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Waveform inversion by one-way wavefield extrapolation

Jeff Shragge

ABSTRACT

Forward modeling in frequency-domain waveform inversion is often implemented using
finite difference (FD) methods. However, the cost of FD modeling remains too expensive
for typical 3D seismic data volumes. One-way wavefield extrapolation is an alternative
forward-modeling strategy considerably cheaper to implement. This approach, though,
comes with caveats that typically include lower accuracy at steep propagation angles in
laterally varying media, a difficulty for incorporating source radiation patterns, and an
inability to propagate turning or multiply reflected waves. Each of these factors can play
a role in determining the success or failure of a waveform inversion analysis. This study
examines the potential for using one-way Riemannian wavefield extrapolation (RWE) op-
erators in the forward modeling component of frequency-domain waveform inversion.
RWE modeling is carried out on computational meshes designed to conform to the gen-
eral direction of turning-wave propagation, which enables the calculation of the direct
arrivals, wide-angle reflections and refractions important for a successful waveform in-
version. The waveform inversion procedure otherwise closely resembles conventional
frequency-domain approaches. Forward modeling test results indicate that RWE wave-
forms match fairly well with those generated by FD modeling at wider offsets. Prelim-
inary tests of a RWE waveform inversion scheme demonstrate its ability to invert FD-
generated synthetic data for moderate (10%) 1D velocity perturbations.

INTRODUCTION

Accurately imaging the Earth’s subsurface using seismic wavefield data requires estimating re-
alistic velocity profiles. Most information used to ascertain velocity models, however, derives
from two sources: inverting a subset of the seismic wavefield (e.g., first-arrival tomography or
waveform inversion), or from a measure of migration image quality (e.g., residual migration
or migration velocity analysis). All approaches are nevertheless subject to the non-linearity
of the seismic imaging problem and often require multiple iterations of velocity estimation,
migration and image quality assessment before converging toward a well-resolved velocity
model and seismic image.

One established data-domain approach for velocity estimation is ray-based, first-arrival,
travel-time tomography, where earliest arrival times predicted by a linearized theory are matched
to those picked from data. Travel-time discrepancies (or residuals) are back-projected along
calculated ray-paths for all source and receiver combinations to obtain a velocity model update.
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Although iterative ray-based tomography is computationally efficient and can demonstrably
recover longer-wavelength velocity profile structure, it has a limited ability to resolve finer-
scale model components. Although this shortcoming is partially addressed by more "wave-
like" corrections to the asymptotic ray theory, a more accurate (but more expensive) way to
improve inverted velocity model resolution is using methods derived from finite-frequency
approaches.

A popular alternative to ray-based tomography is waveform inversion based on wave-
equation tomography. Assuming a linearized theory, this approach aims to match waveforms
modeled by band-limited propagation operators to acquired seismic data. Importantly, higher-
resolution velocity models can be recovered where a greater percentage of the seismic wave-
field is used in the inversion. (In fact, velocity models developed from ray-based tomography
often are the starting models for waveform inversion.) Waveform inversion can be imple-
mented in either the time domain (Tarantola, 1984; Bunks et al., 1985; Mora, 1987; Shipp and
Singh, 2002) or in the frequency domain (Pratt and Worthington, 1989; Liao and McMechan,
1996; Sirgue and Pratt, 2004) and for either acoustic and elastic wave equations. Frequency-
domain approaches have the benefit that only a limited number of frequencies need be inverted
(Pratt and Worthington, 1989), usually starting at lower frequencies then moving up a sparsely
sampled spectrum. Moreover, because data are more linear with respect to model parameters
at lower frequencies, convergence toward the global minimum is more likely (Sirgue and Pratt,
2004).

Two drawbacks to the general waveform inversion procedure are the memory require-
ments and computation complexity required to solve the 3D forward modeling problem. Most
frequency-domain procedures employ finite-differences (FD) to solve the acoustic or elastic
wave-equation, and often implement a LU decomposition of the correspondingly large, but
relatively sparse, impedance matrix. The memory requirement for a LU decomposition of a
2D matrix is roughly proportional to nx*, where nx is the average model space dimension.
This can be lowered to roughly nx? using graph theoretic techniques able to exploit matrix
sparsity (Stekl and Pratt, 1998). The memory requirement for 3D problem, however, theoret-
ically rises to approximately nx®, which remains too costly for common exploration model
sizes. However, novel iterative approaches may be able to reduce the cost of 3D FD modeling
(see, e.g., Plessix (20006)).

