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Least-squares migration of incomplete data sets with
regularization in the subsurface-offset domain

Yaxun Tang

ABSTRACT
I present a method to address the migration artifacts caused by insufficient offset coverage.
I pose the migration as a least-squares inversion problem regularized with the differential
semblance operator, followed by forcing a sparseness constraint in the subsurface-offset
domain. I demonstrate that adding these regularization terms suppresses the amplitude
smearing in the subsurface-offset domain and improves the resolution of the migrated
image. I test my methodology both on a synthetic two-layer data set and the Marmousi
data set.

INTRODUCTION

With correct migration velocity and infinite survey length, wave-equation migration will focus
the energy perfectly at the zero-offset locations. In reality, however, since the survey length
can never be infinite, the offset domain suffers from the truncation effect. The situation gets
even worse when the data sets are incomplete or irregular; severe amplitude smearing and
aliasing artifacts may appear in the offset gathers and migrated images. This problem is more
pronounced in 3-D, because of the irregular nature of 3-D seismic data.

One way to deal with this problem is to interpolate before migration, as is done in Radon-
based interpolation schemes. Though Radon-based methods are acknowledged to be effective
for data interpolation, they have severe theoretical limitations that require the events in CMP
gathers to have the shape of hyperbolas or parabolas. These limitations prevent them from
accurately interpolating in situations with very complex velocity structures.

Another approach is to pose the migration problem as a regularized inversion process.
A reasonable regularization term, assuming lateral continuity along the reflection-angle axis,
would be to smooth across offset-ray parameters in the Angle-Domain Common Image Gath-
ers (ADCIGs). As shown in Prucha et al. (2000) and Kuehl and Sacchi (2001), by smoothing
along the angle gathers, the illumination gaps can be successfully filled in and the migration
artifacts caused by the insufficient survey length and lack of illumination can be attenuated to
some extent.

In this paper, I describe another method based on least-squares migration with regulariza-
tion in the Subsurface-Offset-Domain Common Image Gathers (SODCIGs). Regularizing in
the SODCIGs instead of in the ADCIGs has the advantage of being computationally cheaper,
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since it saves the computational cost of transforming from SODCIGs into ADCIGs. The ba-
sic idea is to add a Differential Semblence Operator (DSO) in the SODCIGs along the offset
dimension to penalize energy far from zero-offset locations (Shen et al., 2003; Valenciano,
2006), followed by applying a sparseness constraint which minimizes the model residuals in
the L1 norm or Cauchy norm to enhance the resolution of the image cube.

I start with reviewing the theory of Bayes inversion and derive the weighting function
for the sparseness constraint, then derive the objective function with DSO regularization and
sparseness constraints based on the propagation of wavefields. I demonstrate that regularizing
with DSO in the SODCIGs is equivalent to regularizing with a roughener along the offset-ray
axes in the ADCIGs. To further reduce the computational cost, I approximate the Hessian with
a diagonal matrix, which eliminates the need to propagate wavefields upward and downward
within each iteration; however, the trade-off is a loss of accuracy. My approximated inversion
scheme is tested on a simple two-layer model as well as the complex Marmousi model.

BAYES INVERSION

If we let m be the model vector and d be the data vector, Bayes’s theorem would state

p(m,d) =
p(m)p(d,m)

p(d)
, (1)

where p(m,d) is the distribution of the model parameters posterior to the data d, expressing the
likelihood of the model m for a given data d; p(m) is the probability distribution of the model
m, representing the prior information about the model; and p(d,m) describes how knowledge
of the data modifies the prior knowledge. The quantity p(d) is the probability distribution of
the data d, which is a constant for a given data d; thus p(d) can be seen as a scaling factor
(Ulrych et al., 2001). Therefore, equation (1) can be simplified as

p(m,d) ∝ p(m)p(d,m). (2)

In the presence of noise, the recorded data d can be expressed as follows:

d = Lm+n, (3)

where n is the noise vector. The likelihood function p(d,m) is constructed by taking the
difference between the observed data and the modeled data, thus

p(d,m) = p(n). (4)

