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ABSTRACT

Tomographic full waveform inversion (TFWI) provides a robust but expensive
method to invert the seismic data. Scale separation of the model greatly reduces
the cost but adds complexity to theory and the implementation of the inversion.
In this paper, I provide two approaches that reduce the complexity of TFWI.
First, I rederive TFWI with one model only in an abstract formulation that is
applicable to any form of wave-equation. Then, I provide a new approximation
to the inversion that can potentially provide more accurate results.

INTRODUCTION

Previously, we reduced the cost of TFWI by separating the extended model into
two components: a non-extended smooth background and an extended rough pertur-
bation (Biondi and Almomin, 2012; Almomin and Biondi, 2013). This might have
caused some confusion on the resulting relationship and balance between these two
parameters and their relationship to the original model. Furthermore, the interpre-
tation of these two parameters limited the way we could separate them and increased
the difficulty of moving to different wave-equations, such as the elastic. To overcome
these limitations, I first derive the “original” TFWI in an abstract way that makes
it applicable to different forms of the wave-equation. Then, I derive TFWI using the
two-parameter approach. Next, I rederive TFWI while keeping one abstract model.
Finally, I provide an alternative method to derive TFWI that is potentially more
accurate than the previous TFWI and closer to the original TFWI.

THEORY

To solve any nonlinear inversion problem in a gradient-based method, we only need
to evaluate two quantities: the objective function and the gradient. Evaluating the
objective function requires the forward modeling operator whereas evaluating the
gradient requires the linearized adjoint operator, i.e., the adjoint of the linearized
forward operator. The linearized forward operator can be computed simply by taking
the derivative of the forward modeling operator with respect to the model space.
This linearized operator relates a (preferably small) perturbation of the model space
to a perturbation in the data space. In the wave-equation, the effect of linearized
operator is an explicit scattering of the waves by the model perturbations or an
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imaging these perturbations by the adjoint operator. I will refer to this type of
scattering as linearization scattering. For the purposes of this report, I will ignore
the regularization term of TFWI and only focus on the data fitting term. Moreover,
a tilde (∼) above a parameter or operator indicates that it is extended.

TFWI

First, we look at TFWI without any approximations or shortcuts, which I refer to as
the original TFWI. The original TFWI objective function is:

JTFWI(m̃) =
1

2
‖f̃(m̃)− dobs‖2

2 =
1

2
‖r(m̃)‖2

2, (1)

where m̃ is the extended model, f̃ is the extended forward modeling operator, dobs is
the observed surface data, and r is the residual. In the extended modeling operator,
all parts of the extended model interact with the wavefield in every propagation step,
which is the main source of cost increase in computation. The gradient of the objective
function is:

∂JTFWI(m̃)

∂m̃
=

(
∂r(m̃)

∂m̃

)∗

r(m̃). (2)

The derivative of the residual is computed as:

∂r(m̃)

∂m̃
=

∂ f̃(m̃)

∂m̃
= L̃(m̃), (3)

where L̃ is the extended linearized modeling operator. I can now compute the gradient
as follows:

g(m̃) = L̃∗(m̃)r(m̃). (4)

Although the previous equations are simple and direct, they can be very expensive
and difficult to compute, depending on the extension axes of choice. Therefore, we
need to find a cheaper approach to approximating these computations.

Two-parameter approximation

The previously published approximation to TFWI utilizes the two-parameter approx-
imation that separates the extended model into two components:

m̃ ≈ b + p̃, (5)

where b is the non-extended smooth background component and p̃ an extended rough
perturbation component. The underlying assumption is that the extended portion
will not have a smooth component. It is also easy to understand conceptually: we are
separating the parts of the model that affect the transmission (or forward scattering)
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from the parts that affect the reflection (or back scattering). Now, I can approximate
the modeling operator using Taylor’s expansion as follows:

f̃(m̃) ≈ f̃(b + p̃) ≈ f(b) + L̃(b)p̃. (6)

This approximate modeling operator simply adds the data resulting from propagating
the wavefield with the smooth component of the model (the f(b) term) to the data
resulting from scattering the wavefield with the rough component of the model (the

L̃(b)p̃ term). It is important to notice that this scattering is a result of the approx-
imation we used by model separation, which is similar to but independent from the
linearization scattering due to gradient calculation. I will refer to this second type of
scattering as approximation scattering. Both the linearization scattering and approx-
imation scattering use Taylor’s expansion, which might make things a bit confusing.
Moreover, the scattering with the rough component happens only once, so multiples
cannot be modeled with this operator unless the rough component was added to the
smooth background. Using the approximate operator, the residuals can be calculated
as:

r(b, p̃) = f(b) + L̃(b)p̃− dobs. (7)

Next, I calculate the residual derivative with respect to the perturbation as:

∂r(b, p̃)

∂p̃
= L̃(b), (8)

and the residual derivative derivative with respect to the background as:

∂r(b, p̃)

∂b
=

∂f(b)

∂b
+

∂L̃(b)

∂b
p̃ = L(b) + T(b, p̃), (9)

where T is the tomographic operator that is a function of two variables: a propagation
variable and a scattering variable. This tomographic operator has two scattering
terms because we first applied the approximation linearization, and then perturbed
that model using the linearization scattering, which is effectively a scattering of a
scatterer. In other words, it is the second derivative of the modeling operator with
respect to the model. Finally, I can calculate the gradient of p̃ as:

gep(b, p̃) = L̃∗(b)r(b, p̃), (10)

and the gradient of b as:

gb(b, p̃) = L∗(b)r(b, p̃) + T∗(b, p̃)r(b, p̃). (11)

