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ABSTRACT

I compare the computational cost of conventional full-waveform inversion to the
extended full-waveform inversion in both space and time. These model space ex-
tensions provide accurate results but increase the cost drastically. I also compare
the cost of the nonlinear inversion to linearized inversion by scale-separation. I
then propose extending the inversion in data space where there are more underly-
ing assumptions but whose cost competes with the conventional inversion. I test
extending the inversion by source ray parameter on the Marmousi model. The
results of the synthetic tests show that convergence is possible even with large er-
rors in the initial model which would have prevented convergence of conventional
full-waveform inversion.

INTRODUCTION

Seismic velocity analysis methods can be divided into two major groups. First, there
are techniques that aim to minimize the misfit in the data domain, e.g., full waveform
inversion (FWI) (Tarantola, 1984; Pratt, 1999; Luo and Schuster, 1991). Second, there
are other techniques (Symes and Carazzone, 1991; Biondi and Sava, 1999; Shen, 2004;
Zhang et al., 2012), that aim to improve the quality in the image domain, such as
migration velocity analysis (MVA). These approaches try to measure some quality
of the image and then invert for the estimated image perturbation using a linearized
wave-equation operator.

There are significant advantages to minimizing the residual in the image space:
global convergence, increased signal-to-noise ratio, and decreased complexity of the
data (Tang et al., 2008). However, a common drawback to doing velocity analysis in
the image domain is that only the transmission effects of the velocity are used. This
results in incomplete vertical resolution in the estimated model updates. On the other
hand, FWI does not have that problem, since it utilizes the information from both
the forward-scattered and back-scattered wavefields. This results in higher resolution
model estimates. Moreover, the data misfit is computed in the data space directly
without the need to go to another domain or to separate the data into several com-
ponents. This direct computation results in a relatively simple relationship between
the data residuals and the model updates. However, FWI has the disadvantage that
its objective function is far from being smooth and convex; it requires the starting
model to be very close to the true model to avoid convergence to local minima.
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Biondi (2012) presents a generalized framework for full waveform inversion that
avoids the cycle-skipping problem while utilizing all the components of seismic data
to invert for the medium parameters. This is achieved in two steps: first by extending
the velocity model through an additional degree of freedom, and second by imposing
a regularization to constrain this added degree of freedom.

In this paper, I compare the cost of conventional full waveform inversion to ex-
tended inversion in model space that uses subsurface offset and time lags. I also
compare the cost of the extended inversion to linearized inversion by scale separa-
tion (Almomin and Biondi, 2012). Next, I propose extending full waveform inversion
through a data space axis, such as source location or source ray parameter, instead of
model space axes. Finally, I test the source ray parameter extension on the Marmousi
model.

COMPUTATIONAL COST

Nonlinear wave equation inversions are commonly performed using gradient-based
iterative optimization. Each iteration typically consists of three steps. First, calculate
the residuals, which requires one nonlinear forward operation. Second, calculate the
gradient, which requires one linearized adjoint operation. Finally, determine the
step size by a line search, which requires few nonlinear forward operations. For our
calculations, we will assume the line search requires three forward operations results
in a total per iteration effort of four forward and one adjoint operations.

Conventional FWI

For conventional full waveform inversion, the modeled data is computed using the
nonlinear forward operator as:

d(ω,xr,xs; v(x)) =
∑
x

f(ω,xs)G(ω,x,xs; v(x))δ(xr − x), (1)

where d(ω,xr,xs; v(x)) is the modeled data, v(x) is the velocity model, f(ω,xs) is
the source function, ω is frequency, xs and xr are the source and receiver coordinates,
and x is the model coordinate. In the acoustic, constant-density case, the Green’s
function G(ω,x,xs; v(x)) satisfies:(

ω2

v2(x)
+∇2

)
G(ω,x,xs; v(x)) = δ(xs − x). (2)

The propagation can be done in the time domain by convolving each model point with
a finite-difference stencil. However, the time marching requires the time axis sampling
to satisfy dispersion and stability conditions (Marfurt, 1984), generally much finer
than the data sampling. Moreover, each time step requires multiplying the time slice

SEP–148



Almomin 3 Cost of EFWI

by the velocity squared. Therefore, the cost of forward modeling can be written as:

