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A STABLE LATERAL VELOCITY ESTIMATION SCHEME

Walt Lynn

In the last SEP report, an rms velocity estimation scheme was
presented based on keeping the second derivative of the velocity with respect
to midpoint in the normal moveout equations (see Lynn, SEP-14, pp. 95-118). The
motivation for this technique was to estimate velocity variations of less
than a cable length, something that conventional coherency-type velocity
estimation schemes cannot do. To do so we considered the fact that the
traveltime for a given event to a given offset is dependent both on the rms
velocity and its lateral derivatives beneath each midpoint. Expanding the
rms velocity beneath each midpoint in a second order Taylor series and
assuming straight ray paths, we obtained a tridiagonal system of equations

that could be inverted to obtain the velocity.

In the tridiagonal method, we discovered that there is an inherent
instability problem. Figure 7d on page 106 of SEP-14 illustrates this. This
is bad news, especially when we have to iteratively solve for both the velocity
and the depth to the reflector. In this paper we will show how to avoid the
instability problems by going to a fourth order scheme. The motivation for
the fourth order scheme is only to stabilize the method, not to gain higher

resolution.
To see the cause of the problem we start with Equation (1) of the
SEP-14 article:

2
_ 2 2.1/2 f "
t, = (f° + 4zj ) (wj +-§Z wj ) (D

where tj is the traveltime for a given ray to the offset f reflecting off
an interface of depth =z, and Wj is the rms slowness (1l/velocity) at the

j-th midpoint. Writing (1) in finite difference form,
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TV, + (l—2r)wj + Vg, j=1,2,..... n (2)

Lo
]

where aj = (f2 + 4zj2)1/2, r = f2/(24Ay2), and Ay is the midpoint
spacing. Equation (2) represents a tridiagonal system of equations with

(1 - 2r) on the diagonal and r on the off-diagonal of the matrix. The
heart of the instability lies in the fact that the diagonal term is (1 - 2r)
and not the familiar (1 + 2r) we get when applying the Crank-Nicolson scheme
to the wave equation. With zero-slope boundary conditions, the eigenvalues A

of the tridiagonal matrix can be shown to be

_ 2 (kr _
N = 1 - 4rcos (Zn) K=1,2,..... n (3)

Hence, if r is not less than one-quarter, the potential for zero eigenvalues
arises. Since r 1is inversely related to Ay2 we circumvented this problem
by estimating the second derivative using midpoints separated by several Ay's.,
Such a scheme has several undesirable aspects; the main ones are having to
decouple the velocity estimates in between adjacent midpoints and imposing
boundary conditions for each individual problem. In other words, we would
solve for, say, Vi Ve Vyp» etc., with one set of equations. Next we would

solve for v, Voo eees and so on.

A better means of avoiding the zero eigenvalues can be seen by con-
sidering the continuous case, Z.e. infinitesimal midpoint spacing. Taking

the Fourier transform of Equation (1) with respect to midpoint y, we obtain

2. 2
16’20 B 1 EL Wik ) )
F.T. {a(y)} - T 24 y

A plot of the "dispersion relation" is shown in Figure 1.
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FIGURE 1.

Thus, at some particular value of fky, the filter will go to zero, making
its inverse infinite and the process unstable. To make the process uncondi-
tionally stable we need to keep the curve from crossing zero. Since we do
not want to alter the curve near fky = 0 (long wave%engths) we will
consider making an adjustment of the form, 1 - (fky) /24 + u(fky) , Wwhere
a > 0. This is precisely what we would get if we had expanded w(y) 1in a
fourth order Taylor's series expansion in the original traveltime approxi-

mation. Assuming a straight ray path and expanding w(y) about w(yo) =w

o
we obtain
1 £/ v v ¥t i
— \ n "t
t = Sine (wo oy, t v, te v, tog v ) dy
-f/2
where @ 1is the angle the ray makes with the vertical. So
2 4
t _ i " f iv
a = YotV 1920 Y )

2

where a, again, is (f + 422)1/2.

Fourier transforming Equation (5),
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2 2 4 4
I 1628 G il W(K ) (6)
1l aly) 24 1920 v

A plot of the frequency domain operator is shown in Figure 2.
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FIGURE 2.

The fact that the operator does not reach zero for any value of fky
in the continuous case does not necessarily guarantee that the eigenvalues
will not reach zero in the discrete case. To see what happens, let's just try
it. We first need to put Equation (5) in finite difference form. Using

(-1, 4, 6, -4, 1)/Ay4 as the fourth derivative operator, we obtain

t.
1 = w + - 2cw, + cw + dw - 4dw, + 6dw
a ! j 17 -2 j-1 j
—4dwj+1 + dwj+2
where
c = fz
24Ay2
and
d = f4
A

19204y
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Collecting terms together yields the pentagonal system of equations

= dwj_2 + (c—4d)wj_1 + (1—2c+6d)wj + (c—4d)wj+1

LB L

i=1,2,..... n (7)

+ dwj+2,

A subroutine to solve pentagonal systems of equations is given in the appendix.
We will now apply this equation to the model used in SEP-14, as well as a
new model which simulates a lateral gradient of velocity. We will refer to

these as Model 1 and Model 2 respectively.

Model 1

For convenience, Model 1 is shown again in Figure 3. The cause of the
lateral inhomogeneity is a truncated low velocity layer of 5400 feet/sec
imbedded between 5000 and 5200 feet. Details of the model are given in the
figure caption and are discussed in detail in the SEP-14 report. The results
of using a tridiagonal or second derivative scheme to estimate the velocity
to the interfaces at 6000, 7000, and 8000 feet are shown in Figure 4 as the
fat line. The velocity was estimated using the traveltimes to the 2000-foot
offset, and the depth to the reflectors was assumed to be known. The correct
vertical rms velocity is shown as the thin straight line. In this example,

the second derivative was estimated using midpoints separated by 5Ay, Z.e.

)

w, "= —1——-(W._

- 2w, + w,
3 say2 370 3

j+5

The results of the second derivative method are encouraging but show
some short wavelength jitter due to small eigenvalues for large fky. A
further inconvenience of the second derivative method is having to impose
boundary conditions on each set of tridiagonal equations. In this example,
five different sets of equations were solved for the velocity, so at the
five midpoints at each end the velocity is determined by boundary conditions.
If we had used a larger offset to determine the velocity, the number of equa-
tions would have been greater (because kAy has to be greater to insure
stability), and even more midpoints at the end of the section would be

determined by the boundary conditions. Clearly this is undesirable but it
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FIGURE 4.--Rms velocities to the interfaces at 6000, 7000,
and 8000 feet of Model 1, using the second derivative method.
actual rms velocity is shown as the light line in each figure.
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is necessary in the tridiagonal scheme. Going to a fourth derivative scheme
avoids this problem as the pentagonal system of equations is stable for any
Ay. Thus, in the fourth derivative scheme, only the velocities at two mid-

points at each end are determined by the boundary conditions.

The results of estimating the velocity to the same interfaces of
Model 1 by the fourth derivative scheme [ (Equation (7)] are shown in Figure 5.
We see that all of the ripple in the estimated velocity from the second deriva-
tive method is now gone. The estimated velocity is very close to the actual
velocity at all midpoints except in the area of the discontinuity, where it is
slightly low. The discrepancy occurs because we are trying to fit a step

function with a fourth order polynomial.

Model 2

To see if the derivative methods would work over an area with a smoother
lateral velocity gradient we devised the model shown in Figure 6. As with
Model 1, a ray-tracing program was used to generate the common midpoint gathers.
The gathers are 24-fold with a near and far offset of 400 and 9600 feet

respectively.

A standard, semblance-type velocity estimation was used to estimate the
velocity to the horizontal interface at 8000 feet, and the result is shown in
Figure 7. The true vertical rms velocity to the interface is shown as the
lighter line. Although the interface is horizontal in depth it is not on a
time section, which accounts for most of the discrepancy between the true and
measured rms velocities between midpoints 70 to 120 and 137 to 154. Around
midpoints 50 to 130 the semblance measure gives a very poor estimate of the

true velocity, due to the abrupt lateral changes in velocity.

Assuming a knowledge of the depth to the reflector, the velocity was
estimated three different times by using the traveltimes from three different
common offset sections corresponding to 1600, 3200, and 6400 feet. The 1600-
foot common offset section is shown in Figure 8. The gaps seen in some of the
reflectors are due to limitations in the ray-tracing program. The second
derivative method was tried first to estimate the velocity giving the results
displayed in Figure 9. The number of independent equations solved for the
three cases were 3, 5, and 10. The velocity estimates are in close agreement

with the true velocity shown in Figure 7. The short wavelength jitter is still
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present, however. The flattening of the velocity curve at the right is due
to the zero-slope boundary conditions. Note how the flattening spans over

more midpoints for the larger offset.

The corresponding results using the fourth derivative method are
shown in Figure 10. The velocity profile is again in close agreement with
the true rms velocity and the curves are much smoother than those in the

second derivative method.

A close comparison of the three different results in Figure 10 shows
that the computed velocities are not quite the same, although the differences
are small. This is due to the straight ray approximation made in the deriva-

tion of the equations.

In all of the cases shown we assumed that the depth to the reflector
was known. Obviously, in many cases this is an unfair assumption, since
obtaining the reflector depth from a seismic section requires some knowledge
of the velocity. In such cases the reflector depth must be iteratively solved
for along with the velocity. A first guess might be the near-offset traveltime
divided by 2 * 8000 ft/sec. In order to insure stability the reflector depths
should be smoothed before re-estimating the velocity. In a future paper we
will show how to minimize the depth dependence by either working with w2 and
two different common offset sections or by using two different common midpoint

slant stack sections.
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feet of Model 1, using the fourth derivative method. Actual rms velocity
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using the second derivative method on constant offset sections of 1600,
3200, and 6400 feet.



S000

6000

7000

8000

9000

10000

7000

8000

(feet/sec)

8000

10000

velocity

S000

6000

7000

8000

9000

10000

Model 2

of 1600,

cmp number

Qe of fsaet = 1600 ft.

0
110
120
130
140
180
160

o g o O o o9 O 9o o O
- 0 M < W O N 0O P -

— ubuksnebnaebwwohwendesehuseheausbooe bl babeubonobogewd.

_— |

b, offset = 3200 fte.
o O O g O O O
0O 0O 0O 0 0O 0 0 0O 0O = u M =« I 0
Al M < W W NN O D e = e e = e e

c. aoffset = 6400 f1.

FIGURE 10.--Velocity estimates to the 8000-foot interface of

using the fourth derivative method on constant offset sections
3200, and 6400 feet.

53



54

L T e T T T o O o T T o O o T O e N T T e N o T o B B o B |

nnNnMnn

n N

AN nn

APPENDIX

subroutine pent{a,b,c,d,e, . n, &, q,r:85,ibc)
solves the pentagonal system of equations:
alk)E(k=2) + b(k)b(k—1) + c(kYt{k) + d(k)t(k+1)
+ elk)t(k+2) = £k,
where, k = 1,2,....,n
using the recursion relations:

tik)

it

qlklIt(k+2) + rlkIt(k+1) + si{k)
t(k-1) = q{k—-1)E(k+1) + v(k—-1)t(k) + s(k-~1)

t{k~-2)

qlk-2)t(k) + rl{k-2)t{k—-1) + s(k-2)

set ibc O to solve the n equations exactly (i.e. no b.c. ’s)

1 for zero first and second derivative b.c. ’s.

subroutine pent(a,b,c.d,e.:f.r,t,q,vss:ibe)
dimension a(n),b{(n),c(n).d(n),eln), #{n), t(n), qi{n), rin),s{n)

left boundary conditions

if(ibc. eq. 1) goto 3

solve the set of equations exactly. No b.c. ‘s.
qi{l) = —e{1)/c(1)

T(1) = —-d{(1)/¢c(1)

s(l) = F£(1)/c(1)

den = c{2) — d{(1)#b(2)/c(1)

g{2) = —-e(2)/den

r{2) = (e(1)#b(2)/c{l) - d(2))/den

s{2) = (£(2) — #£(1)#b(2)/c(1))/den

goto S

zeros slope and zero second derivative b.c. ‘s
t(1) = £(2) = £(3)

q{i) = 0.
r{l) = 1.
s{1) = Q.
gt{2) = 0.
r{2) = 1.
s{(2) = 0.
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ni = n—-1
ne = n—2
nd = n—3

do 10 k=3, n
den = al{k)#q(k-2) + r{k—-1)%( a(k)¥r{k-2) + b(k)) + c(k)

g¢{k} = —e(k)/den

(k) = = q{k-1)*¥{(b(k) + alk)#r(k—-2)) + di{k) )Y/den

s{k) = ( £(k) — ( s(k—-1)#(b{(k) + atk)#r(k—-2)) + al{k)#¥s{k-2)))/den
continue

right boundary conditions
ift(ibc. eq. 1) goto 13

solve the equations exactly

gl = ain)#q(n2) + cin)

g2 = a(m)¥r{n2) + bin)

g3 = #(n) - ain)#s(n2)

hi = a(nl)#r(n3)#q{n2) + b(nll)xqin2) + dinl)

had = a(nl)#q(n3d) + a(n)¥r(n3d#r(n2) + binl)#r(n2d) + c(nl)
h3 = £({nl) - a(nl1)#r(n3)¥s(n2) - a(nl)#s(n3) ~— b(nl)#s({n2)
t{n) = (g3 — g2#h3/h2)/(gl - g2#hi1/h2)

t(nl) = (g3 — gi#h3/hl1)/{(g2 — gi#ha/hl)

goto 15

zero slope and zero second derivative.
t(n2) = t(nl) = t(n)

tin) = s(n2)/(1. —(g{n2)+r(n2)))
tinl) = t{(n)

continue
do 20 j=1,n2
k = ni—y
tlk) = q(kI#b(k+2) + r(k)#E{k+1) + s(k)
return
end



