
Fast log-decon with a quasi-Newton solver

Antoine Guitton

ABSTRACT

I speed up the log-decon method by replacing the slow steepest-descent method
with a faster quasi-Newton technique known as the limited-memory BFGS.

INTRODUCTION

The log-decon method of Claerbout et al. (2011) estimates a filter that can both
handle non-minimum phase wavelets (e.g., Ricker) and produce sparse seismic reflec-
tions where the polarity is easily identifiable. This method is extended in Claerbout
et al. (2012) to include variable gain. Claerbout proposes to compute the filter co-
efficients with a steepest-descent approach, where the step length can be estimated
very accurately with a Newton-search technique. Steepest descent is notoriously slow:
its convergence rate depends on the conditioning of the problem producing a well-
known zig-zagging effect close to the solution. Here, I propose to employ the L-BFGS
method, a quasi-Newton technique that improves the convergence and decreases the
number of iterations.

TWO SOLVERS

In this section, I follow Claerbout’s notations for all the variables: lower case let-
ters are for variables in time and space, while upper case letters are for variables in
frequency and space.

The slow steepest-descent method

The steepest descent method requires the computation of the gradient. The model
space is a vector of filter coefficients u(t). Claerbout shows that the gradient du(t)
of the sparse log-decon method corresponds to the crosscorrelation of the residual
(the reflectivity series) with the soft-clipped residual (see Claerbout et al. (2012) for
a generalization with a variable gain). The pseudo-code below shows the steepest
descent algorithm.

Once u(t) is estimated, we obtain the wavelet w(t) = FT−1
(
e−U(ω)

)
and the sparse

decon output r(t) = FT−1
(
D(ω)eU(ω)

)
, where D(ω) is the Fourier transformed input

data.

SEP–148

Guitton 2 Quasi-Newton log-decon

The fast L-BFGS method

The L-BFGS method is a member of the quasi-Newton family: it updates at each
iteration an approximation of the inverse Hessian Q. This technique is very cost
effective: given the most recent history of gradient and model vectors (usually around
5) kept in memory, the quasi-Newton search direction Qdu (inverse Hessian times
the gradient) is computed directly with simple vector multiplications. Therefore, the
L-BFGS solver can be used for large non-linear problems (Nocedal, 1980).

Contrary to steepest descent where the step length is estimated with a Newton-
search technique, the step length in L-BFGS is computed such that sufficient decrease
of the error and of the local curvature is attained (so called “Wolfe conditions”).
The appendix shows the L-BFGS solver in more details. The L-BFGS code can be
downloaded at http://users.eecs.northwestern.edu/˜nocedal/lbfgs.html The pseudo-
code below shows both the steepest-descent and L-BFGS algorithms.

U = 0. # or other initializations

Remove the mean from U(omega).

Iteration {

dU = 0

Compute dU

Remove mean from dU

du = FT(dU)

if (steepest descent)

{

Compute alfa with Newton iterations

u = u + alfa*du

}

else if (L-BFGS)

{

Compute alfa with More and Thuente method

u = u + alfa*Qdu # Q = inverse approximate Hessian

}

}

A fair warning

Comparing the convergence of optimization techniques can be quite difficult to do in a
fair manner. My steepest descent algorithm includes a termination criterion based on
the Armijo rule only, namely, a sufficient decrease condition of the objective function
(whereas L-BFGS use the Wolfe conditions). In addition, both the steepest descent
and L-BFGS algorithms have different line-searches, which will affect convergence
and computational performances. The L-BFGS line-search is based on the More

SEP–148

Guitton 3 Quasi-Newton log-decon

and Thuente method, which uses bracketing and quadratic/cubic interpolation. The
steepest-descent algorithm uses a very simple scheme where the step length is divided
by two until the sufficient decrease condition is respected. Therefore, some of the
computational differences come from the line-search algorithm and stopping criteria
in addition to the inherent convergence properties of the two methods.

A COMPARISON ON A FIELD-DATA EXAMPLE

Figure 1 shows a near-offset section of a 2-D line from the Gulf of California used
in Claerbout et al. (2012). The left side displays the input data and the right side
the deconed data when the L-BFGS solver is used. I do not show the result of the
steepest-descent because both methods estimate very similar wavelets, as shown in
Figure 2. As expected, the reflectivity of the deconed data in Figure 1 is revealed
quite well: the polarity of large reflectors is enhanced. Also, a non-minimum phase
wavelet is obtained, regardless of the method (Figure 2).

