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ABSTRACT

Wave-equation traveltime tomography is conventionally done by picking the max-
imum cross-correlation lags between the modeled and observed data. However, a
trace-by-trace method of picking makes the velocity update more susceptible to
local noise in the correlation as well as inconsistencies in the data. In this paper, I
compare the local method of picking the maximum correlation to a global method
based on maximizing the stacking power along an interpolated spline surface in
the correlation window. The results show that the global scheme is more robust
to local noise but sacrifices accuracy and convergence rate.

INTRODUCTION

Conventional full waveform inversion (FWI), which was first introduced by Tarantola
(1984), has an objective function that is highly non-linear. The forward operator is
linearized around the background velocity, which makes the initial model a deter-
mining factor for the convergence of the inversion. Therefore, a lot of previous work
(Luo and Schuster, 1990; Symes and Carazzone, 1991; Biondi and Sava, 1999; Shen,
2004; Biondi, 2009) has focused on finding more tractable objective functions that
have stronger dependence on the kinematics of the wavefield than on the amplitude
of the waveform. One attractive method that uses such an objective function is wave-
equation traveltime inversion (WT), which was first introduced by Luo and Schuster
(1990). In this inversion, the objective function depends on the lag of maximum
cross-correlation between the observed and modeled data. Conventionally, these lags
are picked in a trace-by-trace scheme, which produce errors due to correlating noise,
multiple events, and inconsistencies in the observed data. To overcome this problem,
I cast the picking procedure as a global optimization problem in order to avoid local
errors by making use of the redundancy of the data.

THEORY

The objective function of FWI can be written as follows:

JFWI(v) =
∑
xs

∑
xg

||dcal(t,xg,xs;v) − dobs(t,xg,xs)||22, (1)
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where xs and xr are the source and receiver locations, dcal is the modeled data with
velocity v, and dobs is the observed data. By setting the first derivative of equation
(1) around the velocity v0 to zero, the velocity update can be expressed as follows:

∆v =
−s

v3
0

∑
xs

∑
t

L(v0)S(xs, t)
∂2

∂t2
L†(v0)(dcal(t,xg,xs;v) − dobs(t,xg,xs)), (2)

where s is the step size, S is the source signature, and L and L† are the forward wave
propagation operator and its adjoint, respectively.

The objective function wave-equation traveltime tomography can be written as
follows:

J∆τ (v) =
∑
xs

∑
xg

||∆τ(xg,xs;v)||22, (3)

where ∆τ is the lag of the maximum cross-correlation between the observed data and
the data modeled by a velocity model v. Again, the first derivative of equation (3)
around the lags ∆τ is set to zero to get the velocity update, which can be expressed
as follows:

∆v =
s

v3
0

∑
xs

∑
t

L(v0)S(xs, t)
∂2

∂t2
L†(v0)

∆τ

ξ

∂

∂t
dobs(t + ∆τ,xg,xs), (4)

where ξ is defined as follows:

ξ =
∑

t

∂

∂t
dcal(t,xg,xs;v0)

∂

∂t
dobs(t + ∆τ,xg,xs), (5)

By examining equations (2) and (4), it can be shown that (WT) can handle much
larger velocity errors than (FWI).

Now, I cast the picking procedure of the lags ∆τ as a global optimization problem
with an objective function as follows:

C(∆τ) =
∑
xs

∑
xg

f(A∆τ(yg,ys)), (6)

where yg and ys are a sparse representation of the source and receiver locations, A is
a bicubic spline interpolation operator that maps the sparse coordinates yg and ys to
the original coordinates xg and xs, and f evaluate the correlation value at ∆τ(xg,xs).