One issue with the gradient of b is the term L∗(b)r(b, p̃) which can potentially cycle-
skip since the operator is not extended. Another issue is that multiples will not be
modeled (neither by the non-extended part nor by the extended part) unless we feed
the extended perturbation back into the non-extended background. To circumvent
these problems, Almomin and Biondi (2013) proposed the nested inversion scheme
where the objective function was separated into two components and the observed
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data was redefined in order to avoid this term in the gradient of b. This nested
scheme requires a balance between how many iterations we perform in each inner
loop as well as a good balance on how to mix and separate the smooth and rough
components. Having these components in different dimensions only adds complexity
to the understanding of the problem.

One-parameter approximation

The previous approximation is based on the fact that the extended part of the model
only contains rough components. Furthermore, it requires a nested inversion scheme
with several steps that ensure different scales of the model are simultaneously invert-
ing. Also, implementing the previous scheme for other wave-equations, such as the
elastic wave-equation, might not be trivial in terms of which variable to extend and
how to separate and mix them. Therefore, I rederive the previous approximation in
an equivalent but generalized way using one parameter and an abstract separation
operator as follows:

m̃ = Cm̃ + [I−C]m̃, (12)

where C is the separation operator. For the operator approximation to be accurate,
I need the following inequality to hold:

‖Cm̃‖ � ‖[I−C]m̃‖. (13)

Now, I can approximate the modeling operator using Taylor’s expansion as follows

f̃(m̃) = f̃(Cm̃ + [I−C]m̃) ≈ f̃(Cm̃) + L̃(Cm̃)[I−C]m̃. (14)

For the previous equation to be efficient, the operator C needs to restrict the extended
part of the model. From the two requirements of the operator C, we can see that
separating the model into smooth and rough components is not the only possibility.
In fact, it is more optimal to separate it into a non-extended part and an exteded
part, both of which can contain rough or smooth components. This latter separation
will make the approximation scattering even smaller compared to the propagation
term. The residual can now be written as:

r(m̃) = f̃(Cm̃) + L̃(Cm̃)[I−C]m̃− dobs. (15)

Next, I calculate the residual derivative as follows:

∂r(m̃)

∂m̃
=

∂ f̃(Cm̃)

∂m̃
+

∂L̃(Cm̃)

∂m̃
[I−C]m̃ + L̃(Cm̃)[I−C]

= L̃(Cm̃)C + T̃(Cm̃, [I−C]m̃)C + L̃(Cm̃)[I−C]. (16)

Since I used one model parameter only, the terms can be cancelled resulting in the
following residual derivative:

∂r(m̃)

∂m̃
= L̃(Cm̃) + T̃(Cm̃, [I−C]m̃)C. (17)
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Finally, I can calculate the gradient as follows:

g̃(m̃) = L̃∗(Cm̃)r(m̃) + C∗T̃∗(Cm̃, [I−C]m̃)r(m̃). (18)

Alternative approximation

Now I present an alternative formulation to approximate the expensive TFWI. Instead
of first approximating the modeling operator and then taking the derivative of the
residual, I first take the “expensive” derivative followed approximating the calculation.
This way, I can focus on approximating the propagation operator only since it is the
most expensive step, instead of approximating the modeling operator. To do so, I
need to rewrite our modeling operator and gradient as functions of the propagation
operator. The modeling operator can be written as:

f̃(m̃) = K∗P̃(m̃)Ks, (19)

where K is a spatial padding operator, P̃ is the extended propagation operator, and
s is the source. Next, I write the linearized modeling operator as:

L̃(m̃) = K∗P̃(m̃)DŨs(m̃), (20)

where D is a second time derivative, and Ũs is the extended scattering operator that
convolve the input with a source wavefield to calculate a scattered wavefield. The
source wavefield that is used in the scattering operator is calculated as:

us(m̃) = P̃(m̃)Ks. (21)

I can write the adjoint modeling operator as follows:

L∗(m̃) = Ũ∗
s(m̃)D∗P̃∗(m̃)K. (22)

By examining the previous equations, we can see that the only expensive step is
the propagation step. Therefore, I will approximate the propagation by a cheaper
alternative, such as:

P̃(m̃) ≈ P̃(Cm̃) + P̃(Cm̃)DS̃([I−C]m̃)P̃(Cm̃), (23)

where S̃ is a scattering operator. Finally, we use this approximate propagation opera-
tor in equations (19) to (22). Another possiblity is using a multi-scattering (recursive)
propagator that can take more orders of scatterings to better approximate the ex-
tended propagation operator. Notice that the adjoint operator using the approximate
propagation will not give an exact gradient of the objective function, it can be very
close, depending on how well we approximated the propagation operator.
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CONCLUSIONS

Scale separation of the model can add complexity to the theory and implementation
of TFWI. I rederive TFWI with one model parameter in an abstract way that is
applicable to any form of wave-equation. This new derivation reduces the complexity
of TFWI and any ambiguity related to how different model components interact and
update in the inversion. I also provide an alternative approximation to TFWI by
re-ordering the gradient calculation and the Taylor’s expansion of the propagation
operator. The alternative approximation is easier to implement and can potentially
provide more accurate results.
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