CFWI−F = NxNyNzNsource(NtpCFDTD + Ntp), (3)

where Nx, Ny and Nz, are the number of points along the three spatial axes, Nsource

is the number of sources, CFDTD is the cost of convolving one model location by
the time-domain finite-difference stencil and Ntp is the number of time samples for
propagation. By linearizing equation 1 over the squared slowness, we can compute
the adjoint as:

∆s2(x) =
∑

ω,xr,xs

ω2f(ω,xs)G(ω,x,xs; v(x))G(ω,x,xr; v(x))∆d∗(ω,xr,xs; v(x)), (4)

where ∆s2(x) is the perturbation in squared slowness and ∗ denotes the complex
conjugate. For the adjoint, the imaging time sampling can be much larger than that
of propagation since it does not need to satisfy the dispersion and stability conditions.
Hence, the cost of computing the adjoint of FWI can be written as:

CFWI−A = NxNyNzNsource(2×NtpCFDTD + 2×Ntp + Nti), (5)

where Nti is the number of time samples for imaging. The total cost of one iteration
of FWI becomes

CFWI = NxNyNzNsource(6×NtpCFDTD + 6×Ntp + Nti). (6)

Model-Space Extensions

Biondi and Almomin (2012) introduced an extension to full waveform inversion that
can mitigate the cycle-skipping problem and allow for a larger error in the initial
model. This is achieved by extending the velocity model along the subsurface off-
set and then solving the corresponding extended wave equation. The modeled data
becomes:

d(ω,xr,xs; v(x,xh)) =
∑
x

f(ω,xs)G(ω,x,xs; v(x,xh))δ(xr − x), (7)

and the extended Green’s function satisfies:(
v2(x,xh) ∗−1 ω2 +∇2

)
G(ω,x,xs; v(x,xh)) = δ(xs − x), (8)

where xh is subsurface offset and ∗−1 denotes a deconvolution operator over subsurface
offset. This extended wave equation convolves each time slice by all subsurface offsets
of velocity. The cost of extended forward modeling becomes:

CEFWI−F = NxNyNzNsource(NtpCFDTD + NtpNhxNhy), (9)
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where Nhx and Nhy are number of subsurface offsets along the x and y axes, re-
spectively. By linearizing equation 7 over the velocity squared, we can compute the
adjoint as:

∆v2(x,xh) =
∑

ω,xr,xs

∇2f(ω,xs)G(ω,x− h,xs; v(x,xh))

G(ω,x + h,xr; v(x,xh))∆d∗(ω,xr,xs; v(x,xh)). (10)

Therefore, the cost of computing the adjoint of EFWI can be written as

CEFWI−A = NxNyNzNsource(2×NtpCFDTD + 2×NtpNhxNhy + NtiNhxNhy) (11)

and the total cost of one iteration of EFWI becomes

CEFWI = NxNyNzNsource(6×NtpCFDTD + 6×NtpNhxNhy + NtiNhxNhy). (12)

We can see that the computational cost becomes extremely high when we include the
subsurface offsets in the velocity model. One way to reduce the cost is presented in
Biondi (2012) where the velocity model is extended over time instead of horizontal
offset. In that case, the cost becomes a function of one time-lag parameter instead of
two horizontal lags in 3D:

CTimeEFWI = NxNyNzNsource(6×NtpCFDTD + 6×NtpNτ + NtiNτ ), (13)

where Nτ is the number of time lags. The computational disadvantage is that several
time slices need to be held in memory for each time instead of the conventional two
slices.

Linearized Model-Space Extensions

Any of the previously mentioned inversions can be linearized by scale separation as
shown in Almomin and Biondi (2012). To linearize the conventional FWI, the velocity
model is separated as:

s2(x) = b(x) + r(x), (14)

where b(x) is the background component and r(x) is the perturbation component.
The linearized FWI forward operator can be written as follows:

d(ω,xr,xs; b(x), r(x)) =
∑
x

ω2f(ω,xs)G(ω,x,xr; b(x))r(x)G(ω,x,xs; b(x)). (15)

As shown in equation 15, the cost of the linearized forward operator is equal to the
adjoint cost of conventional FWI. Also, the adjoint of the linearized operator with
respect to the perturbation is the same as the conventional FWI adjoint and has the
same cost as well. The adjoint with respect to the background is:

∆b(x) =
∑

ω,xr,xs,y

ω4f(ω,xs)G(ω,y,xs; b(x))r(y)