If we assume the noise has a Gaussian distribution with a zero mean and variance σ 2, its
probability function can be written as follows:

p(ni ) =
1

√
2πσ 2

e−
n2

i
2σ2 (5)
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If each component of the noise vector is independent and the variance of each noise sample
remains constant, the total probability of the noise vector is

p(n) = p(n1)p(n2) · · · p(nN ) (6)

=
1

(2πσ 2)N/2 e
−1
2σ2

∑N
i=1 n2

i (7)

= α1e
−1
2σ2 n′n, (8)

where n′ is the adjoint of n. If we further assume that the model parameters m i , i = 1,2, . . . , M
have a Gaussian distribution with a zero mean and a variance σ 2

m and are independent, the
probability of m then is

p(m) =
1

(2πσ 2
m)M/2 e

−1
2σ2m

m′m
(9)

= α2e
−1

2σ2m
m′m

(10)

Plugging equations (8) and (10) into equation (2) yields the following posterior distribution:

p(m,d) ∝ α1α2e
− 1

2σ2m
m′m− 1

2σ2 n′n
(11)

∝ α1α2e
− 1

2σ2m
m′m− 1

2σ2 (Lm−d)′(Lm−d)
. (12)

Since the posterior probability p(m,d) is a quantity describing the probability that the model is
correct given a certain set of observations, we would like it to be maximized. Maximizing the
posterior function is equivalent to finding the minimum of the following objective function:

J (m) = (Lm−d)′(Lm−d)+ εm′m, (13)

where ε = σ 2

σ 2m
. We can see that if the model parameters are assumed to have a Gaussian dis-

tribution, the solution of maximum posterior probability under Bayes’s theorem is equivalent
to the damped least-squares solution. Thus, Bayesian inversion gives another perspective on
the same problem, where minimizing the model residuals in the L2 norm corresponds to a
Gaussian prior probability distribution. As the Gaussian distribution is a short-tailed function
that is tightly centered around the mean, it will result in a smooth solution. Therefore, when
a sparse solution is required, the L2 norm is no longer appropriate, and long-tailed distribu-
tion functions such as the exponential and Cauchy distributions should be chosen for the prior
probability distribution of m.

If we keep equation (8) unchanged and assume p(m) satisfies the exponential probability
distribution, with a mean of zero:

p(m) =
1

2σm
e

−1
σm

∑M
i=1 |mi | (14)

= α2e
−1
σm

∑M
i=1 |mi |. (15)

Then the a posteriori probability becomes

p(m,d) ∝ α1α2e− 1
2σ2 (Lm−d)′(Lm−d)− 1

σm
∑M

i=1 |mi |. (16)
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Finding the maximum of the above function is equivalent to finding the minimum of the
following objective function:

J (m) = (Lm−d)′(Lm−d)+ ε f (m), (17)

where ε = 2σ 2

σm
, and the regularization term, f (m), is defined by

f (m) =
M

∑

i=1
|mi |. (18)

Therefore, by adding an L1 norm regularization term to the least-squares problem, we get a
sparse solution of the model parameters.

Though minimizing the objective function (17) results in a non-linear problem, it can
be solved efficiently by Iteratively Re-weighted Least-Squares (IRLS). The gradient of the
regularization term is

5 f (m) =
∂

∂m f (m) =













∂ f (m)
∂m1

∂ f (m)
∂m2...

∂ f (m)
∂m M













=











m1
|m1|
m2
|m2|

...
m M
|m M |











. (19)

Therefore the regularization term f (m), which minimizes the residual in the L1 norm, can be
solved in the L2 norm by introducing a diagonal weighting function Wm:

Wm = diag(

√

1
|m1|

,

√

1
|m2|

, · · · ,

√

1
|mM |

). (20)

Then the objective function (17) can be changed to

J (m) = (Lm−d)′(Lm−d)+ ε(Wmm)′(Wmm) (21)
= ‖Lm−d‖2 + ε‖Wmm‖2. (22)

The derivation of the objective function for the a priori case with a Cauchy distribution is
similar, except the diagonal weighting function changes to the following:

Wm = diag(

√

1
1+ (m1/σm )2 ,

√

1
1+ (m2/σm)2 , · · · ,

√

1
1+ (mM/σm)2 ). (23)

Since Wm is a function of the model m, if we use the gradient-based IRLS method to
solve the objective function (22), we have to recompute the weight Wm at each iteration and
the algorithm can be summarized as follows:

1. At the first iteration, Wm is set to be the identity matrix:

W0
m = I (24)
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2. At the kth iteration, we solve the following fitting goals:

0 ≈ Lmk −d (25)
0 ≈ εWk−1

m mk, (26)

where W k−1
mi = (|mk−1

i |)−1/2 in the case of the L1 norm, or W k−1
mi =

[

1+
(

mk
i

σm

)2
]−1/2

in the case of the Cauchy norm.