In terms of convergence speed, it takes 35 iterations and 1.7 seconds for the L-
BFGS technique to reach a minimum, and 123 iterations and 24 seconds for the
steepest-descent algorithm (Figure 3). Ignoring the time it takes to read and write
data on disk, each iteration of the L-BFGS algorithm is about five times faster,
with almost four times less iterations. Clearly, this difference is not solely due to
the better convergence properties of the quasi-Newton algorithm over the steepest-
descent method. As mentioned before, different line-search strategies and stopping
criteria matter as well.

CONCLUSION

The log-decon method is sped up by using the L-BFGS method compared to the
steepest-descent solver. A factor 20 is observed in this paper but results will vary
depending on the experimental setup.

APPENDIX

The L-BFGS method is suitable for smooth functions where local minima exist. It is
not a method for global optimization where the global minimum is sought. L-BFGS
is presented here in general terms using global definitions for the different variables:
it does not follow the notations of the log-decon method.

We define m∗ a local minimizer for f(m) and we assume that f(m) and m∗ satisfy
the “standard requirements”:

1. f is twice differentiable,

SEP–148

Guitton 4 Quasi-Newton log-decon

Figure 1: Left: input data. Right: deconed data with the L-BFGS solver

SEP–148

Guitton 5 Quasi-Newton log-decon

Figure 2: Top: wavelet estimated with the L-BFGS method. Bottom: wavelet esti-
mated with the steepest-descent method.

Figure 3: Convergence compari-
son between the steepest descent
(solid) and L-BFGS (dash) meth-
ods. Note the narrow horizontal
scale to highlight small differences
close to the convergence point.

SEP–148

Guitton 6 Quasi-Newton log-decon

2. ∇f(m∗) = 0,

3. ∇2f(m∗) is positive definite , i.e., m′∇2f(m∗)m > 0 for all m ∈ <N (′ denotes
the adjoint).

where N is the dimension of the model vector m and <N the real space for the model
vector m. Any vector m∗ that satisfies the standard requirements is a local minimizer
of f(m).

Newton’s method is an iterative process where the solution to the problem is
updated as follows:

mk+1 = mk − λkH
−1
k ∇f(mk), (1)

where mk+1 is the updated solution at iteration k + 1, λk the step length computed
by a line search that ensures a sufficient decrease of f(m) and Hk = ∇2f(mk) the
Hessian (or second derivative). In many circumstances the inverse of the Hessian can’t
be computed directly. It happens for example when the matrix H is too big or when
operators are used rather than matrices. Fortunately we might be able to compute
an approximation of the Hessian of f(m). This strategy gives birth to quasi-Newton
methods where the way in which the Hessian is computed determines the method
(Kelley, 1999).

A possible update of the Hessian is given by the BFGS technique Broyden (1969);
Fletcher (1970); Goldfarb (1970); Shanno (1970). The BFGS update is given by

Hk+1 = Hk +
yy′

y′s
− (Hks)(Hks)

′

s′Hks
, (2)

where s = mk+1−mk and y = ∇f(mk+1)−∇f(mk). In practice, however, we rather
write the previous equation in terms of the inverse matrices. We have then

H−1
k+1 =

(
I− sy′

y′s

)
H−1

k

(
I− ys′

y′s

)
+

ss′

y′s
. (3)

In addition, we use the history of the iterations to compute the new Hessian rather
than a full storage of the matrix H−1

k . This requires that a gradient step vector y
and a solution step vector s are kept in memory after each iteration. Consequently
this method might not been affordable with large data and model space. In the next
section a modified version of the BFGS method that limits the storage needed to
compute the update of the Hessian is proposed.

The limited-memory BFGS method

Nocedal (1980) derives a technique that partially solves the storage problem caused
by the BFGS update. Instead of keeping all the s and y from the past iterations,
we update the Hessian using the information from the l previous iterations, where l
is given by the end-user. This implies that when the number of iterations is smaller

SEP–148

Guitton 7 Quasi-Newton log-decon

than l, we have the usual BFGS update, and when it is larger than l, we have a
limited-memory BFGS (L-BFGS) update.

I give the updating formulas of the Hessian as presented by Nocedal (1980). First,
we define

ρi = 1/y′
isi, vi = (I − ρiyis

′
i) and H−1 = B.

As described above, when k, the iteration number, obeys k + 1 ≤ l, where l is the
storage limit, we have the BFGS update

Bk+1 = v′
kv

′
k−1 · · ·v′

0B0v0 · · ·vk−1vk

+v′
k · · ·v′

1ρ0s0s
′
0v1 · · ·vk

... (4)

+v′
kρk−1sk−1s

′
k−1vk

+ρksks
′
k.

For k + 1 > l we have the limited-memory update

Bk+1 = v′
kv

′
k−1 · · ·v′

k−l+1B0vk−l+1 · · ·vk−1vk

+v′
k · · ·v′

k−l+2ρk−l+1sk−l+1s
′
k−l+1vk−l+2 · · ·vk

... (5)

+v′
kρk−1sk−1s

′
k−1vk

+ρksks
′
k.

These equations show how the update of the Hessian is calculated.

Usually the L-BFGS method is implemented with a line search for the step length
λk to ensure a sufficient decrease of the misfit function. Convergence properties of the
L-BFGS method are guaranteed if λk in equation (2) satisfies the Wolfe conditions
(Kelley, 1999):

f(xk + λkdk) ≤ f(xk) + µλk∇f(xk)
′dk, (6)

|∇f(xk + λkdk)
′dk| ≥ ν|∇f(xk)

′dk|. (7)

ν and µ are constants to be chosen a priori and dk = −Bk∇f(mk). For ν and µ we
set ν = 0.9 and µ = 10−4 as proposed by Liu and Nocedal (1989). Equation (6) is
a sufficient decrease condition that all line search algorithms must satisfy. Equation
(7) is a curvature condition. The line search algorithm has to be carefully designed
since it absorbs most of the computing time. I programmed a line search based on
the More and Thuente (1994) method. Because the line search is time consuming,
the step length λk = 1 is always tested first. This procedure saves a lot of computing
time and is also recommended by Liu and Nocedal (1989). I now give the algorithm
used to minimize any objective function involving nonlinear problems.

SEP–148

Guitton 8 Quasi-Newton log-decon

An efficient algorithm for solving nonlinear problems

The solver works as follows:

1. Choose m0, l, B0. Set k = 0.

2. Compute

dk = −Bk∇f(mk), (8)

mk+1 = mk + λkdk, (9)

where λk meets the Wolfe conditions.

3. Let l̂=min{k, l − 1}. Update B0 l̂ + 1 times using the pairs {yi, si}k
j=k−l̂

, i.e.,

let

Bk+1 = v′
kv

′
k−1 · · ·v′

k−l̂
B0vk−l̂ · · ·vk−1vk

+v′
k · · ·v′

k−l̂+1
ρk−l̂sk−l̂s

′
k−l̂

vk−l̂+1 · · ·vk

... (10)

+v′
kρk−1sk−1s

′
k−1vk

+ρksks
′
k. (11)

4. Set k = k + 1 and go to 2 if the residual power is not small enough.

The update Bk+1 is not formed explicitly; instead we compute dk = −Bk∇f(xk)
with an iterative formula Nocedal (1980). Liu and Nocedal (1989) propose scaling
the initial symmetric positive definite B0 at each iteration as follows:

B0
k =

y′
ksk

‖ yk ‖2
2

B0. (12)

This scaling greatly improves the performances of the method. Liu and Nocedal
(1989) show that the storage limit for large-scale problems has little effects. A com-
mon choice for l is l = 5. In practice, the initial guess B0 for the Hessian is the
identity matrix I; then it might be scaled as proposed in equation (12). The nonlin-
ear solver as detailed in the previous algorithm converges to a local minimizer m∗ of
f(m).

SEP–148

Guitton 9 Quasi-Newton log-decon

REFERENCES

Broyden, C. G., 1969, A new double-rank minimization algorithm: AMS Notices, 16,
670.

Claerbout, J., Q. Fu, and Y. Shen, 2011, A log spectral approach to bidirectional
deconvolution: SEP-Report, 143, 297–300.

Claerbout, J., A. Guitton, and Q. Fu, 2012, Decon in the log domain with variable
gain: SEP-Report, 147, 313–322.

Fletcher, R., 1970, A new approach to variable metric methods: Comput. J., 13,
317–322.

Goldfarb, D., 1970, A family of variable metric methods derived by variational means:
Math. Comp., 24, 23–26.

Kelley, C. T., 1999, Iterative methods for optimization: SIAM in applied mathemat-
ics.

Liu, D. C. and J. Nocedal, 1989, On the limited memory BFGS method for large
scale optimization: Mathematical Programming, 45, 503–528.

More, J. J. and J. Thuente, 1994, Line search algorithms with guaranteed sufficient
decrease: ACM Transactions on Mathematical Software, 20, 286–307.

Nocedal, J., 1980, Updating quasi-Newton matrices with limited storage: Mathemat-
ics of Computation, 95, 339–353.

Shanno, D. F., 1970, Conditioning of quasi-Newton methods for function minimiza-
tion: Math. Comp., 24, 647–657.

SEP–148

