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ABSTRACT

We present a method for computing the wave-equation-based angle-domain illu-
mination for subsurface structures. It creates subsurface illumination for differ-
ent scattering or/and dip angles for a given acquisition geometry, velocity model
and frequency bandwidth. The proposed method differs from the conventional
method in that it does not require local plane-wave decompositions for each source
and receiver Green’s functions. Instead, it transforms a precomputed subsurface-
offset-indexed sensitivity kernel into angle domain using either a Fourier-domain
mapping or a space-domain slant stack. We show that the computational cost
can be significantly reduced by phase encoding the receiver-side Green’s func-
tions, or by simultaneously encoding both the source- and receiver-side Green’s
functions. Numerical examples demonstrate the accuracy and efficiency of our
method. The main anticipated applications of our method are in areas of: (1) ac-
curate amplitude-versus-angle (AVA) analysis by compensating depth-migrated
images with angle-dependent illumination, (2) migration velocity analysis that
incorporates angle-dependent illumination for robust residual parameter estima-
tion, and (3) optimum seismic survey planning.

INTRODUCTION

Seismic image quality obtained using prestack depth migration is highly dependent
on subsurface illumination, which can be affected by many factors, e.g., the limited
acquisition geometry, the complex velocity model, and the frequency content of seis-
mic waves. Uneven illumination causes distorted seismic images due to the fact that
migration operator is nonunitary (Nemeth et al., 1999; Clapp, 2005; Valenciano, 2008;
Tang, 2009). Seismic illumination analysis quantifies such image distortion and pro-
vides ways to optimally restore the reflectivity. More accurate amplitude-versus-angle
(AVA) analysis can be obtained if the angle-domain common-image gather is corrected
with angle-dependent illumination. Angle-domain velocity analysis may also benefit
from angle-dependent illumination weighting. It can weight up well-illuminated angu-
lar images, while weight down poorly-illuminated ones for robust residual parameter
estimation, reducing the uncertainty caused by poor illumination.

Angle-domain illumination analysis is often carried out using ray-based method
due to its efficiency (Schneider and Winbow, 1999; Bear et al., 2000). However,
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the infinite-frequency approximation and the caustics inherent in ray theory pre-
vent ray-based method from accurately modeling complex wave phenomena. Wave-
equation-based method, on the other hand, more accurately describes bandlimited
wave phenomena, and therefore more suitable for complex geologies, e.g., subsalt
regions with complex overburdens. Wave-equation-based angle-domain illumination
analysis is proposed by Xie et al. (2006), where local plane-wave decomposition has
been employed to extract the directional information for both source and receiver
Green’s functions before spatial and temporal correlations.

In this paper, we present an alternative way of computing the angle-dependent
illumination. Instead of performing local plane-wave decomposition for each Green’s
function, our method transforms a subsurface-offset-indexed sensitivity kernel into
the angle domain and then correlating the corresponding angle-domain sensitivity
kernel to produce the angle-dependent illumination. The procedure closely resembles
the method of Sava and Fomel (2003), which computes angle-dependent reflectiv-
ity image after imaging using a Fourier-domain mapping. We demonstrate in two
dimensions that our method generates the scattering-angle illumination suitable for
point scatterers if only horizontal subsurface offset has been computed. For planar
reflectors, however, dip-dependent scattering-angle illumination is necessary, instead
of scattering-angle illumination that averages over all dips. We show that the dip-
dependent scattering-angle-domain illumination gather can be obtained by mapping
either midpoint wavenumbers or subsurface-offset wavenumbers that contain both
horizontal and vertical subsurface offsets.

In fact, the subsurface illumination that we often refer to is only a subset, or
more precisely, the diagonal part of the imaging Hessian matrix. The off-diagonal
components of the Hessian have been proven useful when applied to improve images
of extremely poor illumination, e.g., subsalt regions with shadow zones (Valenciano,
2008; Tang, 2009). Our method discussed here also allows us to compute the off-
diagonal components of the angle-domain imaging Hessian in a target-oriented fash-
ion, hence it can be used to invert for the angle-domain reflectivity in a model-domain
least-squares migration/inversion. A naive implementation of the proposed method,
however, can be prohibitively expensive with the computational cost proportional to
the number of sources, receivers and frequencies. We show how the phase-encoding
technique (Tang, 2008b,a, 2009) is able to make the method more cost effective.

