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WAVE EQUATION DECONVOLVED TIME SECTIONS

Larry Morley and Jon F, Claerbout

Introduction

Research efforts in wave equation multiple deconvolution can be
classified according to how accurately they account for the effects of
dip and of offset on seismic sections. Riley (SEP-3) developed a model
valid for small offset and a range of dip. Although this approach
provided a useful framework for initial investigations, it had limited
success 1n practice because marine reflection data is not recorded about
zero offset. For this reason Estevez (SEP-12) was led to consider the
problem from the "slant frame" viewpoint. His simple theory, without
diffractions, was able to incorporate wide offsets together with a small
range of dip and allowed significant water depth differences at shots and
geophones. His more general theory included diffraction terms and a wider

range of dips.

Our current study was motivated by the belief that Estevez's
analysis excluded an additional first order effect - the effect of vertical
velocity variation. Since the Qelocity contrasts at the bottom of the
water layer can easily be as much as 3:2, and since the lateral shifts
required in coupling up- and downgoing waves turn out to be proportional

to the square of velocity, this can indeed be a significant consideration.

This paper extends Estevez's theory to account for vertical velocity
variations and presents two serendipitous results, The first of these is
that the slant stacking process is the only way to preserve a constant
reverberation period for nonzero offset data. This can be shown from
purely geometrical considerations and supports Estevez's contention that
slant stacks are a good starting point for the inverse problem. The second
surprise is that an unexpected coordinate transformation is required
to produce a time section c¢(1) rather than a depth section c(2z). The

former product is much preferred for seismic interpretation.
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Uniform Reverberation Period of the Slant Stack

Correct prediction and suppression of multiples in marine prospecting
requires an almost uniform reverberation time between primary events and
their associated multiples. If the multiples obey these "natural" timing
relationships, then construction of inverse filters to deconvolve the multiple
signatures is greatly facilitated. It turns out that slant stacking the
data ensures that the multiples will have these natural timing relationships

in a Z-variable velocity medium. This can be seen by referring to Figure 1.

In Figure 1; the four hyperbolae repreéent the primary and pegleg
reflections for the ray paths depicted on the left. The lines EA, FD, E'A’,
and F'D' have all been constructed tangent to arrivals with common slowness Py
Now AC = A'C', since both of these lines represent the two-way traveltime of
a ray of constant ray parameter P through layer 1. Furthermore, CD = C'D’'
is the horizontal excursion of a ray with parameter Pg which has made
two trips through layer 1. Also, ZACD =ZA'C'D' = 90°, CD = C'D' and
4BDC = £B'D'C'. Therefore, by construction we must have ABCD ~ AB'C'D’.
This, in turn, means that AB = A'B' = EF = E'F'. We can conclude from this
that the slant stack does indeed preserve the time separation of multiples
from their primaries for this model. The same principles used above allow us

to extend the claim to a model with any number of layers.

In addition to this most important property, the slant stack has a
number of other desirable characteristics. Among these are the fact that the
underlying theory can account for two-dimensional wave phenomena, and
incoherent noise is attenuated. The slant stack also correctly accounts for
the angular dependence of the reflection coefficients since it attenuates

energy arriving with ray parameter outside a small, specified range.

It is of interest to compare the results of slant stacking with another
method which focuses on events at constant p -- Taner's Radial Trace
Deconvolution (1975). A radial trace in a constant velocity medium is a one-
dimensional cut through a gather taken along a line of constant stepout
(see Figure 2). In a constant velocity medium both the radial trace and the
slant stack preserve the desired multiple timing relationships (AD = A'D' and
EF = E'F'). If velocity varies as a step function in 2z, then the radial
trace is taken along an appropriate piecewise linear trajectory (see Figure 1).

In each segment the radial trace has slope (dx/dt:)i = pv 2 If we were to

i .
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FIGURE l.--A two-layer model with vy > v,- Note that
the time separation of PiM; 18 not equal to the geparation of P2M2 on

the radial trace (AG ¥ A'G'). Nevertheless, an ideal slant stack preserves

a uniform reverberation period (i.e. EF = E'PF'),
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FIGURE 2.--A two-reflector model for a constant velocity medium.
Note that a uniform reverberation period is maintained on both the
radial trace and the ideal slant stack (AD = A'D' and EF = E'F').
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imagine a continuum of horizontal reflectors, then the radial trace would
be the line passing through each primary hyperbola at the point where the
tangent to that event had slope p.