REGULARIZED LEAST-SQUARES INVERSION

To force the energy in the SODCIGs to concentrate at the zero-offset location, we can pose the
problem as a regularized inversion process, and the objective function is defined as follows:

J (m) = ‖Wd(Lm−d)‖2 + f (D(m)) , (27)

where d is the recorded data. L is a 2-D/3-D wave-equation modeling operator that transforms
the model to prestack data; here I use the adjoint of the Double Square Root (DSR) migration
operator. Wd is a mask weight, which enables us to minimize the data residuals only at known
locations, and m is the model space in terms of the SODCIGs, a 3-D image cube in the 2-D
case and a 5-D image cube in the 3-D case. Operator D(·) is defined as follows:

D(m) = diag(|h|)m (28)
diag(|h|) = diag(|h1|, |h2|, · · · , |h M |) (29)

which is the DSO operator acting along the offset dimension to penalize energy far from zero-
offset locations. Near-offset energy, especially that around zero-offset locations where |h| ≈ 0,
will not be affected. After applying DSO, the model-dependent sparseness transform operator
f (·), which minimizes model residuals in the L1 norm or Cauchy norm, is performed. The
sparseness constraint is applied depth-by-depth and CMP-by-CMP along the offset dimension.
The purpose of adding such a sparseness constraint is to penalize noise which is typically
incoherent and weak, and consequently enhance the resolution of the final inverted result.

In fact, adding the DSO regularization term in the SODCIGs is similar to adding a rough-
ener to smooth along the offset-ray parameters in the ADCIGs. As offset-ray parameters are
connected to the offset wavenumbers via the following equation:

ph =
kh
ω

, (30)

for a single frequency,

∂

∂ph
= ω

∂

∂kh
, (31)
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therefore, for a specific CMP location m0, roughening along ray-parameters can be expressed
as follows:

0 ≈
∂

∂ph
P(τ ,m0,ph, z) (32)

= ω
∂

∂kh
SF

−1
ω P(ω,m0,kh, z) (33)

= ωSF
−1
ω

∂

∂kh
P(ω,m0,kh, z), (34)

where S is the slant-stack operator and F
−1
ω is the inverse Fourier transform over frequencies.

Considering the Fourier duality, convolving the wavefield P(ω,m0,kh, z) with the differential
operator in the offset-wavenumber domain has the same effect as multiplying the wavefield
P(ω,m0,h, z) with diag(h) in the offset-space domain:

∂

∂kh
P(ω,m0,kh, z) ⇔ diag(h)P(ω,m0,h, z). (35)

So smoothing along the offset-ray parameters acts like the DSO regularization term.

Following the discussion in the previous section, the objective function (27) can be rewrit-
ten as follows:

J (m) = ‖Wd(Lm−d)‖2 +‖Ws D(m)‖2, (36)

or more concisely in terms of fitting goals,

0 ≈ Wd(Lm−d) (37)
0 ≈ εWs D(m), (38)

where Ws is the diagonal weighting matrix that forces the sparseness constraints. Here I use
the Cauchy norm, thus

Wsi =
1

√

1+ (D(mi )/σ )2
. (39)