This paper is organized as follows: we first review the theory of computing the
illumination, or more generally, the imaging Hessian, in the subsurface-offset domain.
Then we demonstrate how to transform the sensitivity kernel into angle-domain and
how to compute the scattering-angle-domain Hessian, as well as the dip-dependent
scattering-angle-domain Hessian. Finally we apply our method to the Sigsbee2A
model.
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SUBSURFACE-OFFSET-DOMAIN IMAGE AND
ILLUMINATION

Linearized modeling (Born modeling) from a prestack image parameterized as a func-
tion of subsurface offset can be described as follows:

d(xr,xs, ω) =
∑
x

∑
h

Lh(x,h,xr,xs, ω)mh(x,h), (1)

where d(xr,xs, ω) is the seismic data with a source located at xs = (xs, ys, zs = 0)
and a receiver located at xr = (xr, yr, zr = 0); ω is the angular frequency; mh(x,h) is
the prestack image located at x = (x, y, z) for a half subsurface offset h = (hx, hy, hz);
Lh is the sensitivity kernel defined as follows:

Lh(x,h,xr,xs, ω) = ω2fs(ω)G(x− h,xs, ω)G(x + h,xr, ω), (2)

where fs(ω) is the source signature, and G(x,xs, ω) and G(x,xr, ω) are the Green’s
functions connecting the source and receiver, respectively, to the image point x.

Reconstruction of the prestack image m(x,h) can be posed as an inverse problem
by minimizing the following objective function defined in the data space:

F (m) =
1

2

∑
ω

∑
xs

∑
xr

|W (xr,xs)r(xr,xs, ω)|2, (3)

where r(xr,xs, ω) = d(xr,xs, ω) − dobs(xr,xs, ω) is the data residual and W (xr,xs)
is the acquisition mask operator, which contains unity values where we record data
and zeros where we do not. The gradient of the objective function F reads

Ih(x,h) =
∑

ω

∑
xs

∑
xr

W 2(xr,xs)L
∗
h(x,h,xr,xs, ω)r(xr,xs, ω), (4)

where ∗ denotes complex conjugation. Equation 4 is similar to the prestack shot-
profile migration formula and it produces migrated reflectivity images defined in the
subsurface offset domain (Rickett and Sava, 2002).

The Hessian can be obtained by taking the second-order derivatives of F with
respect to the model parameters as follows:

Hh(x,x′,h,h′) =
∑

ω

∑
xs

∑
xr

W 2(xr,xs)L
∗
h(x,h,xr,xs, ω)Lh(x

′,h′,xr,xs, ω). (5)

When x = x′ and h = h′, we obtain the diagonal elements of the Hessian operator

Hh(x,h) =
∑

ω

∑
xs

∑
xr

W 2(xr,xs)|Lh(x,h,xr,xs, ω)|2. (6)

The diagonal of the Hessian is often known as the illumination map of the subsur-
face, it contains illumination contribution from both sources and receivers for a given
acquisition configuration.
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ANGLE-DOMAIN IMAGE AND ILLUMINATION

Because the subsurface offset is linked to the scattering angle and dip angle through
local ray parameters, the sensitivity kernel (and consequently the reflectivity image
and the Hessian) can be transformed from the subsurface-offset domain into the angle
domain through a simple Fourier domain mapping, or equivalently a space-domain
slant stack (Sava and Fomel, 2003). In this section, we first demonstrate that a
Fourier-domain mapping using the depth and horizontal-subsurface-offset wavenum-
bers produces scattering angles that are implicitly averaged over illuminated dips. It
is useful for point scatterers. Dip-dependent scattering-angle illumination, however,
is required for accurately predicting illumination strength for planar reflectors. We
restrict our discussion only in 2-D for simplicity, where x = (x, z), h = (hx, hz),
xs = (xs, zs = 0) and xr = (xr, zr = 0). But the extension to 3-D should be straight
forward and would be discussed in further publications.

