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ABSTRACT

L1-norm is better than L2-norm at dealing with noisy data and yielding blocky
models, features crucial in many geophysical applications. In this report, we
develop a hybrid-norm solver proposed by Claerbout (2009) to perform L1 re-
gressions. The solver is tested on a 1-D field RMS velocity inversion, a 2-D
regularized Kirchhoff migration inversion and a 2-D velocity analysis problem.
The results of the inversions show that this solver can yield “blocky” models,
and has the advantage of straightforward parametrization.

INTRODUCTION

L1 norm optimization is known to be a powerful estimator when the data are noisy or
the model is sparse (Claerbout and Muir, 1973; Darche, 1989; Nichols, 0994; Guitton,
2005). However, the most widely used L1 solver–Iterated Reweighted Least-Squares
(IRLS)–is cumbersome to use because users must specify numerical parameters with
unclear physical meanings. To develop a robust, efficient L1 solver, Claerbout (2009)
proposed a hybrid norm function to approximate the L1 norm (absolute value func-
tion), and he generalized the conjugate direction (CD) method using Taylor’s expan-
sion to guide the plane search in the minimization.

The parametrization of this proposed hybrid norm is straightforward. Users spec-
ify thresholds for the data residual and model residual, respectively. These thresholds
determine the transition point from L2 to L1. The threshold for the data residual
(Rd) can be chosen according to the signal-to-noise ratio in data space; the threshold
for the model residual (Rm) can be specified by the desired blockiness in the model
space.

In theory, the convergence of this hybrid norm solver is guaranteed, because the ob-
jective function is strictly convex. Nevertheless, difficulties may occur as the hybrid-
norm approaches the L1 limit.

To test the performance and analyze the stability of this hybrid solver, we apply
the solver to a 1-D field RMS velocity inversion, a 2-D regularized Kirchhoff migration
inversion, and a 2-D velocity analysis problem. The inversion results show that this
hybrid solver is robust and simple to use.
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GENERALIZED CONJUGATE DIRECTION METHOD
FOR THE HYBRID NORM

The hybrid norm is defined as

h(r) =
√

r2 + R2 −R. (1)

where r is the residual, and R is the corresponding threshold. In the limit, the hybrid
norm (1) becomes:

h(r) =

{
|r| −R, if R � |r|
r2/(2R), if R � |r|. (2)

It is obvious that when R is small, the hybrid norm (1) reduces to L1 norm; when R
is big, it becomes the L2 norm. Therefore, threshold R behaves as the turning point
where the objective function changes smoothly from L2 to L1.

The Conjugate Direction method is commonly used for solving immense linear
regressions in exploration geophysics. The idea of the CD method is to search the
plane determined by the gradient and the previous step for the best step direction
and length, instead of moving along the gradient direction. The best direction in
that plane is the linear combination of the gradient and previous step vector that
decreases the measure of the residual the most. Traditionally, the measure is chosen
to be L2, for its simplicity; however, we generalize the CD method for any arbitrary
convex measure C. Readers can determine which measure to use to satisfy their own
objectives.

Now let us examine the generalization of the CD method in detail. At each
iteration, we have the residual vector r̄, the gradient g and the previous step s.
Therefore, the updated residual can be written as:

ri = r̄i + αgi + βsi. (3)

where α and β are scalars controlling the relative weights of these two directions.
To determine these two scaling parameters, we need to minimize the measure of the
residual:

N(α, β) =
∑

i

C(r̄i + αgi + βsi). (4)

The system given by directly setting the partial derivatives of (4) to zero is transcen-
dental, thus difficult to solve. Therefore, we use Taylor’s expansion to approximate
the original objective function. The polynomial estimation of (4) is given as follows:

N(α, β) ≈
∑

i

(
Ci + (αgi + βsi)C

′
i + (αgi + βsi)

2C ′′
i /2

)
. (5)

Now, taking the derivatives of the parabolic function in (5) with respect to α and
β and setting them to zero, we end up with a linear system of α and β:{ ∑

i

C ′′
i

[( gi

si

)
(gi si)

]}[
α
β

]
= −

∑
i

C ′
i

[ gi

si

]
. (6)
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where (Ci, C
′
i, C

′′
i ) refer to a Taylor expansion of C(r) about ri.