DIAGONAL APPROXIMATION OF HESSIAN MATRIX

Solving fitting goals (37) and (38) is expensive, since we have to propagate wavefields down-
ward and upward within each iteration, with the cost for each iteration equal to the cost of
two migrations. For small-scale problems, it is solvable; for large-scale problems, however,
the computational cost might be prohibitive. What’s more, currently there are no universal
criteria for choosing the hyperparameters: ε, which balances the data-fitting goal and the
model-styling goal, and σ , which controls the sparseness of the model space. They can be
decided only by trial and error, which obviously is not practical for very large-scale problems.
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Instead of propagating wavefields at each iteration, however, we can precompute the Hes-
sian or approximate it with a diagonal matrix and then solve the modified fitting goals itera-
tively. The solution of fitting goal (37) in the least-squares sense is

m ≈
(

L′W′
dWdL

)−1 (WdL)′Wdd. (40)

The weighted Hessian matrix H = L′W′
dWdL can be either fully computed (Valenciano and

Biondi, 2004) or approximated with a diagonal matrix; here I do the latter, approximating the
weighted Hessian with its diagonals as follows (Rickett, 2003):

H ≈ WH =
diag(L′W′

dWdLmref)
diag(mref)

, (41)

and I choose the migrated image cube as the reference image cube:

mref = (WdL)′Wdd. (42)

Therefore, fitting goals (37) and (38) can be modified as follows:

0 ≈ WHm−mmig (43)
0 ≈ εWs D(m), (44)

where mmig = (WdL)′ Wdd, which is obtained by migrating the recorded data. To avoid the
right-hand side of equation (41) being divided by zeros, I multiply diag(mref) on both sides of
equation (43), resulting in

0 ≈ Wrefmm−Wrefdmmig (45)
0 ≈ εWs D(m), (46)

where Wrefm = diag(L′W′
dWdLmref) and Wremd = diag(mref). Fitting goals (45) and (46)

can be solved by using the IRLS algorithm described in the previous section.

SYNTHETIC DATA EXAMPLES

I test my methodology on two synthetic 2-D data sets. One shown in Figure 2(a) is a two-layer
model with one reflector being horizontal and the other dipping at 15◦. The velocity increases
with depth: v(z) = 2000 + 0.3z, which is shown in Figure 1. To make the synthetic data set
more realistic, some random noise has also been added. Then I replace approximately 70%
of the traces in the offset dimension with zeros. The incomplete and sparse data set is shown
in Figure 2(b). Then I perform DSR migration on both data sets to generate the SODCIGs;
the corresponding migrated image cubes are shown in Figure 3. Comparing Figure 3(a) with
Figure 3(b), we can see that even with the complete data set (Figure 2(a)), the SODCIGs suffer
from the amplitude smearing effects caused by the offset truncation. The situation gets worse
as the offset coverage is further reduced; there are severe amplitude smearing and aliasing
artifacts in the SODCIGs as shown in Figure 3(b), and because of the interference of these
artifacts in the offset domain, the resolution of the migrated image (i.e. offset=0) is also
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Figure 1: The velocity model for the
two-layer model. yaxun1-layer_vel
[ER]

Figure 2: (a) The synthetic data set for the two-layer model, (b) the incomplete data set with
about 70% of the traces in the offset dimension replaced by zeros. yaxun1-layer_mod [ER]
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Figure 3: SODCIGs for the two-layer model, (a) obtained by migrating Figure 2(a) and (b)
obtained by migrating Figure 2(b). In both plots, the panel in the middle shows the migrated
image (h = 0), the panel on the right shows the SODCIGs and the panel on the top shows the
depth slice. yaxun1-layer_sodcig [ER]

degraded. The effect is more obvious if we transform the SODCIGs into the ADCIGs, which
are shown in Figure 4; there are some gaps in the middle of the ADCIGs (Figure 4(b)) obtained
by migrating the incomplete data set, indicating that there are some illumination problems.