Scattering-angle-domain illumination

In a locally constant velocity medium (Figure 1), the midpoint ray parameter pm and
the subsurface offset ray parameter ph can be expressed as follows:

pm = ps + pr (7)

ph = pr − ps, (8)

where ps and pr are the source and receiver ray parameters, respectively. Using
trigonometric relations, we can further express the horizontal and vertical components
of pm and ph as functions of the scattering angle γ that bisects the incident and the
scattered rays (plane waves) and the corresponding dip angle α as follows:

pm =

(
pmx

pmz

)
=

(
2s cos γ sin α
−2s cos γ cos α

)
, (9)

and

ph =

(
phx

phz

)
=

(
2s sin γ cos α
2s sin γ sin α

)
, (10)

where s is the slowness at the reflection point. Dividing phx by pmz yields

tan γ = − phx

pmz

= − khx

kmz

, (11)

where khx and kmz are vertical-subsurface-offset wavenumber and depth wavenumber,
respectively. Equation 11 converts the sensitivity kernel from the subsurface-offset-
domain into the scattering-angle domain. The action of the angle-domain sensitiv-
ity kernel to the data residual r(xr,xs, ω) gives the angle-domain reflectivity im-
age. Since the Fourier-domain mapping is a linear operator and is independent from
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the data residual, the sources, receivers and frequencies, it can be postponed after
the subsurface-offset-domain reflectivity image is obtained. Therefore, to obtain the
angle-domain reflectivity image more efficiently, we perform the mapping on the im-
age Ih after stacking over sources, receivers and frequencies, instead of the sensitivity
kernel Lh for each source, receiver and frequency (Sava and Fomel, 2003).

Figure 1: Geometric relations be-
tween ray vectors at a reflection
point in a locally constant veloc-
ity medium. [NR]

P

P

P

P

s

r

h

m

We obtain the scattering-angle-domain Hessian by correlating the sensitivity ker-
nels Lγ as follows:

Hγ(x,x′, γ, γ′) =
∑

ω

∑
xs

∑
xr

W 2(xr,xs)L
∗
γ(x, γ,xr,xs, ω)Lγ(x

′, γ′,xr,xs, ω). (12)

The diagonal of equation 12, or the scattering-angle-domain illumination is obtained
when x = x′ and γ = γ′

Hγ(x, γ) =
∑

ω

∑
xs

∑
xr

W 2(xr,xs)|Lγ(x, γ,xr,xs, ω)|2. (13)

Contrary to the case of computing angle-domain reflectivity image, postponing the
Fourier-domain mapping after stack becomes less obvious for the angle-domain Hes-
sian computation due to the correlation term inside the summation loop in equations
12 and 13. In the following numerical examples, we take a more straight forward
way that directly transforms the sensitivity kernel from the subsurface-offset domain
to the scattering-angle-domain to compute the angle-domain Hessian or illumination.
The steps can be summarized as follows:

• for fixed x, xs, xr and ω, apply 2-D Fourier transform along axes z and hx

Lh(x, z, hx,xr,xs, ω) → Lh(x, kz, khx ,xr,xs, ω);
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• perform the mapping

Lh(x, kz, khx ,xr,xs, ω) → Lγ(x, kz, γ,xr,xs, ω)

according to relation 11;

• apply inverse 1-D Fourier transform along axis kz

Lγ(x, kz, γ,xr,xs, ω) → Lγ(x, z, γ,xr,xs, ω)

to obtain the scattering-angle-domain sensitivity kernel.

• compute either the scattering-angle-domain Hessian using equation 12 or the
illumination using equation 13.

As a simple example, Figures 3 shows the real part of the scattering-angle-domain
sensitivity kernel, converted from its subsurface-offset-domain counterpart (Figure 2).
The results are obtained by using a constant velocity model (2000 m/s), and only
one source (−600 m), one receiver (600 m) and one frequency (19 Hz) are computed.
Figure 4 shows the corresponding single-frequency scatter-angle-domain illumination
for the given velocity model and acquisition configuration. Since there are only one
source and one receiver, each subsurface point is illuminated by only one scattering
angle.

The scattering-angle-domain illumination is useful for point scatterers, it, however,
fails to accurately predict the illumination strength for planar reflectors, where the
scattered waves have preferred orientations according to the local dips of the reflectors.
The reason behind this is that the transformation (equation 11) is dip-independent,
the resulting angle-domain illumination implicitly averages over all dip angles and
measures the overall scattering-angle illumination from all dips illuminated, instead
of the illumination from one particular dip of the actual planar reflector. This point
is further illustrated by Figures 5 and 6, where the computed scattering-angle-domain
illumination (Figure 6(d)) accurately predicts the illumination for the point scatterer
(Figures 5(c) and 6(c)), instead of the horizontal (Figures 5(a) and 6(a)) and the
−30◦ dipping reflectors (Figures 5(b) and 6(b)).

