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ABSTRACT

I present a tomographic full waveform inversion method that is based to an ex-
tension of the velocity model in time. The resulting wavefield modeling operator
is linear with respect to the non-zero time lags of the extended velocity, but can
effectively model multiple scattering caused by velocity perturbations. This prop-
erty is attractive to achieve robust global convergence in a waveform inversion
algorithm. A simple 1D numerical example illustrates the properties of the new
modeling operator and its promises for robust waveform inversion.

INTRODUCTION

In a recent report Biondi and Almomin (2012) and Almomin and Biondi (2012)
presented waveform-inversion methods with robust convergence characteristics even
when the initial velocity model is far away from the correct one. These methods are
based on an extension of velocity and reflectivity along the subsurface offset axes.
This extension enables the kinematics of reflected to be correctly modeled by a linear
operator even when the velocity errors are large. However, the extension also explodes
the null space of the inverse problem. To ensure convergence towards desirable models
a tomographic term is added to the inversion objective function that penalizes velocity
models with energy at non-zero subsurface offsets.

In this paper I introduce a tomographic full waveform inversion (TFWI) that is
based on an extension of the velocity model along the time axis instead of the sub-
surface offset axes. This time extension has the theoretical advantage that it can be
directly linked to the modeling of multiple scattering phenomena; therefore, overcom-
ing the limitations of conventional full waveform inversion (FWI), whose gradient is
based on a first-order scattering approximation. Furthermore, the velocity extension
along the time axis should enable robust convergence from transmitted, or refracted
events, in addition to reflected events. This versatility can be beneficial when invert-
ing long offset data that contain overturned and refracted events as well conventional
reflections. A one-dimensional extension along time is also computationally more effi-
cient than a two-dimensional extension along subsurface offsets. This is an important
practical advantage since the computational cost of modeling wave propagation in
extended velocity models is substantially larger than in conventional velocity models
(Almomin, 2012).
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Throughout this paper I illustrate the theory with simple 1D examples. Waves
are propagated in 1D, and model parameter, both background and perturbations, are
averaged over the whole propagation interval. In addition to be fast to compute by
using Matlab, the 1D examples have the advantage of reducing the dimensionality of
the model space and thus making the analysis of behavior of objective functions and
gradients illustrative of the more general conceptual contributions of the paper. The
numerical examples describes a transmission tomography problem to illustrate the
capability of the proposed method to effectively use transmitted events, in addition
to reflected ones.

CONVENTIONAL FULL WAVEFORM INVERSION
(FWI)

Conventional full waveform inversion is performed by solving the following optimiza-
tion problem

min
v2

JFWI

(
v2

)
(1)

where:

JFWI

(
v2

)
=

1

2

∥∥L (
v2

)
− d

∥∥2

2
, (2)

v = v (~x) is the velocity vector, L is a wave-equation operator non linear with respect
to velocity perturbations and the data vector d is the pressure field P = P (t, ~x)
measured at the surface.

The wave-equation operator is evaluated by recursively solving the following finite
difference equation [

D2 − v2∇2
]
P = f , (3)

where D2 is a finite-difference representation of the second derivative in time, ∇2 is
a finite-difference representation of the Laplacian, and f is the source function.

Gradient computation with FWI

The efficient solution of the optimization problem expressed in equation 1 is performed
by gradient based methods, and thus requires the evaluation of the linear operator L,
which is the linearization of L with respect to velocity perturbations δv2. This linear
operator can be derived by perturbing equation 3 as follows[

D2 −
(
vo

2 + δv2
)
∇2

]
(Po + δPo) = f , (4)

where Po and vo are the background wavefield and velocity, respectively, and δPo is
the scattered wavefield.

Equation 4 can be rewritten as the following two equations:[
D2 − vo

2∇2
]
Po = f , (5)[

D2 − vo
2∇2

]
δPo = δv2∇2 (Po + δPo), (6)
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which represents a nonlinear relationship between velocity perturbations and scat-
tered wavefield. To linearize this relationship we drop the term multiplying the per-
turbations with each other; that is, we drop the scattered wavefield from the right
hand side of equation 6 and obtain the following coupled equations:[

D2 − vo
2∇2

]
Po = f , (7)[

D2 − vo
2∇2

]
δPo = δv2∇2Po. (8)

The linear operator L used to compute the gradient of the FWI objective function 2 is
evaluated by recursively propagating the background wavefield Po and the scattered
wavefield δPo by solving equations 7–8.

