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ABSTRACT

Anisotropic models are recognized as more realistic representations of the sub-
surface where complex geological environment exists. These models are widely
needed by many anisotropic migration and interpretation schemes. However,
anisotropic model building is still a challenging problem in the industry. In
this paper, we propose an approach to build the anisotropic model using Wave-
Equation Tomography (WETom) on surface seismic data in the image space. To
reduce the null space of the inversion, we parametrize our model space using only
vertical velocity (VV ) and the anellipticity parameter η. Numerical tests show
that anisotropic WETom is effective in resolving model perturbations; however,
ambiguity exists between the vertical velocity and the anellipticity parameter.
Auxiliary information is needed to further constrain the inversion.

INTRODUCTION

Since first reported in exploration seismology in the 1930s (McCollum and Snell,
1932), the importance of anisotropy has been continuously increased in seismic imag-
ing and exploration. This is partially due to acquisition with increasingly longer
offsets and exploration in areas with strong geological deformation. Until now, the
transverse isotropic (TI) model has been the most commonly used anisotropic model
in seismic imaging. Postma (1955) and Helbig (1956) showed that a sequence of
isotropic layers on a scale much smaller than the wavelength leads to an anisotropic
medium. For the case of horizontal layers, the medium can be described by an equiv-
alent vertical transverse isotropic (VTI) medium. When dip is present, the medium
develops a tilted transverse anisotropy (TTI). Many authors (Shan, 2009; Fletcher
et al., 2009; Zhang and Zhang, 2009; Fei and Liner, 2008) have developed various
migration and processing schemes for VTI and TTI medium; however, the estimation
of the anisotropy model is still challenging.

The existing anisotropic model-building schemes are mostly based on measuring
the non-hyperbolic moveout along the traveltime curve to flatten the common image
gathers (CIG) (Zhou et al., 2003, 2004; Yuan et al., 2006; Cai et al., 2009). However,
traveltime-based methods are prone to errors and unrealistic results when multi-
pathing exists in areas of complex overburden.
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Wave-equation tomography (WETom) has been widely investigated in isotropic
velocity building, and can be implemented either in the data space (Tarantola, 1984;
Woodward, 1992) or in the image space (Sava and Biondi, 2004a,b; Shen, 2004; Shen
and Symes, 2008; Guerra et al., 2009). Several advantages drive us to use the image-
space WETom instead of the data-space version: First, the migration image is often
much cleaner than the recorded wavefields. Second, we can use cheaper one-way
extrapolators in the image space, compared with expensive two-way extrapolators in
the data space. Third, the objective function is directly related to the final image.
Therefore, we choose to extend image-space WETom from isotropic velocity building
to anisotropic model building.

In this paper, we first explain the parametrization of the inversion problem and
then extend image-space WETom from the isotropic medium to the anisotropic
medium. We show that theoretically the gradient of the tomographic objective func-
tional for the anisotropic medium is similar to its isotropic version, with an extra
term for the additional parameter. Then, we test the anisotropic WETom operator
using a model with a localized anomaly. Finally, we invert for a 2-D VTI model using
the proposed anisotropic WETom operator.

PARAMETERIZATION

In the VTI medium, Thomsen parameters ε and δ are commonly used to characterize
the anisotropic seismic velocity. These two parameters define the relationships be-
tween the vertical velocity (VV ), the horizontal velocity (VH), and the NMO velocity
(VN) as follows:

V 2
H = V 2

V (1 + 2ε), (1)

V 2
N = V 2

V (1 + 2δ). (2)

In the practice of surface seismic exploration, it is impossible to estimate the
vertical velocity because depth of the reflectors is unknown, and there is no vertical
offset information in the data. However, if we have long enough in-line and cross-line
offsets, it may be possible to resolve the horizontal velocity and the NMO velocity.
Therefore, the anellipticity parameter η is used to provide a direct link between VN

and VH :
V 2

H = V 2
N(1 + 2η), (3)

where η is defined by the Thomsen parameters as follows:

η =
ε− δ

(1 + 2δ)
. (4)

To reduce the number of parameters, and thereby the null space of the resulting
inversion procedure, we make an arbitrary assumption that δ = 0. Hence, there are
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only two independent parameters:
η = ε (5)

and
VV = VN . (6)

Therefore, we choose to use VV and η as the model parameters that we will
estimate during the inversion.