Dip-dependent scattering-angle-domain illumination

To overcome the limitation of the scattering-angle-domain illumination for planar
reflectors discussed in the preceding section, we further decompose the illumination
into dip-angle domain, resulting in dip-dependent scattering-angle-domain illumina-
tion. From equations 9 and 10, it is easy to obtain the tangent of the dip angle using
either

tan α = −pmx

pmz

= −kmx

kmz

, (14)
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Figure 2: The real part of the subsurface-offset-domain sensitivity kernel for a con-
stant velocity model (2000 m/s), one source at −600 m, one receiver at 600 m and
one frequency (19 Hz). Panel (a) shows the kernel at zero-subsurface-offset; (b), (c)
and (d) show the kernel for different spatial locations at −1000 m, 0 m and 1000 m,
respectively. [CR]

Figure 3: The real part of the scattering-angle-domain sensitivity kernel after con-
version from the subsurface offset domain (Figure 2). Panel (a) shows the sensitivity
kernel for a constant scattering angle 18.75◦; (b), (c) and (d) show the kernel for
spatial locations at −1000 m, 0 m and 1000 m, respectively. [CR]
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Figure 4: The single-frequency scattering-angle-domain illumination obtained using
the sensitivity kernel shown in Figure 3. Panel (a) shows the illumination for scat-
tering angle 18.75◦; (b), (c) and (d) show the illumination angle gathers for spatial
locations at −1000 m, 0 m and 1000 m, respectively. [CR]

Figure 5: Migrated zero-subsurface-offset images (stacked images) for (a) a horizontal
reflector, (b) a dipping reflector (−30◦) and (c) a point scatterer. All images are
obtained by migrating only one shot located at −600 m, where 401 receivers spread
from −2000 m to 2000 m with a 10 m spacing. [CR]

Figure 6: The scattering-angle-
domain image gathers extracted
at spatial location 0 m for (a) the
horizontal reflector, (b) the dip-
ping reflector and (c) the point
scatterer. Panel (d) shows the
scattering-angle-domain illumina-
tion gather extracted at the same
spatial location. [CR]
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or

tan α =
phz

phx

=
khz

khx

, (15)

where kmx , kmz and khx , khz are the horizontal and vertical components of the mid-
point wavenumber vector and the subsurface-offset wavenumber vector, respectively.

Dip decomposition using either equation 14 or 15 has its own pros and cons. Equa-
tion 15 is suitable for computing dip-angle gathers for sparsely isolated image points,
because it does not require any CMP information, i.e., kmx and kmz, and outputting
gathers for sparsely isolated image points may mitigate the extra computer time and
storage spent in computing both the horizontal and vertical subsurface offsets, hx and
hz. On the other hand, equation 14 is computationally less demanding, because it
does not require computing vertical subsurface offsets. However, it estimates dips us-
ing the CMP information, hence a block of densely sampled image points in the CMP
domain should be output to avoid dip aliasing. In the following numerical examples,
we use equation 14 for dip decomposition due to the fact that it is relatively incon-
venient to output vertical subsurface offsets by using one-way wave-equation-based
extrapolators.

After transforming the subsurface-offset-domain sensitivity kernel into the dip-
dependent scattering-angle domain, we can proceed to compute the corresponding
Hessian using

Hγ,α(x,x′, γ, γ′, α, α′) =
∑

ω

∑
xs

∑
xr

W 2(xr,xs)Lγ,α(x, γ, α,xr,xs, ω)

× L∗
γ,α(x′, γ′, α′xr,xs, ω), (16)

or the illumination using

Hγ,α(x, γ, α) =
∑

ω

∑
xs

∑
xr

W 2(xr,xs)|Lγ,α(x, γ, α,xr,xs, ω)|2, (17)

where Lγ,α is the dip-dependent scattering-angle-domain sensitivity kernel. The com-
plete procedure can be summarized as follows:

• for fixed xs, xr and ω, apply 3-D Fourier transform along axes x, z and hx (if
only horizontal subsurface offsets are computed)

Lh(x, z, hx,xr,xs, ω) → Lh(kx, kz, khx ,xr,xs, ω),

or along z, hx and hz (if both horizontal and vertical subsurface offsets are
computed)

Lh(x, z, hx, hz,xr,xs, ω) → Lh(x, kz, khx , khz ,xr,xs, ω);
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• perform the mapping

Lh(kx, kz, khx ,xr,xs, ω) → Lγ,α(kx, kz, γ, α,xr,xs, ω)

according to relations 11 and 14, or

Lh(x, kz, khx , khz ,xr,xs, ω) → Lγ,α(x, kz, γ, α,xr,xs, ω)

according to relations 11 and 15;

• apply inverse 2-D Fourier transform along axes kx and kz

Lγ,α(kx, kz, γ, α,xr,xs, ω) → Lγ,α(x, z, γ, α,xr,xs, ω),

or inverse 1-D Fourier transform along axis kz

Lγ,α(x, kz, γ, α,xr,xs, ω) → Lγ,α(x, z, γ, α,xr,xs, ω)

to obtain the dip-dependent scattering-angle-domain sensitivity kernel.

• compute either the dip-dependent scattering-angle-domain Hessian using equa-
tion 16 or the illumination using equation 17.

For the same constant velocity example, Figures 7 and 8 show the dip-dependent
scattering-angle-domain illumination for 0◦ and −30◦ dip angles, respectively. The
acquisition geometry is the same as that in Figure 5, i.e., 1 shot and 401 receivers. The
illumination gathers (Figures 7(b) and 8(b)) successfully predict the angle-dependent
illumination for both the horizontal and dipping reflectors (Figure 7(c) and Figure
8(c)).

REDUCING THE COST BY PHASE ENCODING

As mentioned in previous sections, equations 13 or 17 is intuitive to implement, how-
ever, it requires performing offset to angle transform for each component of the sen-
sitivity kernel. This can be potentially expensive, since the cost is now proportional
to the number of sources, receivers and frequencies. In this section, we show that the
computational cost can be significantly reduced by using the phase-encoding tech-
nique, which was first introduced into wave-equation shot-record migration (Romero
et al., 2000), and then adapted to Hessian computation by Tang (2009).

The basic idea behind phase encoding is simple, i.e., instead of computing the
Green’s functions sequentially with point sources as source functions, we now compute
them simultaneously with encoded areal source as the source function. Thanks to
the linearity of the wave equation with respect to the sources, the resultant wavefield
computed using the encoded areal source can be expressed as the sum of the wavefields
computed using the point sources. Therefore, instead of performing many wavefield
propagations with the number of propagations being proportional to the number of
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Figure 7: Dip-dependent scattering-angle-domain illumination. Panel (a) is the illu-
mination for a constant dip angle α = 0◦ and a constant scattering angle γ = 18.75◦;
(b) is the illumination angle gather for a constant dip angle α = 0◦ and at spatial loca-
tion x = 0 m; (c) is the reflectivity angle gather for the horizontal reflector extracted
a x = 0 m, it is the same as Figure 6(a). [CR]

Figure 8: Dip-dependent scattering-angle-domain illumination. Panel (a) is the
illumination for a constant dip angle α = −30◦ and a constant scattering angle
γ = 18.75◦; (b) is the illumination angle gather for a constant dip angle α = −30◦

and at spatial location x = 0 m; (c) is the reflectivity angle gather for the dipping
reflector extracted at x = 0 m, it is the same as Figure 6(b). [CR]
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point sources, by using the encoded areal sources, we reduce the number of wavefield
propagations to just one, drastically reducing the computational cost. The encoding
can be done in the receiver domain, which is suitable for any acquisition geometry, or
in both receiver and source domain, which is suitable for land or ocean-bottom-node
acquisition geometry (Tang, 2009). One drawback of the phase-encoding method,
however, it that it generates crosstalk artifacts (Tang, 2009). The crosstalk can be
attenuated by carefully choosing the encoding functions, such as plane-wave phase-
encoding function, random phase-encoding function or a mix of the two (Tang, 2008a).

Figure 9 shows the exact scattering-angle-domain illumination for the same con-
stant velocity model and the 1-shot-401-receiver configuration (Figure 6). It is ob-
tained using the point source Green’s function and is very expensive, and we show
it here for bench-marking purposes. Figure 10 shows the result obtained by assem-
bling the receiver-side Green’s functions but without any phase-encoding function ap-
plied. The result is apparently dominated by crosstalk artifacts and has a completely
wrong illumination pattern. The crosstalk artifacts can be effectively attenuated us-
ing the random phase-encoding function, as shown in Figures 11, 12 and 13, which
are computed using different number of random realizations. Although not shown
here, similar results can be obtained for the dip-dependent scattering-angle-domain
illumination.

Figure 9: Exact scattering-angle-domain illumination. (a) shows the illumination
for scattering angle 18.75◦; (b), (c) and (d) shows the illumination angle gathers for
spatial locations −1000 m, 0 m and 1000 m, respectively. [CR]

NUMERICAL EXAMPLES

We test our methods on the Sigsbee2A model, where the complex salt body and
limited acquisition geometry result in uneven subsurface illumination below the salt.
The velocity field shown in Figure 14 is used for computing various angle-domain
reflectivity images and illumination. Figure 15 shows the scattering-angle-domain
reflectivity image. Note the holes in the scattering-angle gathers (Figures 15(b)-(g))
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Figure 10: Scattering-angle-domain illumination with crosstalk artifacts. View de-
scriptions are the same as Figure 9. [CR]

Figure 11: Receiver-side encoded scattering-angle-domain illumination with 1 random
realization. View descriptions are the same as Figure 9. [CR]

Figure 12: Receiver-side encoded scattering-angle-domain illumination with 5 random
realizations. View descriptions are the same as Figure 9. [CR]
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Figure 13: Receiver-side encoded scattering-angle-domain illumination with 20 ran-
dom realizations. View descriptions are the same as Figure 9. [CR]

caused by uneven illumination. This phenomenon should conform with the angle-
domain illumination. As expected, the scattering-angle-domain illumination (Figure
16) fails to accurately predict the illumination pattern for planar reflectors, e.g.,
the horizontal reflector at depth 29500 ft, although it is very accurate for the point
scatterers locatd at depth 25000 ft. We further decompose the image and illumination
into dip-dependent scattering-angle domain. The illumination pattern (Figure 18)
now conforms very well with the image of the planar reflectors (Figure 17) as well as
the reflectors that have a zero dip in Figure 15.

Figure 14: Sigsbee2A velocity model used for migration and illumination computa-
tion. [ER]

CONCLUSIONS

We present a method for computing the angle-domain illumination, or more gener-
ally, the angle-domain Hessian. The method takes advantage of the relation among
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Figure 15: Scattering-angle-domain reflectivity image for the Sigsbee2A model. Panel
(a) shows the image with scattering angle γ = 0◦; (b), (c), (d), (e), (f) and (g) show
the scattering angle gathers extracted at spatial locations 35000 ft, 40000 ft, 45000
ft, 50000 ft, 55000 ft and 60000 ft, respectively. [CR]

Figure 16: Scattering-angle-domain illumination for the Sigsbee2A model. View de-
scriptions are the same as Figure 15. [CR]
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Figure 17: Dip-dependent scattering-angle-domain reflectivity image for the Sigs-
bee2A model. Panel (a) shows the image with scattering angle γ = 0◦ and dip angle
α = 0◦; (b), (c), (d), (e), (f) and (g) show the scattering angle gathers extracted
at spatial locations 35000 ft, 40000 ft, 45000 ft, 50000 ft, 55000 ft and 60000 ft,
respectively. [CR]

Figure 18: Scattering-angle-domain illumination for the Sigsbee2A model. View de-
scriptions are the same as Figure 17. [CR]
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scattering angles, dip angles, CMP wavenumbers and subsurface-offset wavenumbers,
and uses a simple Fourier-domain mapping to transform from subsurface offset do-
main into angle domain. Our method can decompose the illumination or Hessian
into either scattering-angle domain suitable for point scatterers, or dip-dependent
scattering-angle domain suitable for planar reflectors. A straight forward implemen-
tation of our method, however, can be very expensive. We show how the cost can
be drastically reduced by using the phase-encoding technique. Numerical examples
demonstrate that our method can produce accurate illumination estimation for both
point scatterers and planar reflectors, and therefore, it is useful for application related
to AVA analysis or robust migration velocity residual parameter estimation.
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