Then we can obtain α, β by simply solving a set of 2 × 2 linear equations.

Notice that the α, β we get here is minimizing the approximated function (5), not
the original objective function. Therefore, it is necessary to solve for α, β multiple
times within each CD iteration. By doing this relatively cheap plane-search loop,
we expect to save the number of iterations for the outer loop (Conjugate Direction),
which is usually much more computational intensive (requiring application of both
the forward and adjoint operator).

DIX INVERSION OF INTERVAL VELOCITY
ESTIMATION

The Dix equation (Dix, 1952) inverts interval velocities from RMS velocity, which is
picked during velocity scanning in prestack seismic data. The equation can be written
as

v2
int(k) = kV 2

k − (k − 1)V 2
k−1, (7)

or
k∑

i=1

v2
int(k) = kV 2

k , (8)

where v is interval velocity, V is RMS velocity, and k is the sample number, which
can be regarded as travel-time depth. Directly calculating the interval velocity from
this formula can easily yield wildly unreasonable results because of the error in the
picked RMS velocity. Therefore, it is necessary to solve this problem as a regularized
inversion. To linearize the problem, we choose the model space to be the squared
interval velocity (v2

int), instead of the interval velocity itself (vint).

Thus we can formulate the Dix inversion problem as follows:

Wd(Cu− d) ≈ 0, (9)

εDzu ≈ 0. (10)

In the data-fitting goal (9), u is the unknown model we are inverting for, d is the
known data computed from the RMS velocity, C is the causal integration operator
and Wd is a data residual weighting function, which is a measure of to our confidence
in the RMS velocity. In the model-styling goal (10), Dz is the vertical derivative of
the velocity model and ε is the weight controlling the strength of the regularization.

The input RMS velocity with 1000 samples is shown in Figure 1. It is obvious
that the violent variation at the end of the trace is not realistic. Thus, we use the
hybrid-norm to ignore the large residuals in the data-fitting, which are considered
to be noise. At the same time, to obtain a blocky interval velocity model, the large
residual in the derivative of the interval velocity should be “invisible” to the measure.
Therefore, the hybrid norm on the model styling appear to be the best choice.
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To compare the inversion result, we also use the IRLS and L2 solver on the same
data with comparable parameters. The inversion results are shown in Figure 2. The
left column is the inverted interval velocity, while the right column is the correspond-
ing reconstructed RMS velocity. The result shows that compared with the IRLS and
L2 result, the hybrid solver successfully retrieved the most blocky velocity model, and
the corresponding reconstructed RMS velocity contains less noise while keeping the
trend of the original data.

Figure 1: Input 1-D RMS velocity.
[ER]

SIMPLE KIRCHHOFF INVERSION

Kirchhoff migration was widely used before the era of wave-equation migration for
marine data, and is still the principle migration method for land data. It always
involves summing over or spreading along certain travel-time surfaces in 3-D, which
reduce to curves in 2-D. For the purpose of testing our solver, we define the for-
ward operator to be the Kirchhoff modeling operator, whose adjoint is the traditional
Kirchhoff migration operator.

We formulate the inversion problem as follows:

Hm ≈ d (11)

εm ≈ 0 (12)

where H is the forward Kirchhoff modeling operator, m is the subsurface reflectivity
model, and d is the seismic response recorded at the surface. The second equation is
a damping term, where the hybrid-norm is applied to retrieve the sparse model.