A radial trace defined in this manner only has the correct multiple
timing relationships for constant velocity. This does not mean that the
slant stack approach is always preferable since the radial trace maintains
a nearly uniform reverberation period for moderate velocity contrasts. In
any given situation we face a tradeoff between imperfect multiple timing
relationships of the radial trace and waveform distortion on the slant

stack caused by spatial aliasing.

Coupled Vertical Incidence Equations

Before considering the effect of z-variable velocity on the coupling
of up- and downgoing waves in slant frames, it will be useful to address
the problem for vertically incident plane waves. This is not a difficult
problem by itself but it will fllustrate one of the basic principles
involved in our selection of slant frame coordinates. An obvious pair of

coordinate frames to remove the stretch effect of variable velocity are:

X = X = Xx

z
™ = ' = 2 J( dz
v

z
t.._t+/d_z
v

dz
v

(@))

t' = t -

T Trepresents the two-way traveltime of a ray traveling from the

surface to depth =z.

We will begin by considering the (coupled) 15-degree equation in
unprimed coordinates (Claerbout, 1976, Equation 10-5-16b).
1

v
= = A - 2
U,, v Uee = 7 Uy c(x,z) D, (2)
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Using the operator identities:

3x = ax' - axn
3
at - at' - at" ( )
3 = 2298 13 23 .13
z vor' wvat' vart"  vat"
and the invariance relations
U(x,z,t) - U'(x','r',t') - U"(x",‘r",t")
D(X,Z,t) - D'(x','l",t') = D"(X",T",t")
(4)
C(x,z) = cl(xl’,ri) - c"(x",'['")
v(z) - V'('r') = V"(T")
(2) becomes
2 1 1 "
;-'TU"T"C" + WU"t"t" = ?TU"tntn _‘ZLU“x"x"
- C"(X",T") D"t..(x",'r",t") (5)
or
2 vll t“
WU"T" - -Z_'U"x"x" - C"(X",T") D'(X"X",T"'l‘",t"t"""l’") (6)
The accompanying downward-continuation equation is
1 2 )
t
D'.l.v - (';L) vaxv N

We can conclude that algorithmically, the stratified velocity/vertical

incidence problem is identical to the constant velocity problem, but the

reflection coefficients are scaled by v"(1")/2.

If we ignore the diffraction

term and absorb the scale factor into c", the solution to (6) is given by

" = /c"(x",'r") D'(x",’l’",t"-‘l‘") dc" (8)
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Now, since D'T, = 0, we have the result that

U;l = " *t" D' (9)

where *t" represents convolution over the t" wvariable.

Apart from the coefficient of U"r" and D'T., Equations
(6) and (7) are of the same form as the constant velocity/vertical
incidence equations derived by Claerbou; (1976, p. 258). Although the
transformations outlined in Fundamentals of Geophysical Data Processing
were successful in eliminating translation terms, the t-coupling was
only of convolutional form for constant velocity. Equation (6) is of con-

volutional form for any general wv(z).

Slanted Coordinate Coupled Equations

In two adjoining SEP-7 papers, Claerbout (p. 30 and p. 33) derived
a pair of slanted wave equations valid for constant velocity. The final

result of the second paper was:

"
v 3 axﬁx" u"(t",x",z")
2co0s78

az" U"(t",x",z") = -

"
- c"(x",2") D'"(¢" - z%—-cose,x"-Zz"tane,z") (10a)

v t'
az. D'(t',x',2') = — ax.x
2cos™ 6

, D'(t',x",2") ' (10b)

The coordinate transformations used in this derivation were

X' = x4+ z tanb
x' = x - z tand (11a)
2" = g o= g . (11b)
t" = ot o4 2 cos® _x sinb

v v (11c)
t' = ¢ -2 cosb x sind

v v
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The double prime transformations were constructed so that a plane
wavefield, incident at angle 8 to the horizontal in a medium of constant
velocity v, remained fixed in the coordinate frame. The single prime

coordinates define a corresponding downgoing frame.

In seeking & similar transformation valid for z-variable velocity we
are guided by the following two basic principles:

1) The downward continuation operators for U" must not contain any
first order terms in Bx" or at". Such terms only apply uniform
translations in U" with increasing 2z" and invalidate our

neglect of the Fresnel 3 , , terms.
z"z

2) The differential equation coupling U" and D' must be

expressible in the form

op(U") = c"(x",z") D'[x" - x"(z"),z",t"-z"] (12)
where X" 1is (for now) some undetermined function of =z".