An alternate way to lower the forward modeling costs is to replace FD modeling with an
extrapolation scheme based on propagators derived from one-way wave-equations. Although
one-way wavefield extrapolation is not as accurate, the numerical cost of a 3D implementa-
tion is roughly nsnx3(log,(nx))? (Biondi, 2006), where ns is the number of shots. Moreover,
the memory requirement is now of a similar or lower order of magnitude, and is no longer
the impeding constraint. Accordingly, wavefield extrapolation potentially offers significant
computational and memory savings and is worth examining in the context of waveform in-
version. One-way extrapolation, nevertheless, comes with caveats. For example, long-offset
seismic data usually contain turning waves, wide-angle reflections, and forward-scattering
from shorter wavelength structure that carry important and complementary information about
velocity structure. However, accurately modeling these waves with conventional wavefield
extrapolation techniques remains difficult (though not impossible, see Zhang et al. (2006)).
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One approach is to use Riemannian wavefield extrapolation (Sava and Fomel, 2005) on a
generalized coordinate mesh oriented in the general direction of turning-wave propagation.
Because these grids are designed to incorporate the bulk of the turning-wave propagation di-
rectly into the coordinate system, it allows the user to implement lower-order extrapolation
operators while achieving more accurate global propagation. In addition, one can avoid mod-
eling at depths greater than those of the deepest turning waves, beyond which the transmission
wavefield is insensitive to velocity variations (Mulder and Plessix, 2006).

This paper examines the use of one-way Riemannian wavefield extrapolation (RWE) oper-
ators in the forward modeling component of frequency-domain waveform inversion. The pa-
per begins with a general review of the Pratt and Worthington (1989) approach. Subsequently,
I describe the implementation of RWE forward modeling and present results of tests on the
SMAART JV Pluto 1.5 dataset that indicate that RWE waveforms are fairly well matched with
those from FD modeling at wider offsets. I then discuss results of a RWE waveform inversion
scheme and demonstrate its ability to invert for a moderate (10%) 1D velocity perturbation
assuming an a priori constant velocity background.

REVIEW OF FREQUENCY-DOMAIN WAVEFORM INVERSION

This section reviews the basic steps of non-linear frequency-domain waveform inversion. The
reader wishing to have a more formal overview is referred to Pratt and Worthington (1989),
Liao and McMechan (1996), Sirgue and Pratt (2004), and references therein. The technique
described herein is modeled after the algorithm of Pratt and Worthington (1989) and uses the
notation of Sirgue and Pratt (2004). Additional steps in the inverse approach are drawn from
time-domain waveform inversion method of Mora (1987).

Forward modeling

The initial step in frequency-domain waveform inversion is to prescribe the forward model.
I assume that wave propagation is adequately governed by the acoustic wave equation; thus,
any forward-modeling procedure will generate a monochromatic scalar wavefield, W, that is
an (approximate) complex-valued solution to the Helmholtz equation,

2

LW(s, x: ) = (v2 n f—) W(s.X: ) = —8(s — ), (1)
c*(x)

where L is the Helmholtz operator, V? the Laplacian operator, o angular frequency, ¢(x) the
assumed velocity profile in spatial domain x, s the source position, and § the Dirac delta func-
tion operator. Note that the waveform inversion problem is non-linear in model parameters,
m(x) = ¢~2(x), which I will solve using an iterative inversion approach. Discussion of the
specific approach to solving equation 1 being presented is deferred to the following section.

The next step is to compare the modeled wavefield solutions, W, (S,T; w), to the observed
data, W,p,(s,T; @), where r is the receiver position. This procedure leads to a residual wave-
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field, AW(s,r;w), defined as the difference between the two wavefields
AKD(S, r; C()) = \chalc(sa r; w) - \Ijr)bs(sa r; C()) (2)

The residuals are a measure of waveform fit and will be back-projected to generate a velocity
model update. Note that no assumption is explicitly made about a linear relation (i.e. the
Born approximation is explicitly avoided in the forward modeling problem) (Sirgue and Pratt,
2004); however, if model parameters are too far removed from the true velocity model, then the
monochromatic wavefields in equation 2 will cycle-skip giving erroneous residuals. However,
because cycle-skipping is more likely at higher frequencies, the approach is generally more
stable at lower frequencies.

The Inverse Problem

The approach to solving the waveform inversion problem followed here (Pratt and Worthing-
ton, 1989) is based on minimizing the residual misfit at each successive frequency, E(w).
Assuming an L, norm, the misfit is defined

E() = %ZZAW*(s,r;w)AlIJ(s,r;a)), 3)

where AW* denotes complex conjugate of wavefield AW. In this study, I approach the min-
imization of E(w) through computing the negative gradient, or the direction of greatest de-
crease of the misfit function, with respect to the variation in model parameters. If model
parameters are represented by m(x), then the descent direction is defined by

0E

g(X) = _va = _8m(x)'

“)

The gradient vector, g(x), is considered an image of the model space and can be used to update
the model parameter estimates according to

My 1(X) = mp(X) 4 Y (X)gn(X), &)

where y,(x) is the step length discussed below, and subscript # indicates the current iteration
number.