In field acquisition, data usually have denser sampling rates in the in-line direction
than the cross-line direction. Therefore, the surface-recorded data are always aliased
in the cross line direction. To illustrate the problem in the cross-line direction, figure
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Figure 2: Comparison of the inversion results. Panels in the left column are the esti-
mated interval velocity, while panels on the right are the corresponding reconstructed
RMS velocity. Top panels: results of the hybrid with CD; Middle panels: results of
the hybrid with IRLS; Bottom panels: results of the L2 norm with CD. Notice that
although the reconstructed RMS velocity from the three methods are more or less the
same, the interval velocity from hybrid CD is more blocky then the other two. [ER]
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Figure 3: Highly aliased hyperbola. Input data for the Kirchhoff inversion. [ER]

3 shows an example of highly aliased hyperbolas.The aliasing makes the inversion
problem an underdetermined problem; therefore, the result of the inversion relies
heavily on the regularization. With the model space sampling being 128 × 128, the
sampling of data space is only 128 × 16. Also note that some of the hyperbolas are
not symmetric; therefore the tops of the hyperbolas are shifted.

Same as the previous example, we experimented with different solvers: L2, IRLS
and hybrid, to compare their results.

Figure 4 shows the inversion results with different schemes. The results show that
the hybrid norm is superior for retrieving the spiky result that resembles the original
model the best. Although severely aliased, the inversion result recovers the exact
position, the correct size and most of the amplitude. Notice that the CD hybrid
solver recovers the very low amplitude spike at the left edge. This promising result
suggests that by choosing the regularization properly, we can overcome the aliasing
problem in the presence of a sparse model.

Figure 5 shows the reconstructed data from the CD hybrid solver. The original
data are accurately recovered. Notice the hyperbola with its top at the left edge is
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Figure 4: Original model and inversion results by different methods. Top left: original
model; Top right: Hybrid result with CD; Bottom left: Hybrid result with IRLS;
Bottom right: L2 result with CD. [ER]

SEP–140



Li et al. 8 Robust L1 solver

well resolved.

VELOCITY ANALYSIS AS INVERSION

Velocity analysis is one the most critical and problematic procedures in seismic ex-
ploration. In data with noise bursts, velocity analysis is prone to error and even
unrealistic results. Therefore, to handle this problem robustly, we formulate velocity
analysis as an inversion problem as follows:

Hm ≈ d (13)

where H is the modeling operator, whose adjoint operator is the slowness scan oper-
ator; m is the slowness field, and d is the data we collect after one shot.

Figure 6 shows a shot gather from Yilmaz’s dataset. There are two distinct types
of noise in these data: first is the linear noise caused by all kinds of surface waves,
which can be attenuated by taking advantage of their physical properties; second is
the abnormally high-amplitude burst noise at the near offsets, which is difficult to fit
into a statistical model.

Figure 7 shows the inversion results for different methods. Because of the exis-
tence of the high amplitude noise at the near-offset, a velocity scan without inversion
yields no meaningful result. For the L2 inversion, the noise has contaminated the
whole panel, making it impossible to see the velocity trend. The inversion results of
both IRLS and HYCD show clear velocity trends, and the near-offset burst noise is
successfully removed in the reconstructed data.

CONCLUSIONS

An L1-type optimizer is required to retrieve a blocky model or extract information
from noisy data. To avoid the troublesome parameter tuning of IRLS, we develop
a hybrid-norm Conjugate Direction solver with straightforward parametrization to
achieve the goal in L1 sense. Tests of this solver on three different problems, with
both synthetic and field data, show that this hybrid-norm solver is robust and simple
to use. These promising results encourage us to apply this solver on large-scale,
real-world problems.
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Figure 5: Data reconstructed by
the hybrid solver with CD. The
CD hybrid solver accurately re-
covers the original data. Notice
the hyperbola with its top at the
left edge is well resolved. [ER]

Figure 6: Input shot profile with noise.The red points in the figure indicates the data
points with very high amplitude. [ER]
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Figure 7: Inversion results of different methods. The red points in the figure indicates
the data points with very high amplitude. Panels in the left column are the results
of velocity scans, while panels on the right are the corresponding reconstructed data.
First row: No inversion is applied (adjoint only); Second row: Inversion results by CD
with L2; Third row: Inversion results by hybrid with IRLS; Bottom row: Inversion
results by CD with L1. [ER]
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