The scattered wavefield δPo is a linear function of the velocity perturbations δv2

because equation 8 takes into account only fist order scattering. Notice that the
linear operator L (vo

2) is itself a non linear function of the background velocity, both
directly by determining the propagation speed of the scattered wavefield (left hand
side in equation 8), and indirectly through the background wavefield (right hand side
in equation 8).

Problems with FWI

Unfortunately, high-order scattering must be taken into account to model accurately
wavefield perturbations when the velocity perturbations have wide spatial extent
and/or large amplitude. Such velocity perturbations cause significant (larger than
one fourth of wave cycle) time shifts in the propagating wavefield. The linear operator
L cannot model large time shifts because the source function on the right-hand side of
equation 8 is triggered by the background wavefield reaching a velocity perturbation,
and consequently it has the timing as the background wavefield. Furthermore, the
perturbed wavefield is propagated with the background velocity vo. In mathematical
terms

L
(
vo

2 + δv2
)
6= L

(
vo

2
)

+ L
(
vo

2
)
δv2. (9)

The problem is even deeper. When δv2 causes large time shifts by multiple scatter-

ing, there is no perturbation δ̂v2 that can model those time shifts by single scattering;
that is,

L
(
vo

2 + δv2
)
6= L

(
vo

2
)

+ L
(
vo

2
)
δ̂v2 for any δ̂v2. (10)

The non linearity of the modeling operator makes the objective function equation 2
to be non convex when the velocity perturbations are sufficiently large. Figure 1
shows an example of non-convexity of the objective function. The result correspond
to several 1D transmission problems sharing the same starting velocity (1.2 km/s)
and with different true velocities. For all these experiments the source-receiver offset
is 4 km and the source function is a zero-phase wavelet bandlimited between 5 and 20
Hz. The FWI norm is plotted as a function of the true velocity. If the true velocity is
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lower than ≈ 1.18 km/s or larger than ≈ 1.22 km/s a gradient based method will not
converge to the right solution, even in this simple and low-dimensionality example.

The challenges of solving the optimization problem in equation 1 by gradient
based optimization can be alternatively represented by graphing, as a function of the
initial velocity error, the search direction (opposite sign of the gradient direction) of
the objective function with respect to velocity square. Figure 2 display this function
computed by applying the adjoint of the linear operator L to the data residuals; that
is

∇JFWI = L′ [L (
vo

2
)
− d

]
. (11)

For a gradient based method to converge, the search direction should be always
negative when the true velocity is lower than 1.2 km/s, and positive when the true
velocity is higher.

Multiple-scattering modeling

We can achieve accurate modeling of perturbed wavefield by solving equations 5–6
instead of equations 7–8. Equations 5–6 can be solved numerically with a simple
explicit method; that is, one that adds the scattered wavefield up to time t to the
right-hand side of equation 6 to compute the scattered wavefield at t + ∆t. Even in
presence of large velocity variations, the scattered wavefield has now the correct time
shift. Numerical solutions produce accurate results, although the scattered wavefield
is still propagated with the background velocity, because multiple scattering is taken
into account of.

The challenge with using these equations in a gradient-based inversion algorithm is
that the relation between the scattered wavefield δPo and the velocity perturbations
δv2 is now nonlinear. In the next section, I present a method for linearizing this
relation that is alternative to the conventional one represented by equations 7–8, and
is based on an extension of the velocity model in time.

TOMOGRAPHIC FULL WAVEFORM INVERSION
(TFWI)

We can rewrite equations 5–6 by performing the following substitution

δPo = Po
t′∗ (T− I) , (12)

and consequently

Po + δPo = Po
t′∗ T, (13)

where T is a convolutional operator in time that may vary both in space and time; I
is the identity operator. For example, when the perturbed wavefield is a time-shifted
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Figure 1: FWI norm as a func-
tion of the true velocity, when the
starting velocity is equal to 1.2
km/s.
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Figure 2: FWI search direction
as a function of the true velocity,
when the starting velocity is equal
to 1.2 km/s.
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version of the background wavefield, the operator T is a shifted delta function. With
this substitution equation 6 can be rewritten as[

D2 − vo
2∇2

]
δPo = δv2

(
T̃

t′∗ ∇2Po

)
, (14)

where the substitution of T with T̃ takes into account of the Laplacian.

If we define an velocity model extended in time δṽ2 (t, t′) = δv2 t′∗ T̃, we can
rewrite equation 14 as [

D2 − vo
2∇2

]
δPo = δṽ2 (t, t′)

t′∗ ∇2Po. (15)

The estimation of an extended velocity as a function of both t and t′, and for each
seismic experiment (e.g. shot), can be unpractical. We can approximate equation 15
by making the velocity dependent only from the convolutional time lag; that is,
τ = t−t′ and the same for each seismic experiment. The approximation of equation 15
can be written as [

D2 − ṽ2 (τ = 0)∇2
]
∆P = δṽ2 (τ)

τ∗ ∇2Po, (16)

where the change of notation from δPo to ∆P indicates that the scattered wavefield
∆P is now an approximation of the true multiple-scattered wavefield δPo.

Formally solving equation 16 we obtain

∆P =
[
D2 − ṽ2 (τ = 0)∇2

]−1
[
δṽ2 (τ)

τ∗ ∇2Po

]
(17)

that is a linear relationship between δṽ2 and ∆P defined by the linear operator L̂
such as ∆P = L̂δṽ2.

If we define the total wavefield to be

P = Po + ∆P, (18)

and the extended non-linear modeling operator as

L̃ (ṽ) = L (ṽ (τ = 0)) + L̂ (ṽ) δṽ2, (19)

the objective function

JEFWI (ṽ) =
1

2

∥∥∥L̃ (ṽ)− d
∥∥∥2

2
(20)

has the same local minima of the original FWI objective function, but it also provides
smooth descending paths to the global minimum in the additional dimensions. The
problem is now under constrained because many solutions fit the data equally well.
Among all these possible solutions we are interested in the solutions for which the
extended velocity model is as focused as possible around the zero time lag of the
model.
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To converge towards a desirable solution we can add an additional term to the
objective function that penalizes extended velocity model with significant energy at
non-zero time lag; that is,

min
ṽ

JTFWI (ṽ) , (21)

with

JTFWI (ṽ) =
1

2

∥∥∥L̃ (ṽ)− d
∥∥∥2

2
− εF (ṽ) , (22)

where F is an operator that measure the focusing of the model at zero time lag. A
straightforward example of such operator is

F (ṽ) = −‖|τ | ṽ‖2
2 . (23)

Gradient computation with TFWI

The gradient computation of the TFWI objective function has three components.
The first component takes into account the dependency of the background wavefield
from velocity; it is the same as for the FWI case. The second component is related
to the dependency of the approximation of the scattered wavefield ∆P from the
extended velocity. It is performed by applying the adjoint of the linear operator
L̂. The application of L̂′ to the data residual is accomplished similarly to the FWI
gradient by injecting the residual at the receiver location and running backward in
time the propagation expressed in equation 17.

The third component takes into account the dependency of ∆P from the velocity
at zero time lag; its evaluation is more involved than for the previous two terms but
is crucial to the convergence of the inversion towards a velocity model that explain
the kinematics in the data. The forward operator can be evaluated as a chain of
two operators. The first one relates perturbations in velocity to perturbations in the
background wavefield, as expressed by equations 7–8. The second one is computed
by forward solving in time equation 17, where the source term is given by the pertur-
bations in the background wavefield, and not by the perturbations in the extended
velocity. Consequently this term is zero when the extended velocity perturbations
δṽ2 are zero, independently from the perturbations in the background wavefield. The
adjoint is computed by applying the adjoint of these two operators in reverse order.

Finally, the gradient of the regularization terms depends on the expression of the
specific focusing operator F . For the choice expressed in equation 23, the computation
of the gradient is trivial.

NUMERICAL 1D EXAMPLE

I will use a simple 1D numerical example to analyze some of the characteristics of
the TFWI method I presented in the previous sections. Figure 3 shows the difference
between the background wavefield propagated with v=1.2 km/s and the wavefield
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propagated with the true velocity of v=1.13 km/s. The difference wavefield is dis-
played as a function of propagation distance and traveltime. The data are recorded
with a receiver located at 7 km for a total of 4 km offset from the source. The velocity
error is sufficiently high that the wavefields are completely out of phase at the receiver
location. We are therefore in the situation described by equation 10. Because the
events are out of phase at the receiver, the backprojection of the data residual into
the velocity model yields a gradient (equation 11) that is substantially zero, as it can
be verified in Figure 2. Conventional FWI would have troubles to converge even for
this simple problem.

On the contrary, the linearized modeling equation defined in equation 17 would
have no troubles to model the data residual. For example, we can easily reproduce
the wavefield difference shown in Figure 3 by setting the extended-velocity pertur-
bation to be a delta function along the τ axis, where the shift of the delta function
linearly increases with the distance from the origin. This linear shift is computed
by integrating the difference in slowness between the background model and the true
model. The extended-velocity perturbation is shown in Figure 4. Figure 5 shows the
result of solving equation 17 with the model shown in Figure 4. The approximation
of the scattered wavefield ∆P is almost identical to the wavefield difference shown in
Figure 3.

Next step is the backprojection of the data residual recorded by extracting the
wavefields at the receiver position into the extended velocity model. In the previous
section, I explained that there are three terms in this backprojection. In this case,
the first and the third are zero. As discussed previously, the first component is zero
because the events in the data residual are out of phase. The third term is zero
because the starting extended model is zero at non-zero time lags. Figure 6 shows
the contribution of the second component of the gradient. It is zero on the right of the
receiver location, and it is basically constant as function of the propagation distance
on the left of the receiver location.

Forward modeling solving equation 17 with the model shown in Figure 6 yields
a scattered wavefield that at the receiver location is extremely close to the original
residual shown in Figure 3. Therefore, the first term of the objective function 22 has
a well-behaved parabolic shape as a function of the step size applied to the search
direction, with well-defined minimum that determines the extended model after a
first iteration of an iterative inversion algorithm.

The extended model obtained at the first iteration can then be used to compute
the data residuals and gradient at the second iteration. Since the data residual are
small, the main contribution to the gradient comes from the second term of the
objective function; that is, the focusing operator. It is straightforward to verify that
for the choice of focusing operator in 23, the most significant component of this
gradient is away from the zero time lag. The projection of this gradient in the data
space has a non-zero component and will create a data residual, which can in turn
be backprojected into the velocity model. The most interesting component of this
backprojection is at zero-time lag since it is the one that will effect the propagation
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Figure 3: Difference between
background wavefield computed
with the starting velocity (1.2
km/s) and the wavefield propa-
gated with the true velocity (1.13
km/s).
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Figure 4: Extended velocity
perturbation chosen to approxi-
mately model the wavefield differ-
ence shown in Figure 3 by apply-
ing equation 17.
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Figure 5: Perturbed wavefield
computed by solving equation 17
with the model shown in Figure 4.
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velocity of the background wavefield at the next iteration.

Among the three gradient components discussed in the previous section, only the
third one effects the extended velocity at zero-time lag. Figure 7 shows the search
direction obtained by averaging this gradient component along the whole propagation
interval as a function of the true velocity. As before the the starting velocity is 1.2
km/s. In contrast with the conventional FWI search direction shown in Figure 2, the
search directions shown in Figure 7 is always negative for a true velocity lower than 1.2
km/s, and always positive for a true velocity larger than 1.2 km/s. This indicates that
no matter how large the initial velocity error, the TFWI method will start moving
the zero-lag component of the extended model in the correct direction. This result is
far from being a proof of global convergence, but is definitely encouraging.

CONCLUSIONS

Perturbations in the propagating wavefield caused by multiple scattering can be ap-
proximately modeled by a linear operator when the velocity function is extended in
time. A tomographic full waveform method based on a time extension of the veloc-
ity model is likely to have attractive global-convergence characteristics, and thus to
overcome one of the main challenges of conventional full waveform inversion.
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Figure 6: Extended-velocity gra-
dient computed by applying the
adjoint of the linear operator L̂ to
the data residuals measured at the
receiver located at a distance of 7
km.
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