From this simple experiment, we intuitively understand that the amplitude smearing in the
SODCIGs is another representation of poor illumination and that the more energy smearing
we see in the SODCIGs, the more severe the illumination problem must be. Therefore, if we
could make the energy more concentrated at zero-offset and penalize the energy at nonzero-
offset, we would compensate for the illumination problem and fill the holes in the ADCIGs.
To achieve this purpose, I first approximate the weighted Hessian matrix with equation (41),
then solve the inversion problem based on the fitting goals (45) and (46). The reference im-
age mref or Wrefm is chosen to be the migrated image cube of the incomplete data, which is
shown in Figure 2(b). The weight Wrefd is created by demigrating mref and then migrating
the demigrated image again. The mask weight is shown in Figure 5. As I apply the sparseness
constraint along the offset dimension depth-by-depth and CMP-by-CMP, it would be inap-
propriate to use a global parameter σ to control the sparseness; therefore I apply σ locally,
choosing for its value the mean value of the current offset vector. The final inversion result
is shown in Figure 6(a); for comparison, Figure 6(b) shows the migration result. Figure 7
illustrates one single trace located at CMP=0 meters and offset=0 meters, Figure 7(a) is the
result by migration, while Figure 7(b) is the result by inversion, where both (a) and (b) are
normalized to compare their relative amplitude ratios. From the results we can clearly see that
the DSO regularization term perfectly eliminates the energy at non-zero offset. The sparse-
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Figure 4: ADCIGs for the two-layer model, (a) computed from Figure 3(a), and (b) computed
from Figure 3(b). In both plots, the panel in the middle shows the image for each opening
angle, the panel on the right shows the ADCIGs and the panel on the top shows the depth
slice. yaxun1-layer_adcig [ER]

ness constraint also successfully penalizes weak amplitudes and consequently improves the
resolution of the image. Figure 8 shows the comparison of ADCIGs between migration and
inversion, where, as expected, the inversion result in Figure 8(a) fills the illumination gaps
presented in Figure 8(b).

Figure 5: The computed mask weight
from Figure 2(b). Black stands for
ones, while grey stands for zeros.
yaxun1-layer_rn70_mask [ER]

The model with two reflectors in the previous example is simple. To test whether the
inversion scheme works for complex models, I apply it to the Marmousi model, which is
shown in Figure 9(a), again with about 70% of the traces in the offset dimension replaced with
zeros. The computed mask weight is shown in Figure 9(b). As before, I use the migrated
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Figure 6: SODCIGs for the two-layer model. (a) The inversion result, and (b) the migration re-
sult. Note the inversion result has perfectly penalized the energy far from zero-offset locations
and the sidelobes of the amplitudes as well. yaxun1-layer_inv_sodcig [ER]

image cube as the reference image cube for computing the weighting matrices Wrefd and
Wrefm. The parameter σ is also chosen to be the mean value of the current offset vector.
Because there are no good suggestions for the parameter ε, it is chosen by trial and error to
get a satisfactory result. Since I use only one reference velocity (the average between the
maximum and the minimum velocities at each depth step) for the DSR-SSF algorithm, some
steeply dipping faults are not well imaged, and because of the inaccuracy of the reference
velocity, some locations are mispositioned, indicating there should be some residual moveout
in both SODCIGs and ADCIGs.

The final inversion result is shown in Figure10 (b); for comparison, Figure10(a) is the
migration result. By using the approximated inversion scheme, we suppress the weak and
incoherent noise and obtain a much cleaner result, while also improving the resulotion to
some extent. This is more obvious if we extract a single trace from the migration result and
the inversion result to compare their relative amplitudes. Figure 11 shows the extracted trace
located at CMP=4 km, offset=0 km, while Figure 12 shows the extracted trace located at
CMP=7.5 km, offset=0 km. In both figures, (a) is obtained from the migration result, while
(b) is obtained from the inversion result. From Figure 11 and Figure 12, we can see that
small amplitudes and the sidelobes of the wavelets are penalized by the inversion scheme and
the inversion result yields an image with higher resolution. But also notice that some weak
reflections which are presented in the migration result are attenuated in the inversion result.

Figure 13 illustrates the SODCIGs for two different locations; (a) and (c) are the SODCIGs
at CMP=4 km and CMP=7.5 km respectively obtained from the migration result, while (b) and
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Figure 7: Comparison of a single trace located at CMP=0 meter and offset=0 meter. (a) The
migration result, (b) the inversion result. The amplitudes in both (a) and (b) are normalized to
compare their relative ratios. yaxun1-layer_wavelet [ER]

Figure 8: ADCIGs for the two-layer model. (a) The inversion result, (b) the migration result.
Note the inversion has filled in the illumination holes. yaxun1-layer_inv_adcig [ER]

(d) show the SODCIGs at the same CMP locations obtained from the inversion result. Because
of the DSO regularization term in the inversion scheme, events that are far from zero-offset
locations are penalized, making the energy more concentrated at zero-offset. The ADCIGs at
the corresponding locations shown in Figure 14 explain this further, with the ADCIGs (Figure
14(b) and (d)) from the inversion result smoothed across angles and the illumination holes
present in (a) and (c) filled in to some degree.

