![]() |
![]() |
![]() |
![]() | Tomographic full waveform inversion (TFWI) by combining full waveform inversion with wave-equation migration velocity analysis | ![]() |
![]() |
The conventional FWI objective function
can be written as:
The modeled data is computed as:
We can extend the velocity in the subsurface-offset dimension
which changes the wave equation into the following form
The long-wavelength components of the solution of the optimization problem defined by equation 5 are not likely to be substantially different from the long-wavelength components of the initial model. The extension of the model, and in particular of its reflectivity component, to non-zero subsurface offset causes the kinematics of the modeled data to match the kinematics of the recorded data independently from the accuracy of the long-wavelength components.
Another term must be added to the objective function to drive the solution towards a model that focuses the image. Symes (2008) suggests the addition of a differential semblance penalty function (DSO); that is,
The important characteristic of the second term is that its gradient ``imposes'' on the current model only a phase shift, and not a bulk vertical shift. This assures that the corresponding perturbations on the modeled data are mere phase shifts, and not bulk time shifts. The absence of bulk time shifts in the modeled data avoids large discrepancies between the kinematics of modeled data and recorded data. These large discrepancies are at the root of the convergence problems in conventional FWI.
Another practically important consideration is that in the proposed formulation the computation of the gradient of a term like the one presented in Zhang and Biondi (2012) is straightforward because it does not require back-projection of image perturbations. This is in contrast with WEMVA-like methods, where the computation of the gradient must take into account the constraint that the image is the result of migrating the recorded data. Therefore, at least in principle, it would be equally easy to add to the objective function other terms that reward focusing of the model along the midpoint spatial axis, in addition to the subsurface offset or reflection angle (Biondi, 2010).
![]() |
![]() |
![]() |
![]() | Tomographic full waveform inversion (TFWI) by combining full waveform inversion with wave-equation migration velocity analysis | ![]() |
![]() |