The goal of the global optimization is to maximize the function described by
equation (6), which is to maximize the stacking power along the interpolated spline
surface. The searching procedure is a simulated annealing algorithm, which varies
the spline points along the time axis in a stochastic sense until a satisfying solution
is reached. In the following section, I show the results of using such global scheme to
pick the correlation lags.
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Figure 1: The true velocity model used to create the data. [ER]

SYNTHETIC EXAMPLE

I use the velocity model shown in Figure 1 to create the synthetic data. The sampling
interval of the model is 25 m for both the x-axis and z-axis. The data is modeled using
a Ricker wavelet with a fundamental frequency of 15 Hz and a sampling interval of 3
ms. The acquisition geometry is a cross-well configuration, where sources are located
in a vertical well on the left side of the model and the receivers are located in a vertical
well on the right side of the model. Both the sources and the receivers start at the
surface and cover the full depth of the model with a sampling inteval of 25 m.

I start the velocity inversion with a constant background velocity of 2.9 km/s,
which is very far from the true velocity model. After modeling the data with the
background velocity, I cross-correlate the modeled data with the observed data. Fig-
ure 2(a) shows the lags picked by maximum correlation at each trace. There is an
overall trend from the top left corner to the bottom right corner, which is caused by
the gradient in the original data. However, there is also some large anamolies in the
picked lags with sharp discontinuities around them. These anomalies are caused by
the events refracted by the large velocity contrasts in Figure 1. Figure 2(b) shows
the lags picked by the global method, which are significantly different from those in
Figure 2(a). The global algorithm ignored the local maximum caused by refracted
energy and picked lags that are more consistent with their surroundings.

Now, I use the lags estimated by both methods to find a velocity update. The
scale of the update is estimated by performing a line search. Figure 3 shows the
updated velocity model using both methods after one iteration. The results of the
local method shows some noise in the velocity model update, especially around the
edges. However, since the velocity update is the sum of the updates of all the shots,
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Figure 2: The correlation lags picked by: (a) the trace-by-trace maximum correlation
method, and (b) the global spline-fitting method. [ER]
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Figure 3: The velocity model after 1 iteration using: (a) the trace-by-trace maximum
correlation method, and (b) the global spline-fitting method. [ER]
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the total results are satisfactory. On the other hand, the velocity model estimated by
the global method looks cleaner and more consistent laterally. However, the velocity
update by the global method shows less detail than that of the local method. In
addition, the global method converges at a slower rate than the local method.

Finally, I run both inversions for 10 iterations to further show the difference be-
tween the two methods. The results of both inversions are shown in Figure 4. The
noise in the local method estimate grows even larger as I run more iterations, but the
accuracy seems to be consistent with the true velocity model. On the other hand,
the global method is still too smooth and did not pick the small details as well as
the local method. Finally, there seems to be some bias in the global method toward
lower velocities.

Figure 4: The inverted velocity model after 10 iterations using: (a) the trace-by-trace
maximum correlation, and (b) the global spline-fitting method. [ER]
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CONCLUSIONS AND DISCUSSIONS

We showed that using a global scheme for picking the correlation lags can better detect
the correct events and is more robust to noise and multiple events than a trace-by-
trace method. However, since the global picking is done on sparse spline points, the
picking surface is too smooth, which causes the result to have less detail than that of
the local method and converges at a lower rate. Nevertheless, the estimated velocity
model did correctly approach the true velocity model, even though we started with a
constant velocity.

Moreover, the accuracy and smoothness of the global method is strongly influenced
by the number of spline points specified by the user. Therefore, accurately estimating
the smoothness of the picked cross-correlation surface can help in determining a good
spline geometry.

FUTURE WORK

As we have seen, the global optimization is less accurate than the local fitting. One
way to improve the results is to use a hybrid optimization method in which the
algorithm either alternates between a global and a local iteration or runs a global
search, followed by a local one. In addition, all testing has been done on transmission
seismology. The next step is to extend the method to reflection seismology.

Finally, the tests case in this paper are synthetic data. In field data, the noise
level is an issue that might degrade the local method even more, in which case the
global method can show even more improvement.
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