WETOM FOR ANISOTROPIC PARAMETERS

Anisotropic WETom is a non-linear inversion process that aims to find the anisotropic
model that minimizes the residual field ∆I in the image space. The residual image
is derived from the background image I, which is computed with current background
model. In general, the residual image is defined as (Biondi, 2008)

∆I = I− F(I), (7)

where F is a focusing operator acting on the background image.

In the least-squares sense, the tomographic objective function can be written as
follows:

J =
1

2
||∆I||2 =

1

2
||I− F(I)||2. (8)

To perform the WETom for anisotropic parameters, we first need to extend the
tomographic operator from the isotropic medium (Shen, 2004; Sava, 2004; Guerra
et al., 2009) to the anisotropic medium. We define the image-space wave-equation
tomographic operator T for anisotropic parameters as follows:

T =
∂I

∂m

∣∣∣∣
m= bm

=
∂I

∂s

∣∣∣∣
s=bs +

∂I

∂η

∣∣∣∣
η=bη , (9)

where m is the anisotropy model, which in this case includes vertical slowness s and
anellipticity parameter η; m̂ is the background anisotropy model, consisting of the
background slowness ŝ and background anellipticity η̂; I is the image. This WETom
operator T is a linear operator that relates the model perturbation ∆m to the image
perturbation ∆I as follows:

∆I = T∆m. (10)

In this paper, we evaluate the anisotropic tomographic operator in the shot-profile
domain.

Both source and receiver wavefields are downward continued in the shot-profile
domain using the one-way wave equations (Claerbout, 1971):{ (

∂
∂z

+ iΛ
)
D(x,xs) = 0

D(x, y, z = 0,xs) = fsδ(x− xs)
, (11)
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and { (
∂
∂z
− iΛ

)
U(x,xs) = 0

U(x, y, z = 0,xs) = Q(x, y, z = 0,xs)
, (12)

where D(x,xs) is the source wavefield at the image point x = (x, y, z) with the
source located at xs = (xs, ys, 0); U(x,xs) is the receiver wavefield at the image point
x with the source located at xs; fs is the source signature, and fsδ(x − xs) defines
the point source function at xs, which serves as the boundary condition of Equation
11; Q(x, y, z = 0,xs) is the recorded shot gather at xs, which serves as the boundary
condition of Equation 12. Operator Λ is the dispersion relationship for anisotropic
wave propogation:

Λ = ωs(x)

√
1− |k|2

ω2s2(x)− 2η(x)|k|2
, (13)

where ω is the angular frequency, s(x) is the slowness at x, η(x) is the anellipticity at
x; k = (kx, ky) is the spatial wavenumber vector. Dispersion relationship 13 can be
approximated with a rational function by Taylor series and Padé expansion analysis
(Shan, 2009):

Λ = ωs(x)(1− a|k|2

ω2s2(x)− b|k|2
) (14)

where, to the second order, a = 0.5, b = 2η+0.25. Using binomial expansion, Equation
14 can be further expanded to polynomials:

Λ = ωs(x)− a

ωs2(x)
|k|2 − 3ab

ω3s4(x)
|k|4. (15)

The background image is computed by applying the cross-correlation imaging
condition:

I(x,h) =
∑
xs

∑
ω

D(x− h,xs)U(x + h,xs), (16)

where the overline stands for the complex conjugate, and h = (hx, hy, hz) is the
subsurface half-offset.

