Wave-equation migration velocity analysis for VTI media using optimized implicit finite difference
Next:
About this document ...
Up:
Li: Implicit anisotropic WEMVA
Previous:
Conclusions and discussions
Bibliography
Li, Y. and B. Biondi, 2010, Wave-equation tomography for anisotropic parameters: SEP-Report,
140
, 49-60.
----, 2011a, Migration velocity analysis for anisotropic models: SEG Expanded Abstract,
30
, 201-206.
Li, Y. E., 2012, Wave-equation migration velocity analysis for anisotropic models on 2-D ExxonMobil field data: SEP-Report,
147
, 83-94.
Li, Y. E. and B. Biondi, 2011b, Migration velocity analysis for anisotropic models: SEP-Report,
143
, 21-32.
Li, Y. E., P. Shen, and C. Perkins, 2012, VTI migration velocity analysis using RTM: SEP-Report,
147
, 57-72.
Marquering, H., F. A. Dahlen, and G. Nolet, 1998, Three-dimensional waveform sensitivity kernels: Geophysical Journal International,
132
, 521-534.
----, 1999, Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox: Geophysical Journal International,
137
, 805-815.
Plessix, R.-E. and H. Rynja, 2010, VTI full waveform inversion: A parameterization study with a narrow azimuth streamer data example: SEG Expanded Abstracts,
29
, 962-966.
Rickett, J., 2000, Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas?: SEP-Report,
103
, 63-71.
Ristow, D. and T. Ruhl, 1997, Migration in transversely isotropic media using implicit operators: SEG Expanded Abstract,
67
, 1699-1702.
Sava, P., 2004, Migration and velocity analysis by wavefield extrapolation: PhD thesis, Stanford University.
Shan, G., 2006, Optimized implicit finite-difference migration for VTI media: SEP-Report,
124
, 279-292.
----, 2009, Optimized implicit finite-difference and Fourier finite-difference migration for VTI media: Geophysics, WCA189-WCA197.
Xie, X.-B. and H. Yang, 2009, The finite-frequency sensitivity kernel for migration residual moveout and its applications in migration velocity analysis: WTOPI Report,
16
.
2012-05-10