As mentioned above, because of the inaccuracy of the reference velocity, there are still
some residual moveouts at some locations in both SODCIGs and ADCIGs, as seen in Figure
13(a) and Figure 14(a). One nice thing to see is by choosing a proper trade-off parameter
ε, the proposed inversion scheme can successfully preserve the residual moveouts both in
SODCIGs and ADCIGs, as shown in Figure 13(b) and Figure 14(b). The angle gathers even
get cleaner, which makes it much easier to estimate the residual moveouts. Therefore, this
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Figure 9: The Marmousi data set (a) and the corresponding mask weight (b), where black
stands for ones, while grey stands for zeros. yaxun1-mar_model [ER]

approximated inversion scheme may have the potential to improve the accuracy of residual
moveout estimation, and consequently improve velocity estimation results. However, this still
needs further investigation.

Figure 10: Comparison of the migration result and the inversion result. (a) The image obtained
by migration, and (b) the image obtained by inversion. yaxun1-mar_h0 [CR]

DISCUSSION AND CONCLUSION

I have presented a regularized inversion scheme in the SODCIGs to deal with the artifacts
caused by insufficient offset coverage. The inversion scheme concentrates the migrated energy
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Figure 11: Comparison of a single trace located at CMP=4 km and offset=0 km. (a) The
result from migration, and (b) the result from inversion. The amplitudes in both (a) and (b) are
normalized to compare their relative ratios. yaxun1-mar_wavelet1 [CR]

Figure 12: Comparison of a single trace located at CMP=7.5 km and offset=0 km. (a) The
result from migration, and (b) the result from inversion. The amplitudes in both (a) and (b) are
normalized to compare their relative ratios. yaxun1-mar_wavelet2 [CR]

Figure 13: Subsurface-offset-domain common-image gathers for two different surface lo-
cations. Panels (a) and (c) are the SODCIGs at CMP=4.0 km and CMP=7.5 km obtained
by migration, while (b) and (d) are the corresponding SODCIGs obtained by inversion.
yaxun1-mar_sodcig [CR]
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Figure 14: Angle-domain common-image gathers for two different surface locations. Panels
(a) and (c) are the ADCIGs at CMP=4.0 km and CMP=7.5 km obtained by migration, while
(b) and (d) are the corresponding ADCIGs obtained by inversion. yaxun1-mar_adcig [CR]

at zero-offset locations and removes incoherent and weak noise by constraining the solution
with the DSO and sparseness operator. Though I tested my approach only on 2-D data sets,
it would be quite easy to extend it to 3-D, since I approximate the Hessian with a diagonal
matrix, which reduces the computational expense.

Compared to regularizing in the ADCIGs with a roughening operator acting along the an-
gle axis, regularization in the SODCIGs has the advantage of being computationally cheaper.
More importantly, with proper selection of the trade-off parameter ε, it can preserve the ve-
locity information correctly when a wrong migration velocity is used. Therefore it may have
the potential to update the velocity more accurately, since it can produce much cleaner angle
gathers.

The proposed inversion scheme may also be dangerous if we choose inappropriate hyper-
parameters ε and σ . Since by adding the sparseness constraint in the image cube, we run the
risk of penalizing true reflections that have very weak energy, over-regularization may lead to
too-sparse solutions, forfeiting the ability to image weak reflections. For the example of the
Marmousi model, we can clearly see that some weak reflections are greatly attenuated.

The deconvolution effects, i.e. the wavelet-squeezing effects, in the above examples are
not obvious; this is because of the approximation of the Hessian with a diagonal matrix. The
approximated diagonal deconvolution filter is not sufficient to deconvolve the image accu-
rately, especially for the complex Marmousi model. A more accurate but also more expensive
way is to compute the full Hessian with wave equations instead of approximating it with a
diagonal matrix.
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