As shown in the previous section, if Op( ) a« 3/32", the t" dependence
of U" is obtained by convolving c¢" with D' over 2z". For this reason we
say that (12) represents the "convolutional" property of the coordinate frame.
A coordinate frame having this property will have a computationally efficient
solution and, more important, will ensure that our final product is a time
section. In practice this will allow us to see if our attempts at multiple
suppression have succeeded or failed since residual multiple reflections will

have their familiar timing relationships.

A set of coordinate transformations which meets the above two

criteria is

z
x" = x4 J( tan6 dz

z (13a)
x' = x—j tanb dz

™ o= 2 /z cos8 4,
oV (13b)

Z cosb
r--zjﬂ’-*i—dz
OV



199

z

t" = t - px+ ]( csse dz
2 coso (13c)
t' = t - px -~ J( E;—— dz

The ray parameter is p = sin6/v -— a constant along any raypath.

We should also note here that cosf = (1—p2v2 1/2 and tanb = pv(l-pzvz)-l/2

The transformations (13a) and (13c) have been recommended previously by
Estevez (SEP-5, p. 34). They can be seen by inspection to be the natural

extension of Equations (1la) and (llc).

The physical significance of (13b) is not as apparent. Our first
guess at choosing this coordinate transformation was to put cosé in the
denominator of (13b). This would represent the two-way traveltime along a
raypath. This guess, however, was inconsistent with the previously
mentioned convolution criterion. It turns out that 1" 1s the product of
depth with the mean projection of the vertical slowness of a wavefront onto
its raypath (see Figure 3).

path

FIGURE 3.-- dt" = [incremental depth, dzl[projection of vertical
slowness of the front onto the path, (cos8/v)]
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The wave equation for U 1in (x,z,t) space is
G . +2, -3 )u = o (14)
XX zz v2 tt
Using the chain rule for differentiation,

E = 3

¢ " (15a)
2cosf 0sd
B, = tamdd, + T, + 290, (15b)
ax - ax" - P at" (ISC)
Equation (14) becomes
2
2 2 4 0
{3xnxn - zpaxntn +p at"t" + tan"@ axnxn + _933— 31-"1-"
2
) 2s5in8 4 0 4sinb
+ C.% 3 e + Svn ax"t" + _C_O%__ a'l'"t" + _sv_n ax"’r"
v v
2cosh 2cosf cosf :
+ [<—v—- 31_,, (tan6)> ax,, + <—v—- 31_,, ( v )> (231'" + atn)J
1 "
) at"t"} U - YO (16)
v .

The aT" operators within the "( )" brackets only operate on tanf and
cos6/v. The transmission terms in the square brackets may now be dropped

provided that v"T" is sufficiently small. Using the paraxial approximation,
we also choose to neglect the term in 31"1"'

A further simplification is possible if we restrict our attention to small

dip. This justifies dropping the term in ax"T". Using all these approximations,
recalling that p = sinb/v, and adding the coupling term, gives

2 t" 4cosze

(sec”® 3 g+ 5 3. U" = —e™(x",t") D"(x",T",t") (172)
v"

The corresponding equation for downward continuation 1is

’
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2
2 t' 4 8
- C082 a‘t') D‘ = 0 (18)

(sec™ @ ax,x,

vl

Recalling the definition of 1" [Equation (13b)] and the statements

of invariance, we can rewrite the right-hand side of (17) as

-c"(x",t") D'"(x'=x"- zlztane dz,r '=t",t'=t"-1") (19)

We now have our desired "‘convolutional form" in ¢t'.

Using the fact that

dz _ v
dz" = 2cos® ' (20)

together with the identities for tané and cos8, we can rewrite the
integral-shifting term in (19) as

T" "2

o [ o
1-pv'

This is the "x-shift" term anticipated by Equation (12).

Equations (17) to (19) have the same general structure as Estevez's
(SEP-12, p. 34) coupled slant equations but have one notable difference:
the "x-shift" is now a non-linear function of ", At small angles, it
approximates the mean square velocity, and it becomes infinite as the

critical angle is approached.

Sunmary

In this paper we have extended Estevez's results to account for the
effects of z-variable velocity on coupled up- and downgoing wave equations
in slant coordinate frames. In doing this we have been able to retain the
convolutional form over the t'" coordinate. This was useful since it
guaranteed that our final product was a time section rather than a depth
section. Finally, we have shown that the slant stack theoretically preserves
a uniform reverberation period and is therefore a good starting point for the

inverse problem.
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