![]() |
![]() |
![]() |
![]() | Identifying reservoir depletion patterns from production-induced deformations with applications to seismic imaging | ![]() |
![]() |
We can use operator 4 for forward-modeling the displacement field from a specified pressure change. Note that operator 4 is a non-stationary convolutional integral operator for a homogeneous medium. The convolution is non-stationary due to the presence of
in the elastostatic Green's tensor. Integration along the horizontal axes can be accelerated by applying the operator in the wavenumber domain. However, integration along the vertical axis should still be carried out separately for different values of
, hence the integration kernel is effectively four-dimensional. Assuming the reservoir to be thin in comparison with its lateral extents, which is always the case, we can replace the vertical integral with a mean value of the integrand times the reservoir thickness:
An implementation of this method is provided by the poroelastic_green.F90
module of the author's exp_tk
Fortran 2003 object-oriented framework described in Appendix B.
We test our approach on synthetic data generated for a reservoir model based on the assumed geometry of the gas reservoir near Lacq, France, described by Segall et al. (1994). The reservoir is assumed to be anticlinal dome-shaped, with the depth of the reservoir approximated as
![]() ![]() |
---|
cppsymhires,csubsdispoutsymhires
Figure 2. a) Contour plot of the axisymmetric pore pressure drop given by equation 7. b) Contour plot of the subsidence above the reservoir of Fig 1 due to the axisymmetric pore pressure decline of Fig 2(a). |
![]() ![]() ![]() ![]() |
Next, we apply the modeling operator to the asymmetric synthetic pore pressure drop given by
![]() ![]() |
---|
cppasymhires,csubsdispoutasymhires
Figure 3. a) Contour plot of the asymmetric pore pressure drop given by equation 8. b) Contour plot of the subsidence above the reservoir of Fig 1 due to the asymmetric pore pressure decline of Fig 3(a). |
![]() ![]() ![]() ![]() |
The following table summarizes the medium parameters taken from (Segall et al., 1994) that are used in our tests:
Parameter | SI | Imperial |
![]() |
.25 | dimensionless |
![]() |
.25 | dimensionless |
![]() |
![]() |
![]() |
![]() |
(9) |
Modeling subsidence using operator 5, we are able to fully account for the asymmetric nature of the depletion pattern by using the most general form of Green's tensor for a homogeneous half-space. In that respect, our approach represents an advancement of the purely analytical techniques for axisymmetric reservoirs presented in (Geertsma, 1973) and (Segall et al., 1994). However, the assumption of homogeneity, which is required for our being able to use analytical expressions for the Green's tensor, is a serious limitation that may significantly impair the applicability of our method, especially bearing in mind that our ultimate objective is to estimate subsurface displacements from observable subsidence. Later in the paper we propose a computationally efficient extension of our method that is capable of tackling heterogeneity.
![]() |
![]() |
![]() |
![]() | Identifying reservoir depletion patterns from production-induced deformations with applications to seismic imaging | ![]() |
![]() |