G(ω,x,y; b(x))G(ω,x,xr; b(x))∆d∗(ω,xr,xs; b(x), r(x))+

ω4f(ω,xs)G(ω,x,xs; b(x))G(ω,x,y; b(x))r(y)

G(ω,y,xr; b(x))∆d∗(ω,xr,xs; b(x), r(x)). (16)
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Although equation 16 has six Green’s functions, only four propagations are required
since each background wavefield is the same for two Green’s functions. In addition,
these background wavefields are the same for the adjoint of perturbation. Hence, the
total cost of the linearized FWI per iteration, assuming complete reuse of background
wavefields, is

CLFWI = NxNyNzNsource(12×NtpCFDTD + 12×Ntp + 9×Nti). (17)

This shows that scale separation by itself increases the cost of the original nonlinear
operator since it adds several propagations, imaging and scattering steps. However,
a significant cost cutting for extended inversions is possible by extending only the
perturbation component without extending background component. By following
the same derivation for linearized FWI, I find the cost of linearized extended FWI in
subsurface offset when I extend perturbation only to be

CLEFWI = NxNyNzNsource(12×NtpCFDTD +12×Ntp +2×Nti +7×NtiNhxNhy). (18)

By extending only the perturbation, we remove the subsurface offset multiplication
factor Ntp. This results in a large reduction in cost because the number of propagation
time steps Ntp is much larger than the number of imaging time steps Nti. Similarly,
the cost of linearized extended FWI in time can be written as

CTimeLEFWI = NxNyNzNsource(12×NtpCFDTD +12×Ntp +2×Nti +7×NtiNτ ). (19)

For the extended FWI in time, the cost reduction by linearization is less dramatic than
the extended FWI in subsurface offset since there is only one additional convolution
axis.

Data-Space Extensions

Model space extensions provide an accurate solution to the cycle skipping problem
because they decompose the wavefields in the subsurface along the extended axes,
either space or time. However, this is also reason for their high cost: each data
point will interact with all points of the extended model. To avoid this problem, I
propose extending full waveform inversion through a data space axis, such as source
location, instead of model space axes. The reason for data space extension is that each
extended model component operates on the corresponding component in data space
and vice versa. In other words, each experiment can be computed similarly to the
conventional way, but the model is changed between different experiments. However,
extending the model through a data space axis has the underlying assumption that
data components remain separated in the subsurface. This assumption depends on
the complexity of the model. For instance, image space angle gathers and data space
ray parameter gathers provide similar information in a fairly simple model (Sava and
Fomel, 2003), but the latter breaks down in a very complicated model.

The extended inversion, whether in model space or data space, needs to satisfy
two conditions. First, the observed data can always be explained by the extended
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model regardless of the selection of the initial model (Biondi, 2012). Second, the
extended model should allow gradual change by regularization to produce a non-
extended model. The data space extensions that can potentially satisfy these con-
ditions are source location and source ray parameter. The source location extension
has the advantage of using the exact same propagation engine as the conventional
inversion, so its implementation requires minimal adjustment to existing applications.
Moreover, the source location satisfies the extension conditions fairly well. Figure 1
shows source location image gathers for a two-layer model when using the correct
velocity, a 10 percent lower velocity, and a 10 percent higher velocity. We see that
regularizing the additional axis by a derivative can satisfy the second condition. The
disadvantage of this extension is having a velocity model for each source location,
which can require a very large memory size and burdensome I/O in 3D.

Figure 1: Source location image
gather for a two-layer model when
using the correct velocity (left), a
10 percent lower velocity (middle),
and a 10 percent higher velocity
(right). [CR]

Extending the model by source ray parameter requires plane-wave encoding of the
data (Whitmore, 1995; Zhang et al., 2005; Liu et al., 2006). Figure 2 shows source ray
parameter image gathers for a two-layer model when using the correct velocity, a 10
percent lower velocity, and a 10 percent higher velocity. Similar to source location, the
source ray parameter seems to also satisfy the second condition of model extension.
The first condition is tested in the Synthetic Examples section below. In addition, the
number of planes is generally much smaller than the number of source locations, so
it both reduces the cost and makes the size of the extended model very manageable.