Gradient Vector Definition

Methods for calculating the gradient without explicitly computing the partial derivatives of the
data are well established (Lailly, 1983; Tarantola, 1984; Pratt and Worthington, 1989; Pratt et
al., 1998). The main result in the time-domain inversion literature is that the gradient vector
can be computed by a zero-lag correlation of the wavefield propagated forward from the source
point, Pr(s,X; ), and the residual wavefield propagated backwards from the farthest receiver
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location toward the source point past each successive receiver, Pp(X,r;w). The frequency-
domain equivalent to this zero-lag correlation is the multiplication of these two wavefields
according to

g(x;w) = —w’ Z Z Re (Pf (s,%; ) Py(8.X, 15 0)) , (6)

where Re indicates the real component of the multiplication result. The summation over
sources and receivers is done for each non-linear iteration at each frequency. Following Sirgue
and Pratt (2004) in assuming a point source of unit amplitude and zero phase, the forward-
propagated wavefield Py is given by

Pr(s,x;0) = Go(s,X; w), (7N
while back-propagated wavefield P, is defined by
Py(s,x,1;0) = Gy(X,1;0) AV (S, 1;0), (®)

where Go(s,X;w) and Go(X,r;w) represent the monochromatic Green’s functions for an exci-
tation at the source and receiver points in the medium, respectively. Hence, the full gradient
vector expression is

gxw)=—w>Y Y Re(Gi(s.x:0)Gi(X,1;0) AV (s,r;0)). (9)

Note that Gg(x,r; w)AW(s,r;w) represents the back-projection of the data residuals and is
similar to a "migration with the residual wavefield data" (Mora, 1987).

Conjugate Gradient Definition

The use of conjugate gradients helps to speed convergence by choosing a direction that is a
linear combination of the past and current steepest descent vectors (Luenberger, 1984). Fol-
lowing Mora (1987), I use a conjugate gradient approach given by Polak and Ribiére (1969)

«(&n—8&n-1)

Ch=28nt8 — , (10)
gn—lgn—l

where ¢, is the conjugate gradient update. Note that this is equivalent to the formulation in
Mora (1987) where data and model space covariances are represented by identity operators.
Equation 5 thus modifies to

Mp1(X) = mu(X)+ vy (X)cp(x), n>2,
Yn(X)gn(X), n=1. an

The computation of conjugate gradient direction in equation 11 comes essentially at no cost
because the previous gradient vector, g,_1, easily can be stored in memory.
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Step-length Definition

After computing the (conjugate) gradient vector, one must calculate the step length, y,(x),
used to update model parameters (equation 5). This computation is not straightforward be-
cause the acoustic wave equation is non-linear in model parameters m(x) = ¢ ~2(x) and the
Frechét derivatives are never explicitly calculated. One approach is to use a linear approx-
imation technique based on perturbation methods (Mora, 1987). This involves calculating
an approximate Frechét derivative, F, by performing an additional forward modeling using
a set of model parameters perturbed by a scaled version of the computed conjugate gradient
(i.e. m,(x)+ nc,(x)) and comparing the result with the initial forward modeled data. This is
summarized notationally as

Fn :L(mn+77cn)_L(mn): \ijert_qjoriga (12)

where W,,,; and W¥,,;, are the perturbed and original wavefields, respectively. Perturbation
scaling factor 5 is constrained to be within 1% of the current model parameter values. The
step-length is then given by Mora (1987)

Cp&n

VW= - (13)
" nL FFy+cicn

Again, the step-length in equation 13 is equal to that in Mora (1987) where covariance matrices
are represented by identity operators.

General approach to waveform inversion

The above section presented the approach to frequency-domain waveform inversion used in
this study. The general computational flow is described the pseudo-code in figure 1. The proce-
dure begins with the forward wavefield modeling (equation 1) for the first non-linear iteration
at the first frequency. Wavefield residuals are then computed (equation 2) and back-projected
throughout the model volume (the adjoint of equation 1), enabling the computation of the
single-source gradient vector (equation 9). This procedure is repeated for all shot points until
the total gradient field is computed by stacking single-source gradient profiles. The conjugate
gradient direction is then calculated from the current and past gradient vectors (equation 11),
and the step length is computed by summing the forward modeling results of the linear per-
turbation Frechét matrix (equation 12). This process is repeated for the desired number of
iterations, or until convergence is reached. The entire process is then repeated at the next
highest frequency until inversion of all chosen frequencies is complete.

SOLVING THE FORWARD MODELING PROBLEM

A key development in frequency-domain waveform inversion methodology would be estab-
lishing a more rapid, yet accurate, forward modeling approach for generating Helmholtz equa-
tion solutions. This is important because, for each non-linear iteration and frequency, forward
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For all frequencies {
For all non—linear iterations {
For all shots {
Forward model wavefield
Compute residuals
Back—propagate residuals

Compute single—shot gradient
Figure 1: Flow chart describing the
processing flow for waveform inver- Sum total gradient vector
sion. |jeff1-flowchart| [NR] Calculate conjