-velocity, second-order approx-
imation, of the wave equation. The advantage of this scheme is the compensation for
frequency-dispersion-related numerical errors (Etgen and Brandsberg-Dahl, 2009), other-
wise present when using conventional second-order approximation.

The extension to variable velocity is performed by defining an auxiliary wavefield,

p(x, t) = α(x)u(x, t), (26)

where α(x) = 1− v2
0

v(x)2
incorporates the velocity variation as a perturbation of the reference

velocity, v0. This auxiliary wavefield becomes a source term in the acoustic wave equation:

∂2u
∂t2

= −L2
0u +

∂2p
∂t2

. (27)

Equation 27 becomes homogeneous by introducing another auxiliary field,

u(x, t) = w(x, t) + p(x, t), (28)

thus obtaining
∂2w
∂t2

= −L2
0(w + p). (29)

Finally, we apply the expression for the pseudo-analytical method (Equation 25), to obtain

w(t+ ∆t)− 2w(t) + w(t−∆t) = −∆t2L2
0sinc2

(
L0∆t

2

)
(w(t) + p(t)). (30)

Equation 30 can be solved for wavefield w(x, t) like in the constant-velocity case. Function
α(x, t) is precomputed, then p(x, t) is calculated to initialize the recursion in time. The
original wavefield is recovered as u(x, t) = w(x, t)/(1− α(x, t)).

METHODOLOGY AND IMPLEMENTATION

I test the methods discussed in this report modeling and migrating a simple two-bed, normal
fault model of the subsurface. The shallow bed has a velocity gradient ranging from 2000
to 2500m/s approximately, and the deep bed has a constant velocity of 5000m/s (Figure 1).
Despite its conspicuous structural simplicity, the velocity contrast is strong and the fault
dip is about 60◦, therefore making the analysis simple in rather challenging conditions. The
gridsize is ∆x = 12.5m and ∆z = 10m, covering an extension of 4500m (The model begins
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at −500m). Therefore, I should be able to model frequencies up to 80Hz (based on the
pseudospectral method). The dataset consists of 36 shots equally spaced every 100m. Each
shot has 361 receivers spaced every 12.5m, which means that each one covers the model
extension.

In order to make fair comparisons with the PAM, I prepared the LWM and the REM tests
using the pseudospectral method. All the methods employ tapering boundary conditions
(Cerjan et al., 1985). In the migrations tests I use wavefield separation in the imaging
condition according to Liu et al. (2011).

In the modeling and RTM tests I employed two different Ricker wavelets as input source:
a) dominant frequency of 15Hz and maximum frequency of 50Hz; b) dominant frequency
of 50Hz, maximum frequency slightly above 80Hz (the maximum frequency theoretically
handled).

For the implementation of the REM, I employed the one-step solution to compute the
source wavefield (Equation 12), and the recursive solution for the receiver wavefield (Equa-
tion 19).

Figure 1: Normal-fault velocity model [NR] alejandro1/. Dip-Bed-vmodel
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NUMERICAL RESULTS

Figure 2 shows the results of the modeling tests with the source wavelet a) in one time
frame. We observe the reflection and transmision waves corresponding to the dipping ve-
locity contact between positions 500m and 1800m, and between 1−1.6 km. The diffraction
originates at the cusp of the footwall block, partially reflecting back to the 2000m/s layer,
whereas the other part transmits through the 5000m/s layer. The rest of the events cor-
respond to attenuated waves that wrapped around the taper boundaries. Such events are
mostly present in the Lax-Wendroff and the pseudo-analytical modeling tests, which are
virtually identical. In the case of the rapid expansion method such artifacts were highly
attenuated. I applied the same boundary conditions in the three methods, but while in
Lax-Wendroof and pseudo-analytical methods the tapering is applied to the wavefields ev-
ery time step, in the rapid expansion method such taper is applied to every Chebyshev
polynomial evaluation in Equation 12, before multiplying by the bk(t) coefficients.

Figures 3 show the results of the tests using the source wavelet b), where the transmitted
and reflected events contain higher frequency as expected. In this case we observe that the
pseudo-analytical method begins to develop frequency dispersion. Notwithstanding that the
stability condition is enforced, small frequency components beyond the theoretically maxi-
mum frequency are enough to cause such dispersion. Note the absence of this phenomenon
in the Lax-Wendroff and the rapid expansion frames.

I finally present migration tests in Figures 4 and 5 using the source a) and b), re-
spectively, to compute the corresponding source wavefields. It is interesting to notice the
presence of low-wavenumber migration artifacts in the case of the Lax-Wendroff method
and the rapid expansion method. They seem to be mostly related to the presence of the
shap lateral velocity contrast introduced by the normal fault, and can constitute remnants
of the RTM typical low-wavenumber numerical noise. Such noise obscures part of the fault
plane. There are also high-wavenumber artifacts, very likely related to source undersam-
pling. Both types of numerical artifacts are almost absent in the pseudo-analytical test, so
the fault plane is nicely imaged. Moreover, the frequency dispersion observed when going
to higher source frequencies is not harming the migrated image. The high reduction of
high-wavenumber undersampling artifacts can be explained by the use of the sinc function
of the pseudo-Laplacian operator, which is better behaved in the vicinity of the Nyquist
wavenumbers. In the case of the reduction of low-wavenumber artifacts, one possible expla-
nation is the computation of the Laplacian entirely in the reference velocity framework. As
previously seen, only after such stage the velocity variation is introduced by means of the
perturbation α.

CONCLUSIONS

In this report I compare three methods to perform modeling and reverse-time migration:
the rapid expansion method, the pseudo-analytical method, and the Lax-Wendroff method.
I test their performance on a normal fault model of the subsurface, with high velocity
contrast.

The rapid expansion method offers stable solutions at arbitrary time steps, but it is
cumbersome to code, and requires time functions dependent of Bessel functions that have
to be precomputed, more than once in case of spatially-variable source signatures, therefore
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Figure 2: Single-source wavefront propagation using 15Hz Ricker wavelet. Top: Lax-
Wendroff method; Middle: Pseudo-analytical method; Bottom: Rapid Expansion method
[CR] alejandro1/. test1/Dip-Bed-fwdprops
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Figure 3: Single-source wavefront propagation using 50Hz Ricker wavelet. Top: Lax-
Wendroff method; Middle: Pseudo-analytical method; Bottom: Rapid Expansion method
[CR] alejandro1/. test2/Dip-Bed-fwdprops2
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Figure 4: Reverse-time migration stack images using 15Hz Ricker wavelet. Top: Lax-
Wendroff method; Middle: Pseudo-analytical method; Bottom: Rapid Expansion method
[CR] alejandro1/. test1/Dip-Bed-rtm-stacks1
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Figure 5: Reverse-time migration stack images using 50Hz Ricker wavelet. Top: Lax-
Wendroff method; Middle: Pseudo-analytical method; Bottom: Rapid Expansion method
[CR] alejandro1/. test2/Dip-Bed-rtm-stacks2
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careful optimization strategies should be implemented to make the method fully efficient.
Also, it is constrained to frequency dispersion bounds, which can limit its applicability for
arbitrary time steps. The Lax-Wendroff method is an attractive alternative easier to im-
plement, and as the rapid expansion method, it offers the flexibility to solve the Laplacian
with finite differences. Nevertheless, the tests show that some low-frequency noise and alias-
ing noise can be present in both methods. The pseudo-analytical method, in the contrary,
although is limited to the Fourier domain for the computation of the pseudo-Laplacian,
succeeds in constructing a clean and accurate image, in spite of the frequency dispersion
of the source wavefield. The better approximation around the Nyquist wavenumbers, and
the computation of the pseudo-Laplacian using the constant reference velocity, can explain
the reduction of high frequency noise, while the computation of pseudo-Laplacians using
constant velocity can explain the reduction of low-frequency artifacts. More experiments
are required to shed more light upon this behavior.
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Using Mie scattering theory to debubble seismic airguns

Joseph Jennings and Shuki Ronen

ABSTRACT

Airgun signatures contain a main pulse and then a few bubble oscliations. A process
called designature or debubble such signatures into a broad band pulse. We prefer to
do as much as possible with deterministic designature and leave as little as possible to
statistical deconvolution. Air gun manufacturers provide a library of signatures under
various conditions. However, the conditions are not well known. Near field hydero-
phones record the airguns. However, the near field hydrophones record all airguns in
the array, and their data are contaminated by waves that do not radiate to the far field.
Current methods that estimate the contribution of each airgun to the far field require
inverting for a large number of parameters. In this report, we propose another a de-
terministic deconvolution method based on theory from Mie scattering. Our method is
less sensitive to near field noise and requires only seven parameters. Instead of a linear
inversion with thousands of unknowns, we have a non linear inversion with a small
number of unknowns. We have encouraging results that demonstrate the potential of
using Mie scattering theory for deterministic debubbling.

INTRODUCTION

The most commonly used source in marine reflection seismic surveys is an airgun. In order
to transmit acoustic waves into the subsurface, airguns release a pulse of high pressure air
into the water. The pulse generates an acoustic wave, similar to a champagne bottle that is
uncorked. The air expands to a bubble and loses pressure. When the pressure in the bubble
gets to the ambient pressure of the water, the bubble starts slowing down its expansion.
Due to the inertia of the water, the bubble continues to expand and the pressure inside the
bubble is lower than ambient. At some time, the bubble reaches a maximal size and starts
collapsing and the pressure in the bubble starts increasing. When the pressue in the bubble
reaches ambient pressure the collapse starts slowing down. Some time later the bubble
reaches a minimal size and starts expanding again. Bubbles from airgun oscillate many
times as they go up. Typical bubble periods are 50 to 200 milliseconds. Typical depth of
airguns under the sea surface is 5-15 meters. The time it takes the bubbles to reach the
surface is much longer. The bubbles radiate acoustic waves as they oscillate. As energy is
radiated out of the bubble the magnitude of the oscillations diminishes.

The acoustic waves that are radiated by the bubbles go in all directions. The upgoing
waves reflect from the surface and follow the waves radiated down. The surface reflection
is called the source ghost. The acoustic waves, including main pulse, bubble and ghosts,
propagate down through the overburden, are reflected from targets, propagate up through
the overburden, are usually ghosted again near the receiver, and eventually are recorded
and become data. The convolutional model of a seismic trace is described by Figure 1. To
find the reflectivity that best fits the data all filters must be undone. In this paper we focus
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on the coupling of the Source Force to the acoustic waves which we denote as Bubble. In
practice, undoing the filters denoted as Bubble and Ghosts are bundled to what is called
deconvolution. To show the effects of Bubble and Source Ghost we present data from a
far field hydrophone in Figure 2(a). In this example all other effects are negligible. This
figure shows the wavelets and the spectra of two shots at two different depths from the same
airgun with the same volume and the same pressure. The Bubble and the Source Ghost
filters depend on the depth. Ghosting also depends on the angle (not shown in Figure 2(a)
in which both traces have the same angle).

Figure 1: The convolutional model of seismic data. The purpose of the seismic method is
to estimate the reflectivity. All other physical filters must be accounted for. In this paper
we focus on deterministic methods for debubbling. [NR] joseph1/. chart

Deconvolution methods can be grouped as statistical and deterministic. Statistical de-
convolution methods assume that the reflectivity is white. The risk is that when it is not
white, statistical deconvolution will force it to be white and in the process may remove
reflectors that it finds predictable from earlier reflectors. For this reason it is useful to
do as little as possible with statistical deconvolution after doing as much as possible with
deterministic methods.

Deterministic methods can be grouped into those that are based on library signatures
and those that depend on near field hydrophones. Library methods rely on signatures that
are based on data similar to those in Figure 2(a) but after deghosting. A problem with
library methods is that the same airguns, with the same library signatures, vary from shot
to shot because of variable depth, ambiance, and most importantly mechanical issues. In
Figure 3 we present data that shows the variations of airgun signatures. There is no way
the library signature can account for the variations in the actual signatures.

Near-field hydrophones (NFHs) record data shot by shot. Each NFH is near an airgun,
but it also records the other airguns in the array. To estimate the notional signature of each
gun, Ziolkowski et al. (1982) developed an inversion method in which unknown notional
signatures are fit to NFH data. This is a linear inversion with thousands of equations and
as many unknowns, assuming that each airgun has one NFH.

NFH measure variations from shot to shot. However, they also measure other phenom-
ena that are irrelevant to the far field. For example, waves that go up and down the wires
and chains that connect the airguns and the NFH to floatation devices. To separate signal
from noise in NFH data it is useful to be able to distinguish an airgun bubble signature
from additive noise such as waves in the chains and wires. With an ability to reproduce
airgun signatures from a small number of key parameters, such as pressure, depth, exact
timing, water temperature and salinity, and air temperature we can separate signal and
noise in NFH data. To estimate these key parameters, shot by shot, we can use the NFH
data. Instead of a linear inversion with thousands of unknowns, we would rather solve a
nonlinear inversion with just a few unknowns. While this methodology is our ultimate goal,
we have not yet applied the airgun modeling method that we are developing to NFH data.
In this progress report, we try to reproduce the library signature in Figure 4. In this report,
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(a)

(b)

(c)

Figure 2: Far field hydrophone data (a) and their amplitude spectra in frequency (b) and
log frequency (c). The data were acquired in a lake. The hydrophone was about 75 meters
below the source. The bottom of the lake was about 120 meters under the hydrophone. The
red trace is from an airgun at a depth of about 7 meters below the lake surface. The green
trace is from the same airgun deployed at a depth of about 5 meters below the lake surface.
The Bubble is dominant up to about 100Hz and the Source Ghost is dominant above 100
Hz. In the time domain (a) the deeper source has a longer delay time of the ghost and a
shorter bubble period. In the frequency domain (b and c) the deeper source has a lower
ghost notch frequency and a higher bubble frequency. The fundamental bubble frequency
is about 9 Hz at 5 meters and about 11 Hz at 7m. The fundamental ghost notch frequency
is 150 Hz at 5m and 125 Hz at 7m. Data courtesy of Dolphin Geophysical and Chelminski
Associates. [ER] joseph1/. lakedata,lakedata-spec,lakedata-spec-log



116 Jennings and Ronen SEP-160

500	
   1500	
   2500	
   3500	
   4500	
   5500	
   8500	
  7500	
  6500	
  

Shot	
  number	
  

20	
  

40	
  

1	
  

2.6	
  

2.2	
  

1.8	
  

1.4	
  

0	
  

Fr
eq

ue
nc
y	
  
(H
z)
	
  

Ti
m
e	
  
(S
)	
  

Figure 3: A common receiver gather from an ocean bottom node above the Forties oil field
in the North Sea. The gather shows 9000 traces shot over a period of about 24 hours. The
horizontal axis is shot number. Amplitude spectrum above and time domain below. The
vertical axes are frequency and time. The data have been hyperbolically moved out, so the
direct arrivals are approximately flat. The bubble period is about 100 miliseconds. The flat
events are the bubble oscilations; the bubble is not affected by the angle. Other events, that
are mainly multiples of reflections are affected by angle and are not flat. Note the changes
in the bubble signature. One change at about shots 5500 is the start of an airleak. Hence
loss of pressure. The second change at about shot 7800 is one airgun that was disconnected.
Hence loss of volume. The bubble period decreased with each change. The bubble frequency
increased. Data courtesy of Apache North Sea. [NR] joseph1/. delta-with-axes
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(a)

(b)
(c)

Figure 4: Analysis of the library airgun signature. (a) Time domain wavelet taken from
the library. Time gate is limited to one second. (b) its real part (red), imaginary part
(green), amplitude spectrum (blue). The frequency band is low-limited to 1 Hz by the
time gate and high-limited to 1kH which is the Nyquist frequency of 0.5 millisecond sam-
pling interval. (c) complex hodogram which is a cross plot of the real and imaginary
parts. Note from the hodogram and the real part that the signal is primarily positive real.
joseph1/. nucleus-raw,reimmag,nucleus-hodo [ER]

our goal is to achieve an accurate model of the bubble convolved with the source force in
such a manner that requires few modeling parameters.

MIE SCATTERING

Airgun bubbles are thermodynamic oscillators that radiate acoustic waves. Other oscillators
radiate electromagnetic waves. Mie scattering (Mie, 1908) theory predicts scattering of
electromagnetic (EM) waves such as radar from metalic objects such as airplanes.

Airgun bubbles and Mie scatterers are both low-cut filters. At low frequencies, there is
neither radiation of acoustic waves from an airgun nor scattering of EM waves from small
objects. At high frequencies, the airguns fully convert the force of compressed air to acoustic
waves and large objects reflect all the EM waves with much smaller wavelength.

The amplitude of the generic Mie scattering plotted as a function of frequency is shown
in Figure 5(b). When compared to the spectrum of the library airgun signature in Figure
5(a), it is apparent that while the data spectrum exhibits the shape of a bandpass filter
and the modeled spectrum from Mie theory exhibits the shape of low cut filter, the spectra
between the low and high frequencies (5-100 Hz) are quite similar in shape. In Figure 6 we
observe that Mie scattering spectra is positive real. Positive real wavelets are also minimum
phase (Claerbout, 1976). We expect the coupling of source force to acoustic waves to be
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minimum phase because we expect it to be causal both ways (Kjartansson, 1979). We
are not sure about the significance of positive-realness besides insuring minimum-phase.
Possibly, positive realness may tell us about the entropy; predict that the (causal) inverse
of a (causal) physical process is possible when energy is considered but not possible when
entropy is considered. In other words, converting an acoustic wave back to force that would
compress air back into an airgun would be causal if it happens, but it would never happen.

While we do not fully understand the reason for the spectral similarity (Figure 7), we
believe that it results from the underlying fact that both Mie scatterers and airgun bubbles
are radiating oscillators. There are two questions that require justification. One is that
the physics are completely different; the airgun is thermodynamic-acoustic, while Mie is
electromagnetic (EM). How can we use one for the other? The other question is how can
we use scattering for sourcing. The second question is easier. Babinet’s principle (Born and
Wolf, 1999) states that scattering theory is applicable to radiation from a source.

The justification of the first question (different physics) is more difficult. The governing
equations are Maxwell equations on one side and thermodynamics, Navier Stokes, and
acoustics on the other. In one side the scatterer size is comparable to the wavelength of
resonance. On the other side, the bubble size is much smaller than the wavelength of the
acoustic waves that has the same period. We are aware of this need for justification. We
therefore collaborate with researchers in the department of geophysics at Stanford University
who are developing a physics-based forward-model of the airgun-bubble coupled system.
The plan is to adjust or replace the Mie spectra that we are now using with spectra of
wavelets that come from their physics-based model. For now, we hope that the justification
may first be because it works and we will later explain why it works. However, we admit
that we are not sure that Mie scattering is a workable analogy.

(a) (b)

Figure 5: The library airgun signature spectrum (a) and the amplitude spectrum modeled
via Mie scattering theory (b). Note that the signature of the library airgun is a bandpass
filter while that of the Mie modeling is a low-cut filter. It means that in addition to coupling
which limits the low frequency content of an airgun there is another factor that limits its
high frequency content. [ER] joseph1/. inspec,genmie



SEP-160 Mie debubble 119

(a) (b)

Figure 6: Analysis of the spectrum modeled with Mie scattering theory. (a) The real part
(red), the imaginary part (green) and the amplitude spectrum (blue). (b) The complex
hodogram. Note from the hodogram and the real part that the signal is positive real. [ER]
joseph1/. reimmagmie,miehodo

Figure 7: Overlay of the minimum phase equivalent of the library signature (green) and
the library signature (blue). The minimum phase equivalent was obtained via Kolmogoroff
spectral factorization. The library signature is very close to minimum phase. [ER]
joseph1/. kolmnuc
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(a) (b)

Figure 8: The control points for the warping of the amplitude spectrum modeled
via Mie scattering theory (b) to the library airgun signature spectrum (a). [ER]
joseph1/. datapick,miepick

(a) (b)

Figure 9: The cross plots of (a) Mie frequency and the library air gun frequency and (b)
Mie amplitude and the library air gun amplitude. Note that as in Figure 8, the black points
denote the maxima and the green points denote the minima. (a) shows that we can warp
the frequencies but not the amplitudes. This is because the amplitudes are affected by the
spectra of a bandlimited source force function and the Mie spectra is for an infinte-band
impulse. [ER] joseph1/. freqqccross,ampqccross
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(a) (b)

Figure 10: The library airgun complex hodogram (a) and the complex hodogram of the
spectrum modeled by Mie scattering theory (b). Note that the Mie wavelet is positive
real and the library wavelet is almost positive real. We suspect that the deviation of
the library wavelet from positive-real as well as the wobbliness of the hodogram in low
frequencies (where it starts at zero real and zero imaginary) are due to the limitations of
estimating airgun signature from experimental data. Mainly, additive low frequency noise
in the experimental data and the fairly short recording time of just one second. [ER]
joseph1/. nucleus-hodo,miehodo
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METHOD

Note that from this point, we refer to the spectrum modeled via Mie scattering theory as
‘Mie’ and the library air gun signature as ‘library’.

Our general methodology for debubbling the library spectrum is to first warp the spec-
trum shown in Figure 5(b) (a generic Mie spectrum) to the air gun library spectrum in
Figure 5(a). After we compute an adequately warped amplitude spectrum, we then observe
the time domain wavelet of this warped Mie spectrum using Kolmogoroff spectral factor-
ization. The justification is that we know that the air gun library trace is minimum phase
as shown in Figure 7. With the spectrum and the time domain wavelet, we attempt to
debubble the library air gun signature.

Warping Mie to library signature

As stated above, in order to fit the Mie spectrum to the library spectrum, we decide to use
a warping approach. That is, we need to find a mapping from a point in the mie space
(x,m) to the library space (f, d). More formally, we need to find mappings between the Mie
frequency to the library frequency as expressed in equation 1 and Mie amplitude to library
amplitude as expressed in equation 2.

x 7→ f (1)

m 7→ d (2)

While we desire to fit each and every point from the Mie to the library spectrum, we
realize that this will only be possible with many fitting terms due to the differences between
the two spectra. Therefore, instead of fitting each and every point, we decide to focus on
fitting the maxima and minima of the spectra. In other words, we use these points as
our “control points”. In Figures 8(a) and 8(b) the picked control points are shown where
the black points denote the maxima and the green the minima. To get an idea of the
mathematics that potentially describe the mappings of the Mie maxima and minima to the
library, maxima and minima, we create cross plots of x against f in Figure 9(a) and m
against d in Figure 9(b). Once again, in these figures, the green and black points denote
the minima and maxima respectively.

Frequency warping

We observe that in Figure 9(a), the mapping is nearly linear and that we we can define the
mapping from Mie frequency (x) to the library frequency (f) as:

x = bf (3)

Using a simple weighted least-squares regression, we can estimate our b parameter. With
b, we can then map the Mie frequencies to the data frequencies.



SEP-160 Mie debubble 123

Amplitude warping

Once we have achieved this mapping from Mie frequency (x) to data frequency (f), we
can then begin to warp the amplitudes. From Figure 9(b) we observe that the mapping
is not linear and therefore may require several parameters. We attribute the complexity
of this mapping to the fact that in our Mie modeling we have not taken into account the
source force that is present on the library wavelet giving its band pass filter shape. The Mie
spectrum, on the other hand, is a low-cut filter and therefore its complex hodogram does not
converge to zero as is evident in Figure 10(b). Applying a source force to the Mie spectrum
would make this mapping much more linear. The source force function is a convolution
operator that multiplies the coupling to generate the library wavelet. Because we warp the
amplitudes in the log domain, this multiplication becomes an addition. Therefore, we can
describe the mapping between the Mie amplitude and data amplitude as:

d(f) ≈ mwarped(f) = amm(x(f)) + s(f) (4)

where d is the library airgun signature (data), am is a scale factor to be applied to the
unwarped Mie spectrum, m is the unwarped Mie spectrum and s(f) is the source force. We
parameterize the source force s(f) as

s(f) =
2∑

i=−1

aif
i (5)

where ai denotes the coefficients of the s(f) polynomial.

Once again, we can use a linear regression in order to estimate am, a−1, a0, a1 and a2 where
we define our residual as:

ri = di − amm(fi)−
a−1

fi
− a0 − a1fi − a2f

2
i (6)

Therefore, our fitting goal is to minimize this residual.

RESULTS

Warping results

After estimating the frequency, amplitude and source force parameters described in the
previous section and warping the Mie spectrum to the library spectrum, we obtain the
warped Mie spectrum shown in Figure 11. In this figure, it is clear that while we have
fit several maxima and minima quite well, we fail to fit the 8Hz low frequency maxima.
Furthermore, we can observe that at low frequencies the spectra seem to agree, but then at
the higher frequencies they mismatch This is due to a weighting operator that we applied
to the residual in estimating our frequency fitting parameter b (3). This is quite evident
in Figure 12 where the slope of the red line is the estimated b parameter. The weighting
operator was chosen to fit the first four maxima and minima and the remaining elements
of the diagonal were left as zeros.
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We use Figure 13 as a quality-check for our fit. Instead of showing the relationship
between x and f , m and d, these plots show the mapping between the minima and maxima
of the warped Mie and the minima and maxima of the library signature. As expected
the mapping between xwarped and f shown in Figure 13(a) is still linear. In Figure 13(b)
we observe that warping the Mie spectrum with the incorporated source force did greatly
improve the mapping, but it is not quite linear. This is mostly due to the use of our
weighting operator which gives us a better fit of the lower frequencies.

Figure 11: Warping result. [ER] joseph1/. warpingoverlay

Time domain wavelets

Now that we have warped the Mie spectrum to the data spectrum, we can find the time-
domain minimum-phase equivalent wavelet using Kolmogoroff spectral factorization. Per-
forming this computation gives us the time-domain Mie wavelet shown in Figure 14. Com-
paring this wavelet to the library wavelet also shown in Figure 14, we see that the Mie
wavelet in general resembles that of an airgun signature. Clearly, it shows bubble oscil-
lations and has a peak to bubble ratio comparable to that of the library wavelet. Unfor-
tunately, the deep second bubble oscillation tells us that this result is non-physical as the
energy of the bubble should be decreasing as time increases. We consider this result as a
preliminary finding on our path to finding a better wavelet.

Designature

With the warped Mie spectrum, we can now deconvolve the bubble from the library airgun
signature. We perform this deconvolution on the amplitude spectrum in the dB domain.
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Figure 12: The fitted cross plots of Mie frequency and the library air gun frequency. Note
that as in Figure 8, the black points denote the maxima and the green points denote the
minima. [ER] joseph1/. freqqccross-fit

(a) (b)

Figure 13: The cross plots of (a) warped Mie frequency and the library air gun frequency
and (b) warped Mie amplitude and the library air gun amplitude. Comparing (b) with
Figure 9(b), we observe that the mapping is now nearly linear between the amplitudes.
[ER] joseph1/. mw2ddatfreqqc,mw2ddatampqc
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Figure 14: The comparison of the time-domain warped Mie wavelet (red) and the original
library wavelet (blue). We are not satisfied with this result; the bubble shape and period
fits are not perfect and make the result unsatisfactory. The peak to bubble ratio is under
estimated, and the second trough is deeper than the first trough, which is non-physical.
Nevertheless, we show this result in this progress report. [ER] joseph1/. kolmoverlay

The designatured amplitude spectrum can be seen in Figure 15(a). In performing the
deconvolution, a pre-whitening factor of 0.1 was used. From this figure, we observe the
remaining bubble spectrum from approximately 8-100 Hz.

Once again, to find the minimum-phase time-domain equivalent wavelet we use Kol-
mogoroff spectral factorization. The resulting designatured time-domain wavelet is shown
Figure 15(b). While it appears that some of the bubble signature was removed as a result
of the deconvolution, most of it remains due to the misfit between the Mie and library
wavelets.

DISCUSSION AND CONCLUSION

In this progress report, we have shown that by warping the spectrum computed by Mie
scattering theory and then finding its minimum phase equivalent time-domain wavelet by
Kolmogoroff spectral factorization we can obtain a time-domain wavelet that resembles an
air gun signature. With this wavelet, we have attempted to designature a library airgun
signature. The results are encouraging. However, as stated previously, we are not satisfied
with the wavelets shown in Figures 14-15(b) as they are non-physical. We believe that the
results we have obtained are non-physical due to the fundamental differences between the
Mie spectrum and the library spectrum and therefore. These differences force us to rely
heavily on warping to get a signature that resembles one of an airgun. To overcome this, in
the future we will look into alternative Mie formulations and attempt to warp the spectrum
in the complex hodogram domain. This will ensure that the Mie spectrum is positive real
and also will have the same amplitude and phase spectrum as the library airgun spectrum.
We believe that this will resolve the matches in the bubble period.
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(a)

(b)

Figure 15: (a) The designatured amplitude spectrum and (b) the minimum-phase equiv-
alent of the designtured amplitude spectrum computed via Kolmogoroff spectral factor-
ization. In computing the designature, a pre-whitening factor of 0.1 was used. [ER]
joseph1/. desig,desig-overlay
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Balancing amplitude and phase in TFWI

Ali Almomin and Biondo Biondi

ABSTRACT

Tomographic Full Waveform Inversion (TFWI) provides a robust and accurate method
to invert the seismic data by simultaneously inverting all scales of the model using both
amplitude and phase information. However, one shortcoming of TFWI is the large
number of iteration required to achieve accurate results due to its slow convergence. In
this report, we analyze the source of its slow convergence and propose two modifications
to mitigate the problem. First by modifying the formulation of the regularization term
to focus more on the phase information, and second by using an alternative enhancing
operator that is less sensitive to the amplitudes in the extended model. Then, we
test the modified TFWI on the marmousi 2 model. The results show a significant
improvement in the convergence rate.

INTRODUCTION

TFWI, similar to other data-space inversion method, produces highly accurate results due
to matching both the amplitude and phase of the data. This is achieved in two steps:
first, extending the wave equation and adding an additional axis to the velocity model,
and second, adding a regularization term that drives the solution towards a non-extended
model. However, one limitation to TFWI in its earlier formation, as shown in Almomin
and Biondi (2013), is the large number of iterations required to achieve accurate results.
This large number of iterations causes TFWI to be very expensive, especially for large-scale
3D datasets. In Almomin and Biondi (2014), I proposed a wavelength continuation scheme
that preconditioned the gradient and smoothed the updates in the early iterations. While
preconditioning did improve the convergence rate, the number of iterations was still in the
hundreds.

In this report, we analyze the source of TFWI’s slow convergence and find that it is due to
the unbalanced effects of amplitudes and phase both in the formulation of the regularization
term and the enhancing operator. This imbalance resulted in a strong dependence of the
kinematic updates on the amplitude fitting, causing it to take more iterations. To mitigate
the problem and speed up convergence, we propose two modifications to TFWI. First by
modifying the formulation of the regularization term to focus more on the phase information,
and second by using an alternative enhancing operator that is less sensitive to the amplitudes
in the extended model. Finally, we test the modified TFWI on the marmousi 2 synthetic
model.
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MODIFIED REGULARIZATION

The conventional L2 objective function for TFWI can be written as follows:

JTFWI(m̃) =
1
2
‖f(m̃)− dobs‖2

2 +
ε

2
‖Am̃‖2

2 =
1
2
‖rd‖2

2 +
ε

2
‖rm‖2

2, (1)

where m̃ is the extended model, f is the forward modeling operator, dobs is the observed
surface data, A is the defocusing operator, rd is the data-fitting residual and rm is the
model regularization residual. The gradient g can be written as:

g(m̃) = L∗(m̃)rd + εA∗rm, (2)

where ∗ denotes an adjoint and L is the linearized modeling operator. To avoid cycle-
skipping, the modeled data needs to be very close to the observed data such that the data
residual is basically a 90 degree phase rotation of the observed data. In TFWI the data-
fitting term can fit the observed data regardless of the initial model because the model is
extended. The regularization term will adjust the model such that the modeled data in the
following iterations will slightly shift from the observed data to create a kinematic difference
that results in a meaningful tomographic update.

To better understand the process, we can think of the different stages that TFWI cycles
through as it iterates. First, the data-fitting term fits the observed data by creating reflectors
in the extended model. Then, the regularization term slightly focuses the model which
results in a small shift of the modeled data and a decrease in the data-fitting. Finally,
the data-fitting term fits the shifted modeled data to the observed data by creating smooth
tomographic updates in the model and adjusting the reflectors locations. Notice that, except
for the first few iterations, all these stages happen simultaneously in every iteration.

There are a few convergence issues that take place in practice. First, the data-fitting
term creates both the reflectors and tomographic updates which makes it more difficult to
balance or emphasize either amplitude or phase fitting. Second, the data-fitting term takes
several iterations until it becomes sufficiently small mainly due to amplitude differences
resulting from using an adjoint instead of an inverse. If the regularization term focuses the
model before the model data fits the observed data, then the data residual will not produce
tomographic updates. Third, the regularization term will continue to focus the model at a
rate that only depends on epsilon, regardless the data-fitting term. This results in a strong
sensitivity to epsilon. If epsilon is too small, the focusing will be too slow and the inversion
might take thousands of iterations before producing any useful tomographic updates. If
epsilon is too large, the model will be focused too fast and will result in cycle-skipping.

To solve the previous issues, we want to modify the regularization term such that it
directly produces the tomographic updates instead of indirectly through the data-fitting
term. We can start by rewriting the regularization term as follows:

ε

2
‖Am̃‖2

2 =
ε

2
‖m̃− (I−A)m̃‖2

2 =
ε

2
‖m̃−Em̃‖2

2, (3)

where E is an enhancing or focusing operator which is the complement of A. It is easier
to see that the regularization term minimizes the difference between the extended model
and an enhanced version of the extended model by focusing the model. This formulation
makes it similar to the data-fitting term, however, it is still missing the wave-equation
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operators. Therefore, we propose a new regularization term as written in the following
objective function:

JTFWI(m̃) =
1
2
‖f(m̃)− dobs‖2

2 +
ε

2
‖f(m̃)− f(Em̃)‖2

2. (4)

This new regularization term completely changes the behavior of TFWI because it does not
modify the model. Instead, it directly calculates a residual between the modeled data and
the focused modeled data and back-projects it into a tomographic update. This regulariza-
tion residual is guaranteed to have the correct amount of kinematic shift compared to the
modeled data regardless of how well we fit the observed data. Therefore, the data-fitting
term only produces reflectors while the regularization term only produces tomographic up-
dates. Moreover, epsilon now balances amplitude fitting and phase fitting without any
danger of cycle-skipping at any value, making the inversion process less sensitive to epsilon.

ENHANCING OPERATORS

The enhancing operator is required to create a kinematic shift in the regularization term
that can be back-projected into tomographic updates. In the case of DSO, the enhancing
operator, i.e. the complement of the focusing operator, is described in equation (3), is:

EDSOm̃(τ) =
(

1− τ

τmax

)
m̃(τ), (5)

where τ is the extended axis value, either in subsurface offset or time lag. As described in the
previous section, a proper enhancing operator should result in a residual that is a 90 degree
phase rotation of the modeled data. However, DSO operator creates the tomographic update
without creating such phase rotated residual. Instead, I scales the amplitude such that the
combined effect of all lags (or all offsets in data space) result in the desired tomographic
update.

This DSO approach has a few shortcomings. First, DSO assumes the amplitudes will not
change significantly along the reflectors or along offsets. This assumption breaks down in
many cases such as the presence of AVO effects, complex geometry or irregular acquisition.
Second, DSO enhances the image by scaling down the amplitudes along the extended axis.
Since the total energy in the data is conserved, this approach assumes that the energy
reduction in the image will be converted to tomographic updates in the velocity model,
so it indirectly moves focuses the reflectors energy towards the zero-lag. However, this
assumption ignores the possibility that the energy can simply be converted reflectors in the
null-space of the modeling operator, which are usually present at the edge of the model.

We illustrate the effects of these shortcomings in a simple synthetic example with a single
reflector and a constant velocity. Figure 1 shows a shot profile from the modeled data with
a slow background velocity using an extended image. The extension of the image preserves
all the kinematic information in the observed data. Figure 2(a) shows a shot profile from
the modeled data with a slow background velocity using DSO operator regularization on the
extended image. Figure 3 compares a trace at 2km offset of the modeled data (bottom) with
the DSO regularization residual (middle). We can see that there is no significant change in
the phase when we compare the DSO regularization residual to the modeled data and only
a small amplitude change.
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We propose using a different enhancing operator that shifts the energy towards the
zero-lag of the extended axis as follows:

Eshiftm̃(τ) = m̃(τ + 1 ∗ sign(τ)). (6)

This shifting operator directly forces the energy to move towards the zero-lag. The main
advantage to this enhancing operator compared to the DSO enhancing operator is that it
rotates each traces by 90 degrees, therefore, the tomographic update does not depend on
how the amplitude of different traces affect each other. In other words, we have no removed
the amplitude assumptions. Furthermore, since the energy is directly focused, there are no
artifacts at the edge of the model.

We recalculate the regularization residuals with the shifting operator. The shot profile
is shown in Figure 2(b) and the trace at 2km is shown in Figure 3 (top). We can see the
phase rotation at every offset of the residual.

Figure 1: A shot profile from the modeled data with a slow background velocity using an
extended image. [CR] ali1/. 1

(a) (b)

Figure 2: A shot profile from the modeled data with a slow background velocity using (a)
DSO operator regularization on the extended image and (b) shifting operator regularization
on the extended image. [CR] ali1/. 2,3
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Figure 3: A trace at 2km offset from the modeled data with a slow background velocity
using an extended image (bottom), DSO operator regularization on the extended image
(middle) and shifting operator regularization on the extended image (top). [CR] ali1/. 4
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We repeat the previous example but with a fast background velocity instead of a slow
background velocity. Figure 4 shows a shot profile from the modeled data with a slow
background velocity using an extended image. Figures 5(a) and 5(b) show a shot profile
from the modeled data with a slow background velocity using DSO operator regularization
and shifting operator regularization, respectively, on the extended image. Figure 6 compares
a trace at 2km offset of the modeled data (bottom) with the DSO regularization residual
(middle) and shifting operator regularization (top). Again, we can see that there is no
significant change in the phase when we compare the DSO regularization residual to the
modeled data and only a small amplitude change. On the other hand, the shifting operator
shows a clear phase rotation (and in the opposite direction to the previous example).

Figure 4: A shot profile from the modeled data with a fast background velocity using an
extended image. [CR] ali1/. 5

(a) (b)

Figure 5: A shot profile from the modeled data with a fast background velocity using (a)
DSO operator regularization on the extended image and (b) shifting operator regularization
on the extended image. [CR] ali1/. 6,7

Next, we compare the two enhancing operator in model space by calculate the tomo-
graphic update of two Gaussian anomaly, one faster than the background velocity and
one slow than the background velocity with a flat reflector below. The flat and constant-
amplitude reflector is the best possible scenario for DSO. Figures 7(a) and 7(b) show the
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Figure 6: A trace at 2km offset from the modeled data with a fast background velocity
using an extended image (bottom), DSO operator regularization on the extended image
(middle) and shifting operator regularization on the extended image (top). [CR] ali1/. 8
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tomographic update of the fast and slow anomalies, respectively, using DSO regularization.
Figures 7(c) and 7(d) show the tomographic update of the fast and slow anomalies, respec-
tively, using shifting operator regularization. There is a significant reduction in kinematic
artifacts of the shifting operator around the edges of the model. However, since DSO uses
the amplitudes of the image, it has a better focusing of the location of the anomaly.

(a) (b)

(c) (d)

Figure 7: The tomographic update of (a) fast anomaly using DSO regularization, (b) slow
anomaly using DSO regularization, (c) fast anomaly using the shifting operator regulariza-
tion and (d) slow anomaly using the shifting operator regularization. [CR] ali1/. 9,10,11,12

SYNTHETIC EXAMPLES

To test the new algorithm, we run a synthetic TFWI example on the marmousi 2 model.
We use a Ricker wavelet with a frequency range between 5 Hz to 25 Hz and a small taper
on both ends. Figure 8 shows the correct velocity model. There are 851 fixed receivers with
a spacing of 20 m and 171 sources with a spacing of 100 m. The initial 1D model is shown
in Figure 9(a) which is obtained by taking the horizontal average of the correct model after
removing the high velocity and low velocity anomalies. The RTM image obtained using the
initial model is shown in Figure 9(b).
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Figure 8: The marmousi 2 velocity model. [ER] ali1/. 13

(a) (b)

Figure 9: (a) The initial velocity model. (b) The RTM image using the initial velocity
model. [CR] ali1/. 14,16
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We followed the workflow proposed by Biondi and Almomin (2014) by first running
TFWI on the low frequencies (up to 10Hz) and then running FWI on the higher frequencies.
The inverted model is shown in Figure 10(a) after only 15 TFWI iterations and 30 FWI
iterations. The RTM image obtained using the inverted model is shown in Figure 10(b). We
see that TFWI successfully inverted the velocity model with high accuracy except around
the edges where the illumination is insufficient.

(a) (b)

Figure 10: (a) The inverted velocity model. (b) The RTM image using the inverted velocity
model. [CR] ali1/. 15,17

CONCLUSIONS

We introduced a modified inversion algorithm that significantly improved the convergence
rate of TFWI. This was achieved by introducing a new regularization term that separates
the amplitude and phase fitting in the inversion and by changing the enhancing operator
to reduce the kinematic artifacts. The synthetic tests show the fast convergence of the new
algorithm even when starting from a far initial model.
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Full-waveform inversion based on nonlinear conjugate
gradient method, Gauss-Newton method and full Newton

method

Yinbin Ma, Musa Maharramov, Biondo Biondi

ABSTRACT

Full-waveform inversion (FWI) generates a high-resolution subsurface model. Robust
local minimization algorithms are required for FWI because the objective function is
highly nonlinear. In this paper we compare the nonlinear conjugate gradient method,
Gauss-Newton method and full Newton method for FWI. These methods use the gra-
dient of objective function and application of Hessian on a model perturbation vector,
which can be calculated efficiently with the adjoint-state methods. Numerical results
suggest Newton-type methods resolve fine structure faster than the nonlinear conjugate
gradient method in terms of number of wave propagation.

INTRODUCTION

Full-waveform inversion (Tarantola, 1984; Virieux and Operto, 2009) is a challenging tech-
nique that estimates the high-resolution subsurface model by minimizing the mismatch
between observed data and synthetic data. The first order derivative is usually needed for
FWI, and the Hessian is used in Newton-type methods. It is known that the adjoint-state
method is an efficient method to compute the Frechet derivative (Tromp et al., 2005; Plessix,
2006) and the Hessian (Fichtner, 2011; Fichtner and Trampert, 2011) for FWI.

In this paper, we implement and compare FWI using three methods: nonlinear conjugate
gradient (CG) method (Nocedal and Wright, 2006; Maharramov and Biondi, 2013), Gauss-
Newton method and full Newton method (Pratt et al., 1998). Nonlinear CG method requires
the gradient at each iteration, and the model update is computed based on the current
gradient and previous gradient. For Gauss-Newton method and full Newton method, the
model update is calculated by applying the approximated inverse of the Hessian to the
gradient.

Simple synthetic models are used to test our implementation of FWI algorithms. A
model with pinch-out structures is constructed to test the vertical resolution of different
methods. A model with wells is used to test the horizontal resolution and the ability to
recover vertical structures. Numerical results suggest that Newton-type methods converge
faster than nonlinear CG method in terms of number of wave propagation.

We create synthetic model with fine structures based on the Society of Exploration
Geophysicists/European Association of Geoscientists and Engineers (SEG/EAGE) model.
Preliminary results suggest that Newton-type methods recover deeper structure better than
the nonlinear CG method after the same number of wave propagation.

We briefly discuss the different rate of convergence in the last section.

139
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METHOD

Full-waveform inversion for acoustic media

We use the least-squares misfit function for FWI in the time domain, as follows:

J(m) =
1
2

∑
r

∫ T

0
||Sru− dr||22dt, (1)

where Sr is the sampling operator for the receivers, dr is the observed data at the receiver
r, and u is the synthetic pressure wavefield.

The pressure field u is computed using the acoustic approximation of wave equation
with a non-constant density, as follows:

[ 1
K ∂

2
t − ∇̃ · (1

ρ∇)]u = f

u(r, t = 0) = 0
∂tu(r, t = 0) = 0,

(2)

where K is the bulk modulus, ρ is the density, and f is the source wavefield. Numerically, we
solve equation 2 in the time domain using staggered-grid finite difference method, starting
from t = 0 to maximum recording time t = T.

We formulate FWI as a nonlinear optimization problem and solve it iteratively. The
Frechet derivate is estimated at each iteration based on the adjoint-state methods, which
requires the correlation of wavefield u with the receiver wavefield λ, which is defined as
follows:


[ 1
K ∂

2
t −∇ · (1

ρ∇̃)]λ = dres

λ(r, t = T ) = 0
∂tλ(r, t = T ) = 0,

(3)

where dres is the difference between synthetic data and observed data. The receiver wave-
field is computed backward in time, starting from the maximum recording time t = T to
t = 0.

The acoustic wave equation 2 is used to model non-constant density media. We imple-
mented multi-parameter FWI in acoustic media. However, in this paper ρ is assumed to be
constant, and we estimate bulk modulus K, which is related to velocity by, as follows:

v =

√
K

ρ
. (4)

Nonlinear conjugate gradient method

We implement the conjugate gradient method to minimize the objective function in equation
1. A nonlinear CG method generates a sequence of estimated modulus Ki, i ≥ 0, starting
from initial guess K0.
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Assume at iteration i, we have obtained the estimated model Ki. For the next iteration,
the gradient is calculated at gi = g(Ki) ≡ ∂J

∂Ki
. From the current gradient gi and previous

gradient gi−1, we get the search direction ∆Ki using the Fletcher Reeves formula and Polak
Ribire formula(Nocedal and Wright, 2006; Maharramov and Biondi, 2013).

The local minimum of objective J(K) in the vicinity of Ki is estimated with the line
search approach, as follows:

αi = argminαJ(Ki + α∆Ki), (5)

and we update the model with,

Ki+1 = Ki + αi∆Ki. (6)

We do not solve the line search problem in equation 5 exactly because the evaluation of
J(Ki +α∆Ki) is expensive. We want an approximated solution with a few iterations. The
line search process is terminated once the Wolfe condition (Nocedal and Wright, 2006) is
satisfied, as follows:

J(Ki + α∆Ki) ≤ J(Ki) + c1αgi
T ∆Ki (7)

|∇J(Ki + α∆Ki)T ∆Ki| ≤ c2|gi
T ∆Ki|, (8)

where 0 < c1 < c2 < 1, and ∇J is the gradient of objective function.

We continue this process, until the value of the objective function or the norm of gradient
is below a certain threshold.

The gradient used in the nonlinear CG method is computed with the adjoint-state
methods (Fichtner, 2011; Fichtner and Trampert, 2011), shown in the following:

g(K) =
∂J

∂K
= −

∫ T

0
λ

1
K2

∂2
t udt, (9)

where the source wavefield u satisfies equation 2, and receiver wavefield λ is obtained from
equation 2. The details of derivation are shown in the appendix, with multiparameter
model:

m =
[

1/K
1/ρ

]
. (10)

Full Newton method and Gauss-Newton method

Consider the second order expansion of objective function, as follows:

J(K + ∆K) = J(K) +
(
∂J

∂K

)T

∆K +
1
2
∆KH(K)∆K +O(∆K3), (11)

where the full Hessian H is the second order derivative of the objective function,
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H =
∂2J

∂K2

=
(
∂J

∂K

)T (
∂J

∂K

)
+ dres

T ∂
2(Sru)
∂K2

.

The Hessian is reduced to Gauss-Newton Hessian HGN by dropping the second term,
as follows:

HGN =
(
∂J

∂K

)T (
∂J

∂K

)
(12)

For the full Newton method and Gauss-Newton method, suppose at iteration i > 0, we
have obtained modulus Ki. For the next iteration, the gradient g(Ki) is calculated with
equation 9. We scale the gradient by applying the inverse of Hessian, as follows:

∆Ki = −H−1g(Ki). (13)

Then we use the line search approach to find the estimate model for the next iteration,

αi = argminαJ(Ki + α∆Ki) (14)
Ki+1 = Ki + αi∆Ki. (15)

One advantage of the full Newton method is that when Ki is close to the solution, we
will have αi → 1.

The inverse of Hessian −H−1g(Ki) is approximated iteratively, which requires the action
of Hessian on a model perturbation vector H∆K. The action of Hessian can be computed
efficiently using the adjoint-state method, as follows:

H∆K = −∆K
K2

∫ T

0
(µa(x, t) + µb(x, t))∂2

t u(x, t)dt− ∆K
K2

∫ T

0
λ(x, t)∂2

t δu1(x, t)dt, (16)

with source wavefield u, λ from the forward wave propagation, and receiver wavefield µa,
µb and λ from the backward wave propagation, as follows:

[mK∂
2
t − ∇̃ · (mρ∇)]u = f

[ 1
K ∂

2
t − ∇̃ · (1

ρ∇)]∗λ =
∑

r S
∗
r (Sru− dr)

[mK∂
2
t − ∇̃ · (mρ∇)]δu1 = [∆mK∂

2
t − ∇̃ · (∆mρ∇)]u

[mK∂
2
t − ∇̃ · (mρ∇)]∗µa = S∗

rSrδu1

[mK∂
2
t − ∇̃ · (mρ∇)]∗µb = [∆mK∂

2
t − ∇̃ · (∆mρ∇)]∗λ,

(17)

where we use mK ≡ 1
K and mρ ≡ 1

ρ . The corresponding model perturbations are ∆mK =

−∆K
K2 and ∆mρ = −∆ρ

ρ2 .

For the Gauss-Newton Hessian, the action can be expressed as the following:

HGN∆K = −∆K
K2

∫ T

0
µa(r, t)∂2

t u(r, t)dt. (18)
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We put the detailed derivation of the Hessian in the appendix with multiparameter
model m = (1/K, 1/ρ). The approximation of the inverse of the Hessian is expensive both
in computation time and memory.

RESULTS

Simple synthetic models

We initially test the nonlinear CG method, Gauss-Newton method and full Newton method
on simple synthetic models. We use 10 sources with 300 m spacing between neighboring
sources. The depth of the sources is 650m, and the receivers are at the same depth as the
sources.

Each model is solved with nonlinear CG method for 50 iterations (150 wave propagation
for pinch-out model and 166 wave propagation for model contains vertical wells). Four
iterations of the full Newton method (160 wave propagation) and Gauss-Newton method
(120 wave propagation) are applied, and at each iteration we solve ∆K = H−1(−g) for 10
CG steps.

The first model Figure 1 contains 5 thin layers with 60 − meter(m) thickness, and
pinch-out structure. The model has velocity 2400 m/s with source wavelet centered at
approximately 30 Hz. The layers are within the resolution of FWI, while the thin part of
the pinch-out is below the resolution. In Figure 3, we plot the objective function versus the
number of wave propagation for different methods. Newton-type methods converge faster
than the nonlinear CG method in terms of computational cost. We can see the inversion
results for the pinch-out model in Figure 2, after 120 wave propagation. Newton-type
methods reconstruct sharper boundary comparing with the nonlinear CG method.

The second model shown in Figure 4 contains two vertical wells with 100m and 30 m
width. The objective function versus the number of wave propagation for different methods
is shown in Figure 6. We can see the inversion results in Figure 5. For the Newton-type
methods, the location of the vertical well is identified properly, while the parameter within
the well cannot be properly estimated. On the other hand, the nonlinear CG method has
not resolved the deeper part of the 100m well and has not clearly identified the 30m well.

SEG/SEAM model

The full Newton method and Gauss-Newton method use the quadratic approximation of
the objective function, and ideally they should have better resolution comparing with the
nonlinear CG method. They should converge faster when we are close to the true model.
In this subsection, we create a synthetic model based on SEG/EAGE model as in Figure
7. We use 10 sources with 300 m spacing between neighboring sources. The depth of the
sources is 650m, and the receivers are at the same depth as the sources.

We run the nonlinear CG method for 100 iterations. We apply Full Newton method and
Gauss-Newton method for 4 iterations; and at each iteration, we solve ∆K = H−1(−g) for
15 CG steps. The objective versus the number of wave propagation is shown in Figure 9.
We can see that the Newton-type methods converge faster than the nonlinear CG method,
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Figure 1: The top panel shows the true modulus model. The middle panel shows the
starting modulus model. The bottom panel shows the difference between the true model
and starting model.[ER] yinbin1/. Pinch
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(a) (b)

(c) (d)

Figure 2: Panel (a) shows the difference between the true model and starting model. Panel
(b) is the model update with the nonlinear CG method. Panel (c) is the model update
with the Gauss-Newton method. Panel (d) is the model update with the full Newton
method.[CR] yinbin1/. PinchDiff,NCGPinch,GNewtonPinch,NewtonPinch
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Figure 3: The normalized objective function versus the number of wave propagation. The
blue curve represents the nonlinear CG method, black curve represents the Gauss-Newton
method and red curve represents the full Newton method.[CR] yinbin1/. OBJPinch
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Figure 4: The top panel shows the true modulus model. The middle panel shows the
starting modulus model. The bottom panel shows the difference between the true model
and starting model.[CR] yinbin1/. Pipe
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(a) (b)

(c) (d)

Figure 5: Panel (a) shows the difference between the true model and starting model. Panel
(b) is the model update with the nonlinear CG method. Panel (c) is the model update
with the Gauss-Newton method. Panel (d) is the model update with the full Newton
method.[CR] yinbin1/. PipeDiff,NCGPipe,GNewtonPipe,NewtonPipe
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Figure 6: The normalized objective function versus the number of wave propagation. The
blue curve represents the nonlinear CG method, black curve represents the Gauss-Newton
method and red curve represents the full Newton method.[CR] yinbin1/. OBJPipe
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at the same computational cost.

We plot the inversion results after 180 wave propagation (56 iterations for the nonlinear
CG method, 4 iterations of Gauss-Newton method, and 3 iterations of full Newton method)
in Figure 8. We can see significant difference below 1100m. The nonlinear CG method
has not resolved the structure, and the Newton-type methods have reconstructed the fine
structure. The Gauss-Newton method has smaller residual comparing with the full Newton
method, and we will discuss it in the next section.

Figure 7: The top panel shows the true modulus model. The middle panel shows the
starting modulus model. The bottom panel shows the difference between the true model
and starting model.[ER] yinbin1/. ModSEAM

DISCUSSION ON RATE OF CONVERGENCE

We show that Newton-type methods converge faster than nonlinear CG method, in terms
of number of the wave propagation.

The nonlinear CG method and the Newton-type methods scale the gradient to get the
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Figure 8: The top panel shows the inversion result with the nonlinear CG method. The
middle panel shows the inversion result with the Gauss-Newton method. The bottom panel
shows the inversion result with the full Newton method.[CR] yinbin1/. AllSEAM
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Figure 9: The normalized objective function versus the number of wave propagation. The
blue curve represents the nonlinear CG method, black curve represents the Gauss-Newton
method and red curve represents the full Newton method.[CR] yinbin1/. OBJSEAM
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search direction. It is interesting to examine how the gradient is scaled.

We take the estimated model Ki from the nonlinear CG method at i = 30 iteration.
The difference between the true model and Ki, which is the ideal search direction, is shown
in Figure 10(e). The gradient gi is shown in Figure 10(a). The gradient can not be directly
used as updating direction because the shallow component is much stronger than the deep
component. This property of gradient result in the failure of the steepest descent method
in FWI.

In Figure 10(b), we show the correction with nonlinear CG method,

∆Ki = −gi + βigi−1, (19)

where βi is obtained from Fletcher Reeves formula. After we scale the gradient in CG
method, the search direction has more weight on the deep part. However, the component
of search direction in the shallow part are not corrected properly. As the objective function
is sensitive to shallow perturbation, we would not expect much decrease in the objective
function.

For the Newton-type methods, we apply ∆Ki,Newton = H−1(−gi) for 15 CG steps, and
the results are shown in Figure 10(c) and 10(d). The shallow component of the search direc-
tion is significantly different for the nonlinear CG method and the Newton-type methods as
shown in Figure 10. The search direction for Newton-type methods approximate the ideal
search direction reasonably well.

We have pointed out in the previous section, that the Gauss-Newton method converges
faster than the Newton method at equivalent number of wave propagation. One reason
is that each application full Hessian uses 4 wave propagation, and each application of
the Gauss-Newton Hessian uses 3 wave propagation. Solver H−1(−g) is therefore more
expensive for the full Newton method. Another reason might be that because we use single
precision float number for wave propagation, the CG algorithm for H−1(−g) converges
slower than the HGN

−1(−g) in terms of CG steps.

CONCLUSION

In this paper, we implemented nonlinear CG method, Gauss-Newton method and full New-
ton method for solving FWI. We computed the gradient and Hessian with the adjoint-state
method. Numerical results suggest Newton-type methods resolve fine structures better than
the nonlinear CG method when the computational cost is the same.
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(a) (b)

(c) (d)

(e)

Figure 10: Panel (a) shows the gradient g(Ki), with Ki estimated from the nonlin-
ear CG method at i = 30. Panel (b) is the model update ∆Ki with the nonlin-
ear CG method. Panel (c) is the model update with the Gauss-Newton method af-
ter applying H−1

GN(−g(Ki)). Panel (d) is the model update with the full Newton
method after applying H̃−1(−g(Ki)). Panel (e) is the ideal model updating direction,
which is the difference between true modulus model and current modulus model.[CR]
yinbin1/. SEAMGK,SEAMdK,SEAMGNdK,SEAMNdK,SEAMTruedK
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APPENDIX A: FULL-WAVEFORM INVERSION GRADIENT AND
HESSIAN

In this appendix, we derive the Frechet derivative (Tromp et al., 2005; Plessix, 2006) and the
Hessian (Fichtner, 2011) for the FWI objective function. We use acoustic approximation
of wave equation with non-constant density. For simplicity, we define our model parameter
as:

mK ≡ 1
K
, (20)

mρ ≡ 1
ρ
, (21)

m ≡
[
mK

mρ

]
. (22)

The corresponding model perturbation can be expressed as follows:

∆mK = −∆K
K2

, (23)

∆mρ = −∆ρ
ρ2
, (24)

The wave equation in acoustic media with non-constant density is shown in the following:
[ 1
K ∂

2
t − ∇̃ · (1

ρ∇)]u = f

u(r, t = 0) = 0
∂tu(r, t = 0) = 0,

(25)

where K is the bulk modulus, ρ is the density, and f is the source wavefield. We use operator
L to represent the operator:

L ≡ [
1
K
∂2

t − ∇̃ · (1
ρ
∇)]. (26)

The adjoint of wave equation used to compute receiver wavefield can be written as
follows:


[ 1
K ∂

2
t −∇ · (1

ρ∇̃)]λ = dres

λ(r, t = T ) = 0
∂tλ(r, t = T ) = 0,

(27)

where dres is the difference between synthetic data and observed data. The receiver wave-
field is computed backward in time, starting from maximum recording time t = T to t = 0.

Frechet derivative

For arbitrary model perturbation, we have〈
∆m,

∂J

∂m

〉
M

=
〈
∂u

∂m
∆m,

∂J

∂u

〉
U

, (28)
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where the subscript M indicates the inner product is done in the model space, and and
subscript U indicates the wavefield space.

Perturb the wave equation, we have(
∂L

∂m
∆m

)
u+ L

∂u

∂m
∆,m = 0 (29)

Substitute equation (29) into equation (28), we get〈
∆m,

∂J

∂m

〉
M

= −
〈
L−1(

∂L

∂m
∆m)u,

∂J

∂u

〉
U

(30)

= −
〈

(
∂L

∂m
∆m)u, L−∗∂J

∂u

〉
U

. (31)

(32)

Introducing the receiver wavefield,

L∗λ =
∂J

∂u
, (33)

with the explicit formula shown in equation (27). We have,〈
∆m,

∂J

∂m

〉
M

= −
〈

(
∂L

∂m
∆m)u, λ

〉
U

. (34)

For acoustic wave equation,〈
∆m,

∂J

∂m

〉
M

= −
〈
[δmK∂

2
t − ∇̃ · (δmρ∇)]u, λ

〉
U

(35)

= −
〈
δmK ,

∫ T

0
λ∂t

2udt

〉
M

+
〈

∆mρ,

∫ T

0
(∇̃∗λ) · (∇u)dt

〉
M

. (36)

Thus,

∂J

∂m
=

 ∂J
∂mK

∂J
∂mρ

 =

 −
∫ T
0 λ∂2

t udt∫ T
0 (∇̃∗λ) · (∇u)dt

 . (37)

The Frechet derivative with respect to (K, ρ) is,

∂J

∂(K, ρ)
=

 ∂J
∂K

∂J
∂ρ

 =

 1
K2

∫ T
0 λ∂2

t udt

− 1
ρ2

∫ T
0 (∇̃∗λ) · (∇u)dt

 (38)

Full Hessian and Gauss-Newton Hessian

We are interested in the action of Hessian:

H(∆m1,∆m2) = 〈∆m2,H∆m1〉M , (39)
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where ∆m1 and ∆m2 are two model perturbation. We use shorthand notation for the
bilinear form in this subsection:

F (x1, x2) ≡ 〈x1, Fx2〉 . (40)

Our goal is to find an expression,

〈∆m2,H∆m1〉M = 〈δm2, A(∆m)〉M , (41)

for arbitrary ∆m2, where A(∆m1) does not depend on ∆m2 and can be computed efficiently.
Then we claim A(∆m1) is equivalent to the action of Hessian applied to ∆m1.

Expand the bilinear form in equation (39),

〈∆m2,H∆m1〉M =
〈
∂u

∂m
∆m2,

∂2J

∂u2

∂u

∂m
∆m1

〉
U

(42)

+
〈
∂J

∂u
,
∂2u

∂m2
(∆m1,∆m2)

〉
U

. (43)

The bilinear form for Gauss-Newton Hessian can be obtained by neglecting line (43),

〈∆m2,HGN∆m1〉M =
〈
∂u

∂m
∆m2,

∂2J

∂u2

∂u

∂m
∆m1

〉
U

. (44)

where HGN represent the Gauss-Newton Hessian.

In order to eliminate ∂2u
∂m2 (∆m1,∆m2) in equation (42 and 43) which depends on ∆m2,

we need the first order and second order perturbation of the wave equation:

(
∂L

∂m
∆m1)u+ L

∂u

∂m
∆m1 = 0, (45)

(
∂L

∂m
∆m2)u+ L

∂u

∂m
∆m2 = 0, (46)

and,

(
∂2L

∂m2
(∆m1,∆m2))u+(

∂L

∂m
∆m1)(

∂u

∂m
∆m2)+(

∂L

∂m
∆m2)

∂u

∂m
∆m1+L

∂2u

∂m2
(∆m1,∆m2) = 0.

(47)

Substitute equation (47) into equation (42), we get,

〈∆m2,H∆m1〉M =
〈
∂u

∂m
∆m2,

∂2J

∂u2

∂u

∂m
∆m1

〉
U

(48)

+
〈
∂J

∂u
,
∂2u

∂m2
(∆m1,∆m2)

〉
U

. (49)

Define δu1 ≡ ∂u
∂m∆m1 which can be computed from Born approximation, as follows:

L(m)∆u1 = −(
∂L

∂m
δm1)u, (50)
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Use equation (33 and 50), and after some algebra,

〈∆m2,H∆m1〉M =
〈
∂u

∂m
∆m2,−(

∂L

∂m
∆m1)∗λ+

∂2J

∂u2
δu1

〉
U

−
〈
λ, (

∂2L

∂m2
(∆m1,∆m2))u

〉
U

−
〈
λ, (

∂L

∂m
∆m2)∆u1

〉
U

.

We then eliminate ∂u
∂m∆m2 term using equation (46), and get,

〈∆m2,H∆m1〉M = −
〈

(
∂L

∂m
∆m2)u, L−∗{−(

∂L

∂m
∆m1)∗λ+

∂2J

∂u2
∆u1}

〉
U

(51)

−
〈
λ, (

∂2L

∂m2
(∆m1,∆m2))u

〉
U

(52)

−
〈
λ, (

∂L

∂m
∆m2)∆u1

〉
U

(53)

= −
〈
µa + µb, (

∂L

∂m
∆m2)u

〉
U

(54)

−
〈
λ, (

∂2L

∂m2
(∆m1,∆m2))u

〉
U

(55)

−
〈
λ, (

∂L

∂m
∆m2)∆u1

〉
U

, (56)

where we define,

L(m)∗µa = −(
∂L

∂m
∆m1)∗λ, (57)

L(m)∗µb =
∂2J

∂u2
∆u1. (58)

Thus, our solution for Hessian in the general case:

〈∆m2,H∆m1〉M =
〈
µ, (

∂L

∂m
∆m2)u

〉
U

(59)

+
〈
λ, (

∂2L

∂m2
(∆m1,∆m2))u

〉
U

(60)

+
〈
λ, (

∂L

∂m
∆m2)δu1

〉
U

, (61)

with each wavefield computed as follows:
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L(m)u = f, (62)

L(m)∗λ =
∂J

∂u
, (63)

L(m)δu1 = −(
∂L

∂m
δm1)u, (64)

L(m)∗µa =
∂2J

∂u2
δu1, (65)

L(m)∗µb = −(
∂L

∂m
δm1)∗λ, (66)

For acoustic wave equation, we get,

H∆m =

 −
∫ T
0 (µa(x, t) + µb(x, t))∂2

t u(x, t)dt−
∫ T
0 λ(x, t)∂2

t ∆u1(x, t)dt∫ T
0 ∇̃∗(µa(x, t) + µb(x, t) · ∇u(x, t)dt+

∫ T
0 ∇̃∗λ(x, t)∇∆u1(x, t)dt,

 . (67)

with the 2 forward wave propagation and 2 backward wave propagation,

[mK∂
2
t − ∇̃ · (mρ∇)]u = f, (68)

[
1
K
∂2

t − ∇̃ · (1
ρ
∇)]∗λ =

∑
r

S∗
r (Sru− dr), (69)

[mK∂
2
t − ∇̃ · (mρ∇)]δu1 = −[∆mK∂

2
t − ∇̃ · (∆mρ∇)]u, (70)

[mK∂
2
t − ∇̃ · (mρ∇)]∗µa = S∗

rSrδu1, (71)
[mK∂

2
t − ∇̃ · (mρ∇)]∗µb = −[∆mK∂

2
t − ∇̃ · (∆mρ∇)]∗λ. (72)

The Hessian with respect to (K, ρ) therefore can be written as:

H

 ∆K

∆ρ

 =

 ∆K
K2

∫ T
0 (µa(x, t) + µb(x, t))∂2

t u(x, t)dt+ ∆K
K2

∫ T
0 λ(x, t)∂2

t ∆u1(x, t)dt

−∆ρ
ρ2

∫ T
0 ∇̃∗(µa(x, t) + µb(x, t) · ∇u(x, t)dt− ∆ρ

ρ2

∫ T
0 ∇̃∗λ(x, t)∇∆u1(x, t)dt

 .
(73)

For Gauss-Newton Hessian, we can follow similar derivation, and write:

HGN∆m =

 −
∫ T
0 µa(x, t)∂2

t u(x, t)dt∫ T
0 ∇̃∗µa(x, t) · ∇u(x, t)dt

 . (74)

The difference between the full Hessian and the Gauss-Newton Hessian can be expressed
as follows:

(H −HGN )∆m =

 −
∫ T
0 µb(x, t)∂2

t u(x, t)dt−
∫ T
0 λ(x, t)∂2

t ∆u1(x, t)dt∫ T
0 ∇̃∗µa(x, t)dt+

∫ T
0 ∇̃∗λ(x, t)∇∆u1(x, t)dt

 . (75)
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Processing of continuous data at Apache Forties for seismic
interferometry

Jason P. Chang

ABSTRACT

I process continuous data from the Apache Forties data set for use in studies relating
to passive seismic imaging. Spectrograms from multiple nodes indicate the presence
of strong, naturally-occurring seismic energy at frequencies below 1 Hz, as well as the
presence of seismic energy above 4 Hz that originates from the oil platform. After
ignoring times of active seismic shooting, I perform passive seismic interferometry on
over 2 days of hydrophone and vertical geophone data. For frequencies between 1.00
and 1.25 Hz, there are indications of Scholte-wave energy. However, the expected
wavelengths (approximately 150 m/s) at these frequencies are likely comparable to the
aperture of the array (approximately 400 m), which compromises the reliability of the
arrivals. For frequencies between 3.00 and 7.00 Hz, there are no clear indications of
interface waves. Asymmetry of seismic energy in the virtual source gathers suggests
that platform vibrations dominate the ambient noise field at high frequencies.

INTRODUCTION

Passive seismic interferometry suggests that cross-correlating simultaneous recordings of
ambient noise at two receivers can estimate the Green’s function between them (Lobkis
and Weaver, 2001; Wapenaar, 2004; Snieder, 2004). These estimated Green’s functions are
typically dominated by low-frequency interface waves, which have in turn been used for
tomographic imaging at primarily the regional and continental scales (e.g., Shapiro et al.,
2005; Sabra et al., 2005; Lin et al., 2007). Given the success of these studies, efforts have
shifted to applying this technique to recordings from exploration-scale seismic arrays. Fo-
cusing on frequencies in the microseism band (between 0.1 and 2.0 Hz), de Ridder and
Dellinger (2011) and Mordret et al. (2013) processed ocean-bottom cable recordings of am-
bient noise to recover interstation Scholte waves at the Valhall oil field. Energy in the
microseism band is generated by the natural interaction of water waves in seas and oceans.
It is different from microseismic energy, which originates from small earthquakes typically
induced by production and drilling activity. The microseism waves are used to tomographi-
cally image the reservoir overburden. Additionally, the dense node spacing associated with
exploration-scale arrays (approximately 100 m) allows for seismic interferometry to be ap-
plied to ambient noise at higher frequencies. For instance, Mordret et al. (2013) showed
that platform energy dominates the ambient noise field at frequencies above 2 Hz at the
Valhall field and used that energy to estimate shear-wave velocity along a 2D line.

In this study, we apply the seismic interferometry technique to recordings of ambi-
ent noise from a small array of ocean-bottom nodes (OBNs) in the North Sea. Although
this is four-component data, I only examine recordings from the hydrophone and vertical-
component geophone. First, I provide an overview of the OBN array and its continuous
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recordings. Second, I compute spectrograms to examine how the ambient seismic noise field
changes over time. Finally, I cross-correlate recordings to estimate interstation Green’s
functions over two frequency ranges. For the frequency range focused on the microseism
band, there are indications of coherent seismic events. However, they are likely not reliable
enough for use in a tomographic procedure. For frequencies between 3.00 and 7.00 Hz, there
are no clear seismic events. However, the asymmetry of energy in the correlations suggests
that the platform dominates the ambient noise field at these frequencies.

CONTINUOUS RECORDINGS FROM FORTIES

The Forties data set, provided to SEP by the Apache Corporation, consists of three groups
of OBNs centered at three different platforms in the North Sea. The nodes were deployed
as part of an active seismic survey aimed at imaging shallow gas pockets that could pose
potential drilling hazards. Unlike some other reservoirs in the North Sea, the Forties reser-
voir is not easily compacted and is unlikely to generate significant activity of this type. The
nodes were continuously recording, and because active seismic shooting had to be suspended
for a couple of days due to rough weather conditions, there is enough ambient noise data to
attempt to perform seismic interferometry. Furthermore, stormy weather conditions tend
to increase the upper limit of the microseism energy (de Ridder and Dellinger, 2011), which
is ideal in this case given the limited aperture of the OBN clusters.

For this study, we focus on hydrophone and vertical geophone components of one of the
three groups of OBNs. Referred to as Bravo, this cluster of OBNs consists of 52 4-component
nodes arranged in a hexagonal shape around a platform (Figure 1). The average node
spacing is 50 m, and the array aperture is approximately 400 m. Each node continuously
records for approximately 4 days at 2 ms sampling and is located roughly 120 m below the
sea surface. To prepare the recordings for ambient noise processing, I round the start times
up to the nearest hour and round the end times to the nearest hour. These times will not
be the same for all nodes, as they were not all deployed simultaneously.

Figure 1: Map of OBNs in the Bravo
array. The platform is in the cen-
ter of the array. Red dots indi-
cate virtual source locations. They
are also the nodes at which I com-
pute spectrograms. Blue dots indi-
cate receiver locations for the traces
shown later in the study. [ER]
jason1/. map-total
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SPECTROGRAMS

To investigate the change in frequency content over time in the continuous recordings, I
compute spectrograms of the hydrophone and vertical-component geophone at two nodes
(indicated by red dots in Figure 1). I divide the recordings into 5-minute time segments
with 50% overlap, compute the power spectrum of each segment, then plot them side by
side. To enhance important features, I plot the spectrograms on a log scale for frequencies
up to 8 Hz.

Figures 2(a) and 2(b) reveal the spectrograms for the hydrophone component at the
western and eastern nodes (Figure 1), respectively. Colors in both plots have the same clip.
The repeating horizontal patterns at regular frequency intervals on day 110 and days 111.5
to 112.5 indicate periods of active seismic shooting. Of more interest to this study is the clear
microseism energy found at frequencies below 1 Hz. As mentioned in the previous section,
active seismic shooting was suspended due to rough weather conditions. This is visible
starting around day 110, where the microseism energy increases dramatically right before
active shooting is halted. The microseism energy remains strong for a couple of days before
active shooting resumes and appears to be nearly the same strength at both node locations,
which is expected for low-frequency energy in a small array. At frequencies above 2 Hz,
there tends to be more energy when the node is closer to the platform. Similar patterns are
observed in the spectrograms of the vertical-component geophones (Figures 2(c) and 2(d),
corresponding to the western and eastern nodes, respectively). As before, the microseism
energy at both node locations is nearly the same strength. It is also apparent that there is
more energy at higher frequencies when the node is near the platform than when the node
is further away from the platform. Therefore, it appears that the energy source is well-
distributed in space at low frequencies and localized at the platform at higher frequencies.

In all the spectrograms, there is a streak of energy at 2 Hz that persists for roughly 1 day,
starting at day 110.5. The cause of high energy at this specific frequency is unknown. It
is observed in all spectrograms, suggesting it is due to a physical phenomenon, perhaps
related to the platform, and not due to instrument malfunction. Overall, there appears to
be significant microseism and platform energy in the data, which is promising for passive
seismic interferometry.

SEISMIC INTERFEROMETRY

To perform seismic interferometry on ambient noise, the data records must be synchronized
in time. Therefore, all node recordings are truncated to the latest start time and the earliest
end time amongst the group of nodes. Because three of the nodes had anomalously short
recording periods, I work with 49 out of the 52 possible nodes in Bravo. I then divide
the remaining continuous recordings into 2-hour time windows with 50% overlap for two
reasons. First, cross-correlating shorter, overlapping records and then summing them leads
to more rapid convergence than when cross-correlating the full recordings themselves (Seats
et al., 2012). This is particularly advantageous in this case, where there is only about 4 days
of data. Second, dividing the long recordings into shorter ones makes it easier to ignore
times when active seismic shooting is occurring. If the maximum absolute value of a trace
(bandpassed for frequencies between 4 and 50 Hz) is above a certain threshold, all traces
for that time segment are avoided when summing the correlation results. I end up using 52
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(a) (b)

(c) (d)

Figure 2: Spectrograms computed at two nodes (indicated by red dots in Figure 1). Hy-
drophone component for (a) western node and (b) eastern node. Vertical component
for (c) western node and (d) eastern node. The western node is close to the platform.
Warmer colors indicate higher power. Colors in all plots have the same clip. [ER]
jason1/. sp1H,sp2H,sp1V,sp2V
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out of the 74 possible 2-hour segments, leading to over 2 days of ambient noise data.

Passive seismic interferometry is performed by cross-correlating the recordings of ambi-
ent seismic noise at two receivers. Under ideal conditions, the result is an estimate of the
Green’s function between the two receivers, and it is typically dominated by interface waves
because they are the strongest wave modes in ambient seismic noise (Wapenaar et al., 2010).
Here, I apply a correlation procedure adapted from Bensen et al. (2007). To compensate
for expected variations in source amplitude over time and to broaden the bandwidth of the
correlation result without changing the phase information, I perform spectral whitening on
the traces prior to cross-correlation. In the frequency domain, the procedure is expressed
as:

[G(xB, xA, ω) +G∗(xB, xA, ω)] =
〈(

U(xB, ω)
{|U(xB, ω)|}

) (
U∗(xA, ω)
{|U(xA, ω)|}

)〉
, (1)

where G is the Green’s function between two receiver locations (xA, xB), U(x, ω) is the
spectrum of the wavefield at a given receiver location x, ∗ is the complex conjugate, 〈·〉 is
the time-averaged ensemble, | · | is the magnitude of the spectrum, and {·} is a 0.003 Hz
running window average used for normalizing the signal. This procedure is equivalent to
calculating the cross-coherence between two traces.

By cross-correlating one node with all other nodes, I am able to create a virtual source
gather. Here, I create virtual source gathers centered at the two node locations indicated
by red dots in Figure 1. For both the hydrophone and vertical-geophone components,
I investigate two frequency ranges: 1.00–1.25 Hz (for the microseism energy) and 3.00–
7.00 Hz (for the platform energy). Gathers are sorted by distance between the virtual
source and receiver. Figure 3 shows the hydrophone component, while Figure 4 shows the
vertical geophone component. For the lower frequency range, there are clear coherent events
from both virtual source locations that are potentially Scholte waves (Figures 3(a) and 3(c)
for the hydrophone; Figures 4(a) and 4(c) for the vertical geophone). However, for the
higher frequency range, there appears to be no clear coherent seismic energy (Figures 3(b)
and 3(d) for the hydrophone; Figures 4(b) and 4(d) for the vertical geophone). The gathers
are asymmetric, though, which indicates an uneven source distribution.

For a closer look at the lower-frequency waveforms, Figure 5 plots the correlation results
between the virtual sources and receivers shown by colored dots in Figure 1. I only show
the hydrophone component because the vertical geophone component looks very similar.
When the distance between the virtual source and receiver is larger (Figures 5(c) and 5(d)),
apparent Scholte-wave arrivals at negative and positive time lags are clear. When the
distance between the virtual source and receiver is smaller (Figures 5(a) and 5(b)), then
there appears to only be one Scholte-wave arrival near zero time lag.

DISCUSSION

Results of passive seismic interferometry indicate the shortcomings of the array when at-
tempting to extract Scholte waves from ambient noise in the microseism band. Given the
investigation frequencies and general North Sea Scholte-wave phase velocities between 200
and 400 m/s at those frequencies (de Ridder and Dellinger, 2011; Mordret et al., 2013), it
is very likely that the wavelengths of the estimated Scholte waves (optimistically around
150 m) are comparable to the aperture of the Bravo array (approximately 400 m). This
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(a) (b)

(c) (d)

Figure 3: Virtual source gathers of the hydrophone component. Virtual source locations are
indicated by red dots in Figure 1. Western source location (near platform): (a) 1.00–1.25 Hz
and (b) 3.00–7.00 Hz. Eastern source location: (c) 1.00–1.25 Hz and (d) 3.00–7.00 Hz. [CR]
jason1/. g32-Hlo,g32-Hhi,g05-Hlo,g05-Hhi
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(a) (b)

(c) (d)

Figure 4: Virtual source gathers of the vertical geophone component. Virtual source lo-
cations are indicated by red dots in Figure 1. Western source location (near platform):
(a) 1.00–1.25 Hz and (b) 3.00–7.00 Hz. Eastern source location: (c) 1.00–1.25 Hz and
(d) 3.00–7.00 Hz. [CR] jason1/. g32-Vlo,g32-Vhi,g05-Vlo,g05-Vhi
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(a) (b)

(c) (d)

Figure 5: Correlations of hydrophone data at 1.00–1.25 Hz from virtual sources and re-
ceivers shown in Figure 1. (a) Between the western virtual source and northern receiver.
(b) Between the western virtual source and southern receiver. (c) Between the eastern
virtual source and northern receiver. (d) Between the eastern virtual source and southern
receiver. The western virtual source is near the center of the array and is thus closer to the
receiver locations. [CR] jason1/. t32-03,t32-43,t05-03,t05-43
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would violate the far-field approximation for reliable travel times, where the distance be-
tween the virtual source and receiver should be at least three times the wavelength (Lin
et al., 2008). Thus, while the virtual source gathers appear to show Scholte-wave-related
arrivals, their travel times are unlikely to be reliable. This includes not only the correlations
between nearby nodes (Figures 5(a) and 5(b)), where there is only one apparent arrival with
a travel time near 0 s, but also correlations between more distant nodes (Figures 5(c) and
5(d)). Even though these distant nodes display strong events at both negative and positive
time lags, their apparent travel times of 3 s are unrealistic given the station spacings of
300 m and the expected velocities between 200 and 400 m/s seen in other regions of the
North Sea.

Ideally, there would be coherent energy at higher frequencies, which would correspond
to shorter wavelengths. From the spectrograms, it appears that the oil platform is the
dominant source of energy at frequencies higher than the microseism band. From the
high-frequency virtual source gathers, there is a clear asymmetry in the correlations that
supports this conjecture. Events at negative time lags correspond to energy traveling from
the receiver to the virtual source, while positive time lags correspond to energy traveling
from the virtual source to the receiver. Energy is found primarily at negative time lags
when the virtual source is east of the platform (Figures 3(d) and 4(d)). This is expected, as
the majority of the energy travels east toward the virtual source location from the platform.
Furthermore, energy appears to arrive at near-zero travel time at far offsets, which is an
indication of an active source in the region (Chang et al., 2014). Alternatively, energy is
found primarily at positive time lags when the virtual source location is near the platform.
Again, this is expected, as the energy is propagating away from the virtual source location
(the platform) to the other nodes. Therefore, there is substantial evidence that the platform
is the dominant source of energy at high frequencies. Unfortunately, the platform does not
seem to be energetic enough to stimulate strong interface waves that can be recovered
through standard seismic interferometry given the amount of ambient noise data available.

CONCLUSIONS

The Apache Forties OBN survey provided an opportunity to apply passive seismic inter-
ferometry to hydrophone and vertical-geophone data from a small, ocean-bottom array.
Spectrograms revealed that the microseism energy is nearly equally energetic across the
array, while energy at higher frequencies is dependent on distance from the platform, which
is the dominant source of noise at these frequencies. I then applied seismic interferometry
to times without active seismic shooting. At frequencies between 1.00 and 1.25 Hz, there
appears to be interface-wave-related energy. However, because the expected wavelength of
these waves are comparable to the maximum aperture of the array of 400 m, it is unlikely
the travel times associated with these events are reliable. At frequencies between 3.00 and
7.00 Hz, there are no indications of clear interface-wave arrivals. However, the asymmetry in
the correlations reaffirm that the platform is the primary source of noise at high frequencies.

Although the ambient noise data at the Forties is not immediately useful for seismic
interferometry and ambient noise tomography, it still contains potential for passive fath-
ometry. Rough weather conditions and more violent breaking waves at the sea surface
are ideal for the technique, which attempts to create shallow subsurface reflection images
by correlating passive up- and down-going energy. Understanding of the noise sources in
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and around the array is useful for creating filters to dampen horizontally-traveling waves,
including interface waves.
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Overview of the Apache Forties data set

Gustavo Alves

ABSTRACT

I present a dataset acquired in 2010 by Apache North Sea and made available to the
Stanford Exploration Project (SEP). The dataset is composed of three surveys acquired
with four-component ocean-bottom nodes placed under production platforms in a close
pattern. Active shooting was performed in a spiral geometry around the platforms at
short offsets. The goal of this acquisition was to identify gas pockets at shallow depths
and possible geo-hazards. This acquistion configuration can be advantageous for multi-
component data processing such as elastic Reverse Time Migration (RTM).

INTRODUCTION

Seismic acquistion is an essential tool in both the exploration and exploitation phases in
the oil & gas industry. During production, it can be used for 4D monitoring, by observing
seismic response changes in the reservoir and overburden, in order to improve the production
strategy. Seismic data can also be used to identify geo hazards at shallow depths, which
create a risk for drilling and other operations during production (Heggland, 2004).

ACQUISITION GEOMETRY

The data provided to SEP by Apache North Sea were recorded using four-component ocean
bottom nodes (4C OBNs). The nodes were arranged at each of the production platforms
in the survey area in a hexagonal array. Sources were shot in a coil pattern around the
platform. The total survey time for each field resulted in a few days of passive data. From
the passive data, active data was extracted in 9-second traces.

DATASETS

Bravo data

Data for the Bravo survey was acquired using 10,108 shots. There were 52 nodes laid out
in a hexagonal pattern. Figure 1 shows the source and receiver configuration.

Charlie data

Data for the Charlie survey was acquired using 10,494 shots. There were 53 nodes laid out
in a hexagonal pattern. Figure 2 shows the source and receiver configuration.
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Figure 1: Shot and receiver configuration for the Bravo survey. [NR] gcalves1/. recbravo
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Figure 2: Shot and receiver configuration for the Charlie survey. [NR] gcalves1/. reccharlie
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Delta data

Data for the Delta survey was acquired using 14,485 shots. There were 48 nodes laid out
in a hexagonal pattern. Figure 3 shows the source and receiver configuration.

Figure 3: Shot and receiver configuration for the Delta survey. [NR] gcalves1/. recdelta
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Industrial scale high-performance adaptive filtering with
PEF applications

Kaixi Ruan, Joseph Jennings, Ettore Biondi, Robert G. Clapp, Stewart A. Levin, and Jon
Claerbout

ABSTRACT

In most areas of SEP research, neither data nor models are truly stationary. As a
consequence, global fitting, regridding, and inversion rarely approach the ideal of in-
dependent, identically-distributed residuals. Here we design and develop parallel mul-
tidimensional adaptive filter routines parsimonious in both memory and computation,
suitable for industrial scale applications. We applied them to examples of three classes
of time and space variable adaptive Prediction Error Filters (PEF) applications: (1)
blind decon, (2) filling gaps in data, and (3) making random realizations of data; and
then, outline other areas where these tools will have a wide application.

INTRODUCTION

Estimating data covariance, or in the case of PEFs the inverse covariance, is a powerful tool
with a wide range of applications. Its uses include decon, missing data interpolation, signal
and noise separation, and fault detection. Because both seismic data and the subsurface
properties we want to infer from them are nonstationary, we need time- and space-variable
PEFs.

Time-variable filtering has a long history with space-variable filtering only a few steps
behind. In the context of very large, e.g., terabyte, datasets, big challenges must be over-
come to be practical, as follows:

• Constraining memory usage

• Minimizing arithmetic complexity

• Simplifying the parameter space

• Enabling an efficient parallel implementation

• Avoiding instability

• Constructing a tool that can easily be shared in a wider context with many other
people.

Over the last twenty-five years several attempts of capturing non-stationary covariance
have been attempted at SEP. Schwab (1998) solved a series of stationary problems using
overlapping patches. The downside of using patching is the large parameter space (size
of patch, amount of overlap) that must be searched to find an acceptable result. Crawley
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(2000) solved for a global non-stationary covariance by creating micro-patches and requiring
them to vary smoothly. The micro-patch approach adds significant memory requirements
(for each data point you must store which micro-patch with which it is associated) and the
resulting indirection reduces performance. A third approach is to linear interpolate from a
sparse grid of filter locations. The downside of this approach is that it requires interpolating
the filter at every location. The interpolation cost can be minimized by being careful on
how you interpolate between the sparse grid of filters Hale (2006). Here we use this sparse
grid of filters approach.

In this progress report we describe our method and show a small number of preliminary
results on 2-D seismic data, 2-D images, and on 3-D synthetic data. We have not yet done
enough tests to recognize all its opportunities and limitations. We have not yet documented
a clean user interface. But we think the code is working and look forward to providing more
examples and documentation for general use.

First we summarize the basic principles of multi-dimensional prediction-error filtering
(PEF). Then we describe our Fortran 2003 implementation of non-stationary filter estima-
tion. Finally, we show examples that support our claim to have built an important basic
tool. However, we have not yet tested use of this tool in general inversion problems other
than deconvolution and interpolation.

PREDICTION ERROR FILTERS

Before diving into the enticing details, recall the textbook definition of a multidimensional
prediction error filter (PEF) which underlies our time-variable IID (TV-IID) applications.

In one dimension, it vanishes before t = 0; it takes a unit value at t = 0; and it has
coefficients determined by least squares for t > 0. In 2-D, the unit value is along one side
of a rectangle. Analogous to the 1-D PEF vanishing before t = 0, in 2-D there are zero
values along one edge of the rectangle before (or after) the unit value. In 3-D the unit value
is along one face of a box, as depicted in Figure 1. The enticing mathematical feature of
PEFs is that their filter outputs are white. More precisely, the output tends to whiteness
as the filter size increases. This fact is shown in GIEE Claerbout (2014) chapter 7 (based
on chapter 4).1

In multidimensional PEFs, once their coefficients have been learned (by least squares),
contain the inverse spectrum of the input data. The PEFs are valuable because they have
many uses that include:

1. Conditioning residuals for inverse problems

2. Blind deconvolution

3. Creating random realizations

4. Filling missing data

1While that source only proves whiteness in a 1-D sense, its helix interpretation of the convolution of
multidimensional data and filter as an equivalent 1-D convolution of unwrapped data and unwrapped filter
imply the N -D result.
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Figure 1: A 3-D causal filter at the
starting end of a 3-D helix. [NR]
kaixi1/. 3dpef

1

Figure 2 shows the boundary effects that arise when the PEF is not allowed to access
data outside a rectangular mesh. (It is left-right reversed compared with Figures 4-6.) Zeros
around three edges of our Figures show the filter size.

Figure 2: Domain of inputs and out-
puts of a two-dimensional filter like
a PEF. [NR] kaixi1/. rabdomain

Input

Output

DESIGN CONSIDERATIONS: THREE BOXES

Confusion may arise because distance scales arise in three contexts, (1) data fabric, (2)
filter, and (3) blending. In 2-D these distance scales define boxes. In 3-D cubes.

1. Fabric box. Data being investigated will have characteristic lengths relating to how
fast its spectrum changes. This box subjectively defines the size of a region where the
spectrum is roughly constant. For example, you might presume on one side of a CMP
gather that hyperbolic moveout roughly allows interpolation along 3 to 4 straight
lines.

2. Filter box. The application programmer or end user must choose the filter size. It is
given in points on the axis, e.g., (20, 2) might mean a filter 10 points long on the time
axis acting on 2 neighboring traces.
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3. Blending box. The spacing on the coarse mesh that filters are defined. They are
linearly interpolated to the data mesh. For example, a blending box size of (1/3, 1/3)
means we count 3 boxes along each axis meaning 4 points along each axis at which
filters are defined.

Having a smaller blending box than the fabric box allows the filter field to adapt to the
local degree of nonstationarity. On the other hand, too small a blending box introduces
the danger of overfitting. Examples in our immediate future should provide us a better
understanding of appropriate ratios among these three box sizes. Unfortunately, the fabric
box size is intrinsically space variable so ultimately we appear to be facing deeper issues
sometimes glibly called “deep learning.” Hopefully, by limiting our examples to realistic
seismic data we can provide users with useful guidance for parameter setting.

METHOD AND IMPLEMENTATION

Our TV-IID operator applies a linear interpolation to filter coefficients defined on a coarse
grid to calculate filter coefficients for each point in the denser data mesh. These interpolated
filter coefficients are then applied at that data mesh location. Although it is theoretically
equivalent to the chain of two well-known operators that we already have in the current
library, we did not adopt this approach because it is memory intensive. We concoct a new
operator that blends the two in a computationally efficient way to make it practical.

Filter design

We designed our linearly varying filter in an object-oriented manner using Fortran 2003.
The main filter class contains a 2-D lag array that contains the coordinates describing the
shape of the filter and also two arrays that contain locations of the filter coefficients on the
coarse grid. The class requires that the user provide the filter spacing they desire on each
axis from which it computes and builds bounds for the blending boxes b{egin} and e{nd}
arrays.

This filter type also contains an array containing the estimated filter coefficients. We
have designed this array for the first dimension to contain the filter coefficients, and the
remaining dimensions to be the number of filters along each axis present in the data. With
this design, the number of dimensions of this array will grow with the size of the problem.
To account for this growth, we extend our filter class, to 1-D, 2-D, 3-D, . . . types.

Code parallelization

Because the filter coefficients on a data point only depend on the patch inside which it
resides (they are interpolated from those defined on the corners of the patch), each patch
can perform the TV-IID operation independently. In our code the outermost loop is over
patches and we can easily use tools such as OpenMP for parallelization.
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Fast linear interpolation in one dimension

Given an n points 1-D grid and any filter coefficient f_1 at the beginning and f_n at the
end of the grid, the traditional linear interpolation looks like the following:

real :: g,h

integer :: i,n

do i=2,n-1

g=(i-1)/(n-1)

h=1-g

f_i= h*f_1+g*f_n

end do

Fast interpolation removes a division, subtraction and two multiplications from the inner
loop, as follows:

real :: delta

integer :: i,n

delta=(f_n-f_1)/(n-1)

f_i = f_1

do i=2,n-1

f_i= f_i+delta

end do

We can trace the history of this algebraic reorganization back to Newton’s method of divided
differences (Newton (1687); Stirling (1730)). It is the simplest example of interpolation by
numerical solution of differential equations.

Design discussion

We deliberately did not use an explicit memory array for the values intermediate between
f_1 and f_n because they can, and usually would, be computed and applied on the fly.

Our “fast interpolation” is recursive in the sense that filter coefficient updates are tied
to local shifts of the filter by 1 grid point. It is not a significant impediment for this method
because: (a) Our main parallelism is over an outer loop of patches, (b) If we start from
the center of a patch, we can simultaneously work both left and right, up and down, etc.,
i.e., 2n directions in n dimensions2, and (c) Even these inner loops could be unrolled to
compute interleaved entries with a multiple of delta should the need arise.

While the difference in arithmetic cost is an attractive factor of approximately three per
dimension, an equally important benefit in higher dimensions is that we avoid repeatedly
accessing coarse grid filter coefficient arrays (f_1 and f_n in the above example) that are
widely separated in memory.

Code samples

Using the above example, the 1-D forward operator is shown here. The reader may easily
identify the part of fast linear interpolation and the part of convolution.

2Snaking back and forth columns and rows helps preserve locality and reduce cache misses. More sophis-
ticated “space-filling paths” (see, e.g., Savage (1997); Knuth (2005); Flahive (2008)) that tend to optimize
parallel locality are also possible.
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subroutine forward1D(m,f,d) !output d=f*m

real, dimension(:) :: m

type(lv_filter1d) :: f

real, dimension(:) :: d

integer :: i,j,id

real,allocatable :: b0(:),d0(:)

allocate (b0(size(f%coef1,1)),d0(size(f%coef1,1)))

do i = 1,size(f%b,2) ! Loop over patches

b0=f%coef1(:,i)

d0=(f%coef1(:,i+1)-b0)/(f%e(1,i)-f%b(1,i)+1)

do id=f%b(1,i),f%e(1,i) ! Loop over each point in the patch

do j = 1,size(f%coef1,1) ! Loop over the filter coefficients

d(id+f%lag(1,j))=d(id+f%lag(1,j))+b0(j)*m(id)

end do

b0=b0+d0

end do

end do

deallocate(b0,d0)

end subroutine forward1D

The above example implements the concept of convolving a filter and vector to produce
another vector. We can write this in matrix form in two different ways. The first approach
is

d = Mf , (1)

where M is convolving with our model, f is our filter, and d is our data. The second
approach is

d = Fm, (2)

where F is convolving with our filter, and m is our model. The two approaches imply
two different adjoints. The first approach, equation 1 is needed to estimate the filter. The
second approach, equation 2 is needed to apply the inverse covariance to a model. We have
implemented both types of adjoints for up to three dimensional models.

EXAMPLES

We tested our library on several different datasets with different objectives. In our first
example we looked to see how our non-stationary filter performed when confronted with an
image with sharp changes in covariance. In our second example we attempted to capture
only smooth changes in our covariance, and use what was not captured to find anomalies.
Our final example shows a 3-D adaptive prediction error output for a synthetic with fine
layering, faulting, and a wide range of dips.

Basket fabric data

Our first example was to check make sure our filter estimation was producing reasonable
results. We chose the basket fabric from Claerbout (2014) because it had significant spatial
variation that confused stationary filtering. We did not expect to perfectly capture the
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covariance because the abrupt change in dips in the fabric breaks our fundamental assump-
tion of smooth change implied by our filter interpolation. We first estimated the covariance
by solving in a least-squares sense the objective

0 ≈ Df , (3)

where 0 is a vector of zeros, D is convolution with our data, f is our inverse covariance PEF
estimate. Viewing f is uninformative. To get a sense of how effective our representation
of the covariance was, we attempted to see the inverse of f by estimating the least squares
objective function represented by

n ≈ Fm, (4)

where n contains random noise. Any random noise vector in equation 4 gives a random
realization of data. F is convolving with our PEF representation of the inverse covariance,
and m is our model that should now have the same covariance (the inverse of the inverse
covariance) as our original data. In addition, we inspected the result of filtering our data d
with our PEF representation,

r = Fd, (5)

where r should be IID if we perfectly captured the model’s spectrum. We estimated the
fabric’s spectrum using both a stationary (Figure 3(a)) and non-stationary (Figure 3(b))
filter. In each figure the left panel shows the original fabric, the center panel shows m
from equation 4, and the right panel shows the residual from equation 5. Note how for the
stationary case we see the same dips everywhere in the center panel of Figure 3(a), while
we see changing dip pattern in the non-stationary case (Figure 3(b)). For the stationary
case in the right panel of Figure 3(a), we can clearly delineate the boundaries where the
dips changed in the original fabric, while in the non-stationary case these changes are not as
obvious. In both cases the residual is approximately the same amplitude. As expected, the
non-stationary filter did not do a significantly better job in capturing the fabric’s covariance.
Looking at the center panel of Figure 3(b) we see it attempted to explain the abrupt changes
through smoothly changing the dips. Exactly what we hoped to see.

Feature identification

One of the advantages of our approach to estimating non-stationary covariance is that we
have fewer adjustable parameters as compared to other approaches. Our approach requires
us to define the shape of the PEF and the distance between our control points where the
different PEFs sit. Claerbout (2014) gives a fuller description of PEF design, but for this
paper two concepts are important. In the stationary case the length of the filter along the
time axis controls the range of dips we can see and how accurately we can capture a wavelet
(more points implies finer sampling as a function of frequency). In the stationary case the
number of rows defines how many dips we wish to capture. In the non-stationary case
these rules generally still hold. With our non-stationary approach we also set the distance
between our control points, which generally determines the rate of dip spectrum change
we want to capture. The “generally” used above is because these parameters do interact.
Adding rows to a PEF will allow it to find additional dips (that might be a function of
non-stationarity). As the control points get closer together different PEFs can start to
detect different dips that are actually stationary in nature.



182 Ruan et al. SEP-160

(a)

(b)

Figure 3: Basket weave: (a) Stationary, (b) Non stationary. A 45◦ trend dominates. Re-
alization: On the stationary we see the 45◦ trend everywhere. Residual: Trends are less
pronounced. [ER] kaixi1/. basket-s,fabric-ns

For our second test we wanted to see how well a non-stationary PEF could capture how
the spectrum of an image changes in frequency content as a function of time and dip content
as function of (mainly) space. We made the choice to not try to capture fast changes. To
accomplish these goals, we designed our PEF so it was limited in how many dips it could
capture, and we put a significant distance between our control points. Figure 4(b) shows
the result. Again the left panel show the original data, the center panel the simulated
data using equation 4, and the right panel the residual (equation 5). For comparison we
did the same test using a stationary filter (Figure 4(a)). If you look at the residual of the
stationary result you can still clearly see bedding structures throughout the residual. In
the non-stationary residual almost all of the horizontal bedding structure is absent. The
simulated data shows why. The non-stationary simulated data have the same changing
dip pattern seen in the original image while stationary result only shows the dominant dip
direction. As mentioned, we carefully chose our parameters to limit the number of dips we
could capture. Note that in the residual of the non-stationary case the diffractions are the
dominant feature.

Qdome 3-D

The Qdome 3-D quarter dome synthetic Claerbout (1993) shown in Figure 5(a) has a wide
range of dips and azimuths, including aliased reflectors, and so provides an appropriate
challenge for our nonstationary prediction error filtering. The prediction error of Figure
5(b) is a mixed result. On the positive side, it removed a large percentage of the smooth
bedding amplitudes and clearly outlined the location of the fault surface. On the negative



SEP-160 TV-IID 183

(a)

(b)

Figure 4: Gulf of Mexico seismic stacked section: (top) stationary, (bottom) nonstationary.
Random realization: The nonstationary preserves the fault location because it is embed-
ded in the local PEF. While stationary scatters low frequencies throughout, nonstationary
keeps them at early time. Residual: The stationary does not drive down the horizontal
layers very well because their slopes vary with location. [ER] kaixi1/. wg-s,wg-ns
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side, we have left significantly more bedding texture than in our earlier seismic Gulf of
Mexico data example and we have, unexpectedly, not handled the steep aliased dips along
the left hand side. Deadline pressure did not allow exploring various filter shapes and sizes.

CONCLUSIONS AND DISCUSSION

We presented an addition to the SEP inversion library to capture non-stationary covariance.
We tested the library on a series of problems including feature identification and missing
data. In the future we will extend this work into even higher dimensional spaces and use it
for non-stationary decon and signal and noise separtion.
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(a)

(b)

Figure 5: (a) Original Qdome data. (b) Prediction-error residual. The blank borders tell
us the size of our 20× 10× 10 filter stencil. Here the horizontal display exaggeration is 2:1
in x and 4:1 in y relative to the z axis. [CR] kaixi1/. qdome,qdome-rsd
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Stable reorientation for the Forties dataset

Stewart A. Levin and Jason P. Chang

ABSTRACT

Traces from the nodal receivers used in the Forties platform undershoot require rota-
tion to provide consistent multicomponent orientation. A quick quality control check
on input data that were within just a few degrees of the desired North-East-Vertical
orientation found vector magnitude changes approaching 25%. Inspecting the code
in the existing module that applied nodal reorientation, the presence of an IF test
against an arbitrary choice of epsilon, explicit unit vector renormalization, and angle
transformations that their author questioned spurred us to derive and apply a stable
and robust alternative that avoided those issues.