The cost of source location encoding is the same as conventional FWI, whereas
the cost of source ray parameter extension is

CRayEFWI = NxNyNzNp(6×NtpCFDTD + 6×Ntp + Nti), (20)

where Np is the number of planes. Figure 3 compares the costs of all mentioned
inversions assuming Nx = Ny = 1000, Nz = 100, Nsource = 10000, CFDTD = 16,
Ntp = 1000, Nti = 100, Nhx = Nhy = 100, Nτ = 200, and Np = 1000, where the
costs are normalized by the cost of conventional FWI. The log-scale highlights that
the difference in cost between these inversions can be several orders of magnitude.
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Figure 2: Source ray parameter
image gather for a two-layer model
when using the correct velocity
(left), a 10 percent lower velocity
(middle), and a 10 percent higher
velocity (right). [CR]

Figure 3: Cost comparison of con-
ventional and extended full wave-
from inversions. [NR]
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SYNTHETIC EXAMPLES

A modified Marmousi model is used for the synthetic example where a 500m water
layer is added to the top. Figure 4 shows the true velocity model. A Ricker wavelet
with a fundamental frequency of 15 Hz and temporal sampling of 1.5 ms is used as a
source function to model the data. There are 461 fixed receivers with a spacing of 20
m and 21 plane sources with ray parameter ranging from −1 s/km to 1 s/km. The
initial model shown in Figure 5 is obtained by strongly smoothing the true model.

Figure 4: The true velocity of
Marmousi model. [ER]

Figure 5: The initial velocity of
Marmousi model. [ER]

I modeled the observed data with the conventional acoustic wave-equation nonlin-
ear modeling operator. Then, I ran inversion without any tomographic regularization
term. This inversion verified the first extension condition, that the modeled data can
be explained using the initial model.

I show the results of running 1000 iterations of the unregularized inversion. Figure
6 shows the residual of the data fitting as a function of iterations. The residual
decreases monotonically without getting stuck in a local minima and is approaching
zero. This means that the first condition is fairly satisfied for this example. Figure
7 shows the difference between the initial and final model at three locations as a
function of depth and ray parameter. The three gathers show varying degrees of
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Figure 6: The data residual norm
as a function of iterations of Mar-
mousi model unregularized inver-
sion. [CR]

Figure 7: Three ray parameter
gathers showing the difference be-
tween the initial model and the
unregularized inverted model at
x=2.5, 5, 7.5 km of Marmousi
model. [CR]

Figure 8: The unregularized inver-
sion results of Marmousi model.
[CR]
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difference across the ray parameter axis, which indicates the inconsistency between
these data components given the initial velocity model. Figure 8 shows the average
of the final model across the ray parameter axis. Although the final model matches
most of the observed data, no low wavenumber components are correctly estimated
in this unregularized inversion since the kinematic errors are compensated for by the
difference between ray parameter models.

Figure 9: The data residual norm
(solid line) and the model residual
norm (dashed line) as a function of
iterations of Marmousi model reg-
ularized inversion. [CR]

Figure 10: Three ray parame-
ter gathers showing the differ-
ence between the initial model and
the regularized inverted model at
x=2.5, 5, 7.5 km of Marmousi
model. [CR]

Next, I show the results of running 10000 iterations of the inversion regularized
by a derivative across the ray parameter axis. Figure 9 shows the residual of the
data fitting and model regularization as a function of iterations. The data fitting
residuals decrease slower than the data residuals in the unregularized inversion since
two objective functions are competing to be minimized. Nonetheless, it is not getting
stuck in a local minima and is approaching zero. Figure 10 shows the difference
between the initial and final model at three locations as a function of depth and ray
parameter. The three images show no variations across the ray parameter axis, which
indicates that the inversion successfully converged the extended model to a physical
model. Figure 11 shows the average of the final model across the ray parameter axis.
Both low and high wavenumber components are correctly estimated and the inversion
converged towards the true answer.
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Figure 11: The regularized inver-
sion results of Marmousi model.
[CR]

CONCLUSIONS

I have shown that extending the velocity in model axes increases the computational
cost drastically. Scale separation can reduce the cost but remains much more expen-
sive than conventional FWI. I presented an alternative approach to extended FWI
by using data space axes. Although the underlying assumptions might make it less
accurate than model space extensions in very complex models, the cost is greatly re-
duced and becomes similar to the cost of conventional FWI. The synthetic Marmousi
example showed remarkable results even when the initial model had large errors. The
results of this model are comparable to the results of model space extensions but are
significantly cheaper in cost.
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