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ABSTRACT

To retrieve a sparse model, we applied the hybrid norm conjugate-direction
(HBCD) solver proposed by Claerbout to two interesting geophysical problems:
least-squares imaging and blind deconvolution. The results showed that this
solver is robust for generating sparse models.

INTRODUCTION

L1 norm optimization in many situations are more desirable than the conventional
least squares (L2) optimization. However currently widely used methods like IRLS
(Iterative Reweighted Least Squares) or weighted-median (Claerbout and Muir, 1973;
Darche, 1989; Guitton, 2005) require the users to fine tune extra solver parameters in
order to obtain a pleasing result. The sensitivity of such parameters make the solvers
cumbersome to use since the users have to do trial-and-error. We developed a robust
and efficient L1-type solver (Claerbout, 2009b) that uses a hybrid norm function to
approximate the L1 norm, and implemented a generalized conjugate-direction (CD)
method by using Taylor’s expansion (Maysami and Mussa, 2009).

This solver is convenient to apply, because the function interface is almost the
same as the traditional least-squares (L2) solver in the SEP library. The user must
specify one additional parameter: the residual quantile. Fortunately this parameter
has a clear physical meaning (Claerbout, 2009b). Users should assign this parameter
according to prior observation or expectation of the model’s spikiness/blockness.

In this paper we show the usefulness of the hybrid solver by applying it on
the LSI imaging and deconvolution problems. The L1 inversion of LSI imaging
(Least Squares Inverse) problem is preferable to L2 inversion, because it better per-
seves the spikiness/sparseness that are commonly encountered in reflectivity models.
When the model regularization is posed with the L2 norm, it is hard to honor spik-
ness/sparseness, because the L2 norm cannot tolerate large values in the model. In
contrast, the L1 type norm fits our regularization goal very well.

A similar motivation applies to the deconvolution problem; conventional decon-
volution assumes the reflectivity series to be random (white spectrum), whereas we
argue that a sparse reflectivity series is more appropriate (and often more desirable)
in practice.
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APPLICATION — LEAST-SQUARES INVERSE IMAGING

This application originated from the work of target-oriented wave-equation LSI imag-
ing, as described in M. Clapp and Biondi (2005); Valenciano (2006); Tang (2008). The
concept of LSI imaging starts with a simple inversion problem:

F(m) = |[Lm — oy, 1)

where L is a linearized wave-equation modeling operator, the adjoint of which is the
imaging operator, m is the subsurface reflectivity model, and dgps is the observed
surface seismic data. In theory, the solution to this inversion problem can be written
as follows:

m = H+L/d0bs, (2)
Where H = L'L is called Hessian operator, and H* is the pseudo inverse of H. In

practice, it is usually impossible to invert H directly; thus a gradient-based optimiza-
tion method is often used to find the solution.

One disadvantage of this data-space inversion scheme is that it can not be com-
puted in a target-oriented way, since theoretically even a local perturbation in the
model space will affect the entire data space and vice versa. To overcome this diffi-
culty, Valenciano (2006) transformed (1) to a model space inversion based on (2):

J(m) = |[Hm — L'd ]|

Valenciano (2008) and Tang (2008) showed that unlike L, matrix H is usually
very sparse (i.e., most of the non-zero elements are centered around the diagonal);
thus despite the huge size of H, it is feasible to store an approximation of H matrix
by keeping only a few off-diagonal elements without losing much accuracy.

If we write m,,;; = L'd s, and add a model regularization term (since most likely
H has a null space). Then the inversion formula is

J(m) = |[[Hm — Myg|[2 + €][m||norm,
in which we applied the hybrid norm to the regularization term.

Tang (2009) provided a way to efficiently compute the Hessian matrix using the
phase-encoding technique, and this Hessian matrix is computed only once and stored
for all iterations.

Numerical example

The reflectivity model we started with is a cropped subsalt region from the sigsbee2 A
reflectivity model, as shown in Figure 1(a). Notice that it is quite sparse.
Figure 1(b) shows the input migrated image my,i,. While the data d is modeled

with a two-way wave equation, both the migrated image my,;; = L'd and the Hessian
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operator are computed using a one-way wave-equation propagator. Therefore the
data contains non-linear information (e.g., multiples) that cannot be resolved by
the linearized one-way wave-equation operator. This explains some of the migration
artifacts in the migrated image.

The explicit Hessian operator is computed using the receiver-side random-phase
encoding method (Tang, 2008). The size of off-diagonal elements at each image point
is 21 x 21. After the Hessian is computed, we extract the portion corrsponds to the
above reflectivity model.

Figure 2(a) and 2(b) shows the inversion result of L2 and hybrid . The first thing
to notice is that neither method can perfectly retrieve the original model; nonetheless,
there is a significant improvement in the L1 inversion. The sharp boundary of the
reflectors at the left of the image is better recovered in the hybrid result.

Figure 2(c) and 2(d) shows the data fitting errors of the two inversion are plotted.
By evaluating the total energy of the fitting error (3.48% for both inversion results,
Pe = || Hm — Mypyig||2/||Mmig||2), we claim that hybrid inversion and L2 inversion fit
the data almost equally well. This ensures that the major effect of the regularization
is to fill the null space of H, with little effect on the data-fitting. However it is true
that the data fitting residual of hybrid inversion appears to be more correlated to the
reflectivity model than that of L2 inversion is.
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Figure 1: (a) Reflectivity model; (b) input migrated image. [ER]

In addition, notice that some parts of the sub-salt reflectors presented in the L2
result are missing in the hybrid result. The reason is clear: the hybrid norm is less
tolerant of small values in the residual and always tries to put them down to zero
(Claerbout, 2009b). This example shows that this feature of the hybrid norm is not
always desirable.
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Figure 2: Comparison of the inversion results with L2 and hybrid regularization. (a):

L2 inversion result; (b):

hybrid inversion result; (c):

hybrid data fitting residual. [ER]
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APPLICATION - DECONVOLUTION

Deconvolution has been a well-known geophysical problem since the 1950s. We inves-
tigate the spiking deconvolution, which aims to compress the source wavelet, such that
a reflectivity series with higher resolution can be obtained. The simple convolution
model is expressed as follows:

m(t) x s(t) + n(t) = d(t) (3)

where 1(t) is the reflectivity series, s(t) is the source wavelet, n(t) is random noise,
and d(t) is the seismic traces (we assume a certain kind of amplitude compensation
has already been applied).

Intrinsically, this is an under-determined problem, because both r(¢) and s(t) are
unknown. Further assumptions about the reflectivity series are needed in order to
get a deterministic answer. In the L2 scenario, the underlying assumption is that the
reflectivity model is purely random (i.e., has a white spectrum). As mentioned before,
the model may in fact be spiky, which is better matched by an L1 type inversion.
Therefore the hybrid result should outperform the L2 result.

For simplicity, we also assume that source wavelet is minimum phased. The
conventional spiking deconvolution can be defined as an inverse problem,

Da ~ 0,

where D is the data convolution operator, and a is the filter. In this formulation,
the filter is the only unknown, and in theory the data residual itself is the reflectivity
model.

To incorporate the model regularization into the inversion framework, we gener-
alize the formulation above by posing the deconvolution problem as such inversion

problem:
o allal=1o] @

in which D is the data convolution operator, a is the filter, and m is the reflectivity
model. The parameter € indicates the strength of the regularization. Since the source
wavelet is assumed to be a minimum-phase wavelet, ideally the inversion gives the
exact inverse of the source wavelet to a.

The first equation in (4) (data fitting) implies that after convolving the data
with the filter, we should get the reflectivity model; any values that cannot fit the
reflectivity model are considered as noise in data. The second equation in (4) is the
spiky regularization of the model; thus we apply the hybrid norm.

Deconvolution of synthetic data

We started from a simple synthetic reflectivity model from Basic Earth Imaging by
Claerbout (2009a). Figure 3 shows the starting reflectivity model, which is quite
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sparse. Figure 4(a) shows the minimum-phase wavelet we designed. Figure 4(b) shows
the data generated by convolving the reflectivity model with the wavelet. Convolution
is done trace by trace.

Figure 5 compares the result of L2 inversion and L1 inversion (using the hybrid
norm). As expected, the conventional L2 result gives a fuzzy model poorly correlated
to the original one. In contrast, the hybrid result recovers the original model quite
well. For verification, the data residuals are plotted at the bottom of Figure 5; the
hybrid result has a fitting error of 0.6%, indicating that the data fitting goal is well
honored.
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Figure 3: Reflectivity model. [ER]

One limitation of the formulation (4) is the assumption of a minimum phase
wavelet. A non-minimum phase signal does not have a causal inverse in theory, thus
breaking our formulation (4) since the filter a that is supposed to be the inverse of
source wavelet does not exist.