INTRODUCTION

The seafloor nodes used in the Forties platform undershoot deliver four output traces: one
hydrophone and three geophone records. In addition to an X heading, three tilt angles,
one each for X, Y and Z, are provided in the SEG Y trace headers. These angles provide
sufficient information for reorienting the geophone outputs to Vertical, North and East.
The challenge is to ensure that the transformation(s) derived from those angles preserves
amplitude fidelity and component orthogonality. We emphasize that, while rotation matri-
ces appear throughout the development, we are not “rotating” data but understanding out
how to reexpress it in various useful choices of coordinate systems.

THEORY

The vertical components of the X, Y and Z unit direction vectors are given by the sines of
their respective tilt angles θx, θy, θz. With these nodes, positive is upward and X-Y-Z, like
the original Galperin G1-G2-G3 directions1, are a right handed coordinate system. We need
to determine how the tilted geophone axes relate to the global E-N-V coordinate system.

To help understand and translate it into a conventional matrix notation, we dredge up
our basic linear algebra. Let (p1, p2, p3) be the orthonormal vector basis in which a vector
v of interest (a, b, c) is expressed, i.e. v = ap1 + bp2 + cp3, and let (q1, q2, q3) be the
orthonormal vector basis in which we want to reexpress v. The coefficients (â, b̂, ĉ) are
obtained via the dot product of the new basis with v:

â = aq1 · p1 + bq1 · p2 + cq1 · p3

b̂ = aq2 · p1 + bq2 · p2 + cq2 · p3

ĉ = aq3 · p1 + bq3 · p2 + cq3 · p3

1See, for example, Grazier (2009) for a detailed discussion of the Galperin sensor configuration.
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which, in matrix form, says â

b̂
ĉ

 =

 q1 · p1 q1 · p2 q1 · p3

q2 · p1 q2 · p2 q2 · p3

q3 · p1 q3 · p2 q3 · p3

  a
b
c

 . (1)

To go the other way, the matrix inverse is its transpose, and therefore, a
b
c

 =

 q1 · p1 q2 · p1 q3 · p1

q1 · p2 q2 · p2 q3 · p2

q1 · p3 q2 · p3 q3 · p3

  â

b̂
ĉ

 . (2)

Given a rotation R that transforms the pi to qi, we initially express the vectors pi

and qi in terms of the pi basis itself, and place them as matrix columns in P = I and
Q respectively. With this representation, we have simply Q = R, and the transformation
matrix in equation (1) becomes RT and, correspondingly, the transformation matrix in
equation (2) is simply R, which tells us that when we construct a rotation, we should apply
its inverse to get the proper coordinate transformation.

The key step for nodal reorientation is to determine the orientation of a horizontal
axis of rotation that is consistent with both the X and Y tilts. Working backward from
the local E-N-V right handed orientation, let (cosα, sinα, 0) be the to-be-determined unit
vector perpendicular to this initial axis of rotation. Changing coordinates for this vector to
become (1, 0, 0) is accomplished by rotation 1

0
0

 =

 cosα sinα 0
− sinα cosα 0

0 0 1

  cosα
sinα

0

 . (3)

Applying this rotation to the original (1, 0, 0) and (0, 1, 0) unit vectors converts them to
(cosα,− sinα, 0) and (sinα, cosα, 0) respectively.

Rotating downward by the angle φz = π/2− θz is accomplished by multiplication with
the matrix  cosφz 0 sinφz

0 1 0
− sinφz 0 cosφz

 =

 sin θz 0 cos θz

0 1 0
− cos θz 0 sin θz


and produces the matrix cosα sin θz sinα sin θz cos θz

− sinα cosα 0
− cosα cos θz − sinα cos θz sin θz

 .

From the last row of this matrix we see that the E and N vertical components of the are
− cosα cos θz and − sinα cos θz. As the nominal vertical axis is tilted, the actual vertical
measurements in the E and N directions are v sin θx and v sin θy respectively, where v is the
measurement on the nominal vertical axis. Therefore α is given by atan2 (− sin θy,− sin θx),
where atan2 is the C or Fortran library routine. (If both θx and θy are zero, any value
returned is fine and should the library raise a domain error [EDOM], we can set α = 0.)
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We now rotate back to global coordinates using the transpose of the matrix in equation
(3), which results in the transformation matrix sin2 α+ cos2 α sin θz sinα cosα sin θz − sinα cosα cosα cos θz

sinα cosα sin θz − sinα cosα sin2 α sin θz + cos2 α sinα cos θz

− cosα cos θz − sinα cos θz sin θz

 . (4)

Because we are concerned that rotating by α and then by −α may result in precision
cancellation, we applied trigonometric identities

sin2 γ

2
=

1− cos γ
2

,

cos2
γ

2
=

1 + cos γ
2

,

sin 2γ = 2 sin γ cos γ ,
and

cos 2γ = 2 cos2 γ − 1 = 1− 2 sin2 γ

to recast this matrix into the equivalent form cos2 φz

2 − cos 2α sin2 φz

2 − sin 2α sin2 φz

2 cosα sinφz

− sin 2α sin2 φz

2 cos2 φz

2 + cos 2α sin2 φz

2 sinα sinφz

− cosα sinφz − sinα sinφz cosφz

 , (5)

where φz = π/2− θz as before.

After this transformation, the original E direction unit vector is generally no longer at
a 90◦ azimuth. Call the counterclockwise rotation of that direction from due east β. From
the first column of matrix (5), we immediately find that

β = atan2 (− sin 2α sin2 φz

2
, cos2

φz

2
− cos 2α sin2 φz

2
) ,

which says that we have calculated the E-N-V components of what the original X-Y-Z unit
vector configuration would be if its heading was π/2 − β instead of the actual heading
h of the X component. The two differ by an angle of (π/2 − h) − β radians measured
counterclockwise from E.

This final correction is handled just the same as in (3) with α replaced by π/2− (h+β)
and leads to the transformation matrix sin(h+ β) cos(h+ β) 0

− cos(h+ β) sin(h+ β) 0
0 0 1

 . (6)

By transposing the sequence of transformations, we have the following stable conversion
of the X-Y-Z sensor orientation to E-N-V global coordinates: E

N
V

 =

 cos2 φz

2 − cos 2α sin2 φz

2 − sin 2α sin2 φz

2 − cosα sinφz

− sin 2α sin2 φz

2 cos2 φz

2 + cos 2α sin2 φz

2 − sinα sinφz

cosα sinφz sinα sinφz cosφz

×

sin(h+ β) − cos(h+ β) 0
cos(h+ β) sin(h+ β) 0

0 0 1

  X
Y
Z

 .
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To apply the calculated rotation matrix to our data, we must remember that each data
sample constitutes the time derivative of a 3-vector displacement from an origin. In terms
of the displacements, the progressive columns of the rotation matrix are the original X, Y
and Z unit vectors expressed in E-N-V coordinates. Writing the displacement as the linear
combination pX + qY + rZ of coordinate displacements says we should multiply (p, q, r)
by the rotation matrix. Because the time derivative commutes with multiplication by a
time-independent matrix, multiplying velocities (or accelerations) by the rotation matrix is
also the correct operation.

Should we want, as is typical, the first component of our output to be northward motion
and the second eastward motion, we need only flip the order of the E and N components to
complete the transformation.

EXAMPLE

To confirm the theory, we applied it to nodes in the Forties platform undershoot survey.
The first check was to see if, indeed, the transformations did preserve vector magnitudes, so
we grabbed an arbitrary G1-G2-G3 sample with tilts of θx = 0.27◦, θy = 1.79◦, θz = 89.99◦,
a heading of 353◦ and converted it to X-Y-Z and N-E-V. The results in Table 1 confirm
the norm preservation. Applying the transformation to a node that had 10 to 15 degrees

Galperin symmetric Local axis rotated Global axis rotated
G1 -13805 X 11672 N 10674
G2 -4078 Y 7478 E -8846
G3 6498 Z -6159 V -6156

Norm 15168 Norm 15168 Norm 15168

Table 1: Vector norm QC check for node geophone reorientation.

of vertical tilt and a heading 12 degrees away from the North, yielded the correction from
Figure 1 to Figure 2 where we have displayed the relative RMS amplitudes for each shot
location around that node.
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Figure 1: RMS of X component for node with heading 348◦. [ER] stew1/. x

Figure 2: RMS of N component after reorientation. [ER] stew1/. n
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Fortran calling C: Clock drift correction

Stewart A. Levin

ABSTRACT

Seafloor nodal clock drift is a skew that is taken as distributed linearly across the time
between GPS synchronizations. When it came time to correct such skew in a nodal
field dataset, I wanted to use the well-tested, accurate 8 point sinc resampler in the
Colorado Schools of Mines Seismic Unix (SU) package while staying within the existing
Fortran 2003 code I was modifying. In this short note I illustrate how I used the BIND
features of modern Fortran to accomplish this.

INTRODUCTION

It is currently infeasible to synchronize actively deployed seafloor nodal recorders with GPS
signals. As a result, the internal clocks of the nodes can, and almost surely will, drift away
from the GPS standard between the time they are deployed and the time they are retrieved.
Lacking any other detail on the drift progress, it is assumed to be linear with time.

Correcting for this drift requires some interpolation between samples, which, as with
statics corrections, is best deferred to as late as possible in any processing sequence in
order to do the least damage to the signal. In most cases, the drift is treated directly as a
static. However, during extended recording such as multi-day passive recording, the change
in drift between the start and end of such traces should, and can, be taken into account by
adjusting the sample interval from, e.g., 2 msec to 2.000004 msec, and then, for convenience,
resampling back to the nominal sample interval.

CWP TO THE RESCUE

While a quick and dirty linear interpolation was enough to generate some preliminary dis-
plays of moved-out nodal common receiver records this summer, linear interpolation is gen-
erally too damaging to higher frequency content than is normally acceptable. (See, however,
Levin (2012) for exceptions.) Fortunately, the widely used SU software (www.cwp.mines.edu/cwpcodes)
contains a high quality1 8-coefficient approximate sinc interpolator shfs8r written in C by
Dave Hale that has a maximum error less than one percent for frequencies up to 60%
Nyquist.

Much of the software at SEP is written in Fortran. As the reader is probably aware,
invoking a C routine from Fortran has traditionally been a system and compiler dependent
process, involving special wrappers to translate between naming conventions and argument
handling. Recognizing this, modern Fortran standards, starting with the Fortran 2003
standard, provide a BIND language mechanism for calling C routines. This, in effect, allows

1Admittedly, we caused a segfault the first time we used it! Bug fix sent to CWP.
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us to write a “universal wrapper” for the C routine by means of an interface definition. For
shfs8r this definition is:

interface
subroutine CWPshfs8r(dx,nxin,fxin,yin,yinl,yinr,nxout,fxout,yout) &

BIND(C,name="shfs8r")
use iso_c_binding, only: c_int, c_float
REAL(C_FLOAT), VALUE :: dx
INTEGER(C_INT), VALUE :: nxin
REAL(C_FLOAT), VALUE :: fxin
REAL(C_FLOAT), DIMENSION(nxin) :: yin(:)
REAL(C_FLOAT), VALUE :: yinl
REAL(C_FLOAT), VALUE :: yinr
INTEGER(C_INT), VALUE :: nxout
REAL(C_FLOAT), VALUE :: fxout
REAL(C_FLOAT), DIMENSION(nxout) :: yout(:)

end subroutine CWPshfs8r
end interface

where I opted to use a different Fortran name for shfs8r just to provide a clue as to the C
routine’s origin.
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Anatomy of a header sort

Stewart A. Levin & Yinbin Ma

ABSTRACT

Routine trace sorting at SEP is basically a grid sort. When faced with spiral shooting
around sea-bottom nodes, defining an offset grid was nonintuitive. Leveraging the
venerable Unix disk-based sort program, we were able to complement our Sort3d
with a gridless header SortByHdrs program capable of handling a couple billion traces
if needed. Here we highlight some important subtleties in this approach.

INTRODUCTION

For some nodal data QC we applied hyperbolic moveout (LMO-like, not NMO-like) in order
to assess orientation, drift and water velocity corrections as a function of offset. In this case a
spiral shooting geometry made applying our usual grid-based Sort3d problematic. As years
ago Dr. Levin had written a sort program for the massive first-generation SEAM dataset
(www.seg.org/resources/research/seam), he confidently proposed, and we developed, a
derivative module that simply sorted on trace header values so that we didn’t need an
offset-defined grid. Like the SEAM sort, the engine for this new sort is also the venerable
Unix sort program.

SUBTLETIES

Unix sort operates on text files, not binary files. Therefore, to use it to sort SEP binary
files, we create a textual index file with printed values for header keys and a sequential
trace number. After sorting on the key values, we read back the reordered trace numbers
to select and process the actual headers and traces.

Unix sort is capable of handling more than 231 − 1 records, but since current seplib
query and disk block access routines use four byte integers, that is the maximum number
of traces we can sort.

The only (well) supported SEP trace header key formats are 32 bit integers and floats,
the printed values of which are understood by GNU sort’s numeric comparison routines.
To avoid tangling with floating point format precision selection, we use the observation
that nonnegative IEEE floating point bit patterns increase monotonically when viewed as
integers and hence sort order is preserved when that bit pattern is printed as an integer.
For negative floating point numbers, we use the negative of the bit pattern of its absolute
value. One issue with the numeric sort in general is that it is locale dependent. We handle
this by overriding the default locale with LC ALL=C for the sort process.

With network mounted filesystems it is notoriously difficult to ensure that a file written
by one process can be immediately and fully seen by another process. This is not specific
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to the processes being on different computers, though that is where it is most often seen (or
not seen). To bypass this potential problem, we communicate all data between SortByHdrs
and sort via pipes instead of shared disk files. The SEP datapath query is used to set a
suitably large directory for sort’s scratch files.

There are times when someone might want to interrupt a sort, but does not want to
corrupt what has already been sorted due to partially completed I/O. We use a signal
handler to set a graceful termination flag in the event of an interrupt.

The more recent versions starting with 8.6 (2010-10-15) of GNU sort automatically
use multiprocessor parallelism for speed. Checking around at SEP, revealed that all the
machines we’ve used have versions prior to that. A good reason to do some long delayed
upgrading.

Finally, we explicitly wait on the sort process to terminate. This avoids possible “zom-
bie” processes and undeleted temporary disk files. In the SortByHdrs code, this wait is
directly for the sort process. When a more traditional system() or popen() mechanism is
used to start a process, it is the shell that spawns the command and not the command itself
that is the target of the wait.
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