Under the Born approximation, a perturbation in the model parameters causes a
first-order perturbation in the wavefields. Consequently, the resulting image pertur-
bation reads:

∆I(x,h) =
∑
xs

∑
ω

(
∆D(x− h,xs)Û(x + h,xs)+

D̂(x− h,xs)∆U(x + h,xs)
)

, (17)

where D̂(x−h,xs) and Û(x+h,xs) are the background source and receiver wavefields
computed with the background model m̂(x), ∆D(x − h,xs) and ∆U(x + h,xs) are
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the perturbed source wavefield and perturbed receiver wavefield, respectively, which
result from the model perturbation ∆m(x).

To evaluate the adjoint tomographic operator T∗, which backprojects the image
perturbation into the model space, we first compute the wavefield perturbation from
the image perturbation using the adjoint imaging condition:

∆D(x,xs) =
∑
h

∆I(x,h)Û(x + h,xs)

∆U(x,xs) =
∑
h

∆I(x,h)D̂(x− h,xs). (18)

The perturbed source and receiver wavefields satisfy the following one-way wave
equations, linearized with respect to slowness and η:{ (

∂
∂z

+ iΛ
)
∆D(x,xs) =

(
−i ∂Λ

∂m
D̂(x,xs)

)
∆m∗(x)

∆D(x, y, z = 0,xs) = 0
, (19)

and { (
∂
∂z
− iΛ

)
∆U(x,xs) =

(
−i ∂Λ

∂m
Û(x,xs)

)
∆m∗(x)

∆U(x, y, z = 0,xs) = 0
, (20)

where m is the row vector [s η], and m∗ is the transpose of m.

When solving the optimization problem, we obtain the image perturbation by
migrating the data with the current background model and performing a focusing
operation (Equation 7). Then the perturbed image is convolved with the background
wavefields to get the perturbed wavefields (Equation 18). The scattered wavefields are
computed by applying the adjoint of the one-way wave-equations 19 and 20. Finally,
the model space gradient is obtained by cross-correlating the upward propagated scat-
tered wavefields with the modified background wavefields (terms in the parentheses
on the right-hand sides of Equations 19 and 20).

NUMERICAL TEST OF THE ANISOTROPIC WETOM
OPERATOR

To test the anisotropic WETom operator, we run the forward and adjoint WETom
operator on a 2-D model. Figure 1 shows the background isotropic model, with one
reflector in velocity and no anisotropy. The data are modeled with 4000m maximum
offset, 8m receiver spacing, 80m source spacing and 41 split-spread shots. We use the
two-way acoustic anisotropic modeling code in Madagascar to do the modeling, and
the one-way SSF (Tang and Clapp, 2006) extrapolator to do the migration.

Figure 2 shows the model perturbations, with a rectangular slowness anomaly that
is 10% lower than the background slowness on the left, and a rectangular anisotropic
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anomaly on the right. The perturbation in η within the rectangular block is constant
(∆η = 0.1). Figure 3 shows the perturbed image at the zero lag of the subsurface
offset due to the model perturbations after applying the forward WETom operator.
Adjoint WETom operator back-projects the perturbed image into the model space,
and outputs the gradient for the model perturbation, as shown in Figure 4. Compar-
ing Figure 2 and Figure 4, we can see that the gradients provide the correct direction
and shape of the perturbation to conduct a line search in a given inversion scheme.

Figure 1: Background isotropic model. Left is the velocity model with one reflector,
and right is the η model with constant zero. [ER]

INVERSION FOR 2-D VTI MODELS

From the gradient given by the anisotropic WETom operator in last section, we
notice that the perturbations in slowness and η are co-located. This is an intrinsic
characteristic of the operator, which may not be geologically realistic. Therefore, we
design three tests to examine this effect in the inversion.

In these three tests, we use the same initial model (Figure 5), but data modeled
using different true models. In Figure 6 we show the true model perturbations, which
have one layer of perturbations in slowness only, in η only, and in both. Figure 7 shows
the angle-domain common image gathers (ADCIGs) using the initial model, where
ADCIGs are not flat due to the error in the model. Notice the image perturbation is
small for the perturbation in η only.