To see how much the non-minimum phase wavelet will affect the inversion result,
we performed another experiment in which the wavelet is chosen to be a non-minimum
phase one. Figure 6 shows the new wavelet and the synthetic data generated using
this wavelet. Figure 7 shows the result of L2 inversion and L1 inversion (using the
hybrid norm) of this data, using the same parameters as in the previous synthetic ex-
ample. In contrast to the significant improvement obtained before, the hybrid result
cannot yield a sparse model because it is impossible to find a filter a that undoes the
source wavelet.
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Figure 4: Synthetic Data for deconvolution. (a): The minimum phase wavelet; (b):
generated input data. [ER|]
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Figure 5: Comparison of deconvolution result for synthetic data. Top panels show
the reflectivity model obtained by L2 inversion (a) and hybrid inversion (b); bottom
panels (c)(d) show the respective data residual. [ER]
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Figure 6: (a): the mixed-phase wavelet; (b): generated data. [ER]
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Figure 7: (a): L2 inversion result for the synthetic data generated with mixed-phase
wavelet;(b): hybrid inversion result. [ER]

Deconvolution of a common-offset field data

The second example is a common-offset section of field marine data. Figure 8 shows
the input data.

Figure 9 shows the deconvolution result using L2 and L1 inversion. Although in
this case the L1 inversion gives a cleaner model, the model is less desirable. Some
areas of interest (like the salt-bottom) are suppressed by regularization due to lower
amplitude than do the salt-top and sea-bed. In other words, the regularization is
too strong. The bottom panel of Figure 9 showing the data fitting residual further
confirms this point. From the amplitude information of this plot, roughtly 20% of
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Figure 8: Input Common Offset data. [ER]

the data was pushed into fitting error, the regularization distorts the data fitting too
much rather than eliminating the model’s null space.

Our predicament in this case is that if we set € to a small value, then the hybrid
result does not differ significantly from L2 result; on the other hand a large € is not
desirable either. Something in the data breaks our simple deconvolution model.

Figure 10 shows one trace extracted from the section. Thanks to the sparseness
of the reflector, it is easy to identify the waveforms of several strong reflections. Take
the very first sea bed reflection for instance, the wavelet is quite symmetric, more
likely zero phase instead of minimum phase. From the lesson we have learned from
the synthetic data, it is likely that the non minimum phase wavelet causes the failure
of the method (4).

Fortunately, it is easy to identify the wavelets at several strong reflections, so
we can roughly extract the wavelet from these locations and use this wavelet in the
convolution model. The simplified inversion problem can be defined as follows:

Sm d

{ em 0 (5)

in which S is the convolution operator of the known wavelet s, m is the unknown
model, and d is the seismic data.

&

Figure 11 shows the extracted source wavelet by averaging the wavelet at the sea-
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Figure 9: Top: L2 (a) and hybrid (b) deconvolution result for the Common Offset
data; bottom: data fitting residuals of L2 (c) and hybrid (d) inversion. [ER]
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Figure 10: One single trace extracted at 12000m of the common offset section. [ER]
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Figure 11: The extracted source
wavelet from seismic data. [CR]
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Figure 12: (a): the L2 inversion result; (b) the hybrid inversion result. [ER]
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floor reflection among all traces. Figure 12 shows the result of L.2 inversion and hybrid
inversion. Compared with the orginal data, both deconvolution results improve the
spatial resolution; and the hybrid result is less noisy than the L2 result.

Discussion

It is not always true that wavelet can be extracted from the seismic data, in this case
we have to perform blind deconvolution. To overcome the difficulty brought by non-
minimum phase wavelet, we turn back to the original non-linear convolution model
(3), and solve the non-linear inversion problem directly.

There are two ways to linearize this model. The first one is to use model pertur-
bation and neglect the non-linear higher order terms in the following:

(s+ As)*x (m+ Am) ~s+*m+s* Am+ m* As = d,

in which m, s are the initial model and source wavelet respectively. Am, As are the
pertubation of them, the linearized inversion will output Am, As. The other way of
linearization is a two-stage linear least squares formulation; i.e. alternately fixing one
term (m or s) and inverting for the other one. First use an initial wavelet s, keep s
unchanged and invert for model m

Sm =d, (6)
and then use the updated m to invert for wavelet s
Ms = d. (7)

Repeat this process (6) and (7) for several iterations.

As is in all non-linear inversion problems, the difficulty in these methods is to find
a good starting model. Another issue is to add proper constrain on the wavelet s, for
example, the wavelet should have constant energy during inversion, but this constrain
does not fit the linear inversion framework.

CONCLUSION

We demonstrated that by using hybrid solver, it is robust and convinient to generate
sparse models in Least-Squares Inverse imaging and deconvolution problems; although
in the blind deconvolution formulation the L.2 and hybrid inversion would yield similar
results in the absence of minimum phase wavelet assumption.
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