In the inversion, we define the focusing operator in the perturbed image (Equation
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Figure 2: Model perturbations. Left is a rectangular slowness anomaly that is 10%
lower than the background slowness , and right is a rectangular anisotropic anomaly
with a constant value of ∆η = 0.1. [ER]

Figure 3: Perturbed image from
the forward anisotropic WETom
operator. The image is extracted
from the zero lag of the subsurface
offset. [ER]
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Figure 4: Back-resolved gradient for the model updates. Left is the gradient for
slowness, and right is the gradient for η. [ER]

7) by the Differential Semblance Optimization (DSO) method (Shen, 2004):

F(I) = (1−O)I, (21)

where 1 is the identity operator and O is the DSO operator. Therefore, the objective
function (Equation 8) becomes:

J =
1

2
||OÎ||2 =

1

2
||hÎ||2, (22)

where h is the subsurface half-offset. Since the DSO operator is independent of the
model parameters, the gradient of J with respect to the model parameters is

∇J =

(
∂I

∂m

∣∣∣∣
m= bm

)∗

O∗OÎ = T∗O∗OÎ. (23)

To minimize the objective function, we specifically use the steepest descent algorithm.
To help convergence, we average the gradient at each depth to ensure a layered model
and mute the shallow updates to avoid near-surface artifacts.

Figure 8 shows the final model updates after 4 non-linear iterations. The results
should be comparable to the model perturbations in Figure 6. In the final updates,
we see a consistent over predition of η. This is because error in η has a very smal
contribution in the image perturbation, as shown in the middle panel of Figure 7. Fig-
ure 9 shows the ADCIGs using the updated model. Comparing Figure 6 and Figure
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Figure 5: Initial model for inversion. Panel (a) is the initial velocity model with three
layers; Panel (b) is the initial η model with constant value of zero. [ER]

Figure 6: True model perturbation in three test cases. Panel (a) and (b): Perturbation
in velocity only; Panel (c) and Panel (d): Perturbation in η only; Panel (e) and Panel
(f): Perturbations in both. [ER]
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Figure 7: ADCIGs using the initial model in three cases. Top panel: Perturbation in
velocity only; Middle panel: Perturbation in η only; Bottom panel: Perturbations in
both. Curvature in the ADCIGs indicates errors in velocity or η. [ER]

Figure 8: Inversion results of the three test cases. Panels are comparable to those in
Figure 6. [CR]
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Figure 9: Common image gathers using the updated model in three cases. Top panel:
Perturbation in velocity only; Middle panel: Perturbation in η only; Bottom panel:
Perturbations in both. ADCIGs are flattened compared with Figure 7. [ER]

8, Figure 7 with Figure 9, we can conclude that the inversion successfully identifies
the layered perturbation and flattens the ADCIGs. However, back-projection of the
residual image shows up in both parameter spaces, although it is caused by per-
turbations in a single parameter. Also for the case of perturbing both spaces, the
over-prediction of velocity perturbation and the under-prediction of η perturbation
reconcile with each other and produce flat events in the ADCIGs. Therefore, we
can conclude that the ambiguity between the velocity and the anellipticity cannot
be resolved simply by the inversion, and auxiliary information is needed to further
distinguish the difference.

CONCLUSIONS AND DISCUSSION

In this paper, we present a novel method to build the anisotropic velocity model
using image-space wave-equation tomography. The mathematical formulation of the
operator shows that by adding an additional term for η, the gradient of the anisotropic
WETom shows similar structure as that for the isotropic case. Our numerical tests
show that the anisotropic WETom operator is useful in identifying both localized and
layered perturbation in simple cases. However, when only one parameter is perturbed,
the WETom operator produces a model with perturbations in both parameters.
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One possible way to resolve this ambiguity is to utilize the moveout information in
the subsurface offset domain and/or angle domain. It has been shown that the RMO
functions are different in ADCIGs for isotropic perturbations (Biondi and Symes,
2004) and anisotropic perturbations (Biondi, 2007). Therefore, adding the RMO
information may help to distinguish the contributions from different parameters. Also,
data other than surface seismic data, such as well logs and checkshots, can also be
helpful in further constraining the problem. This will be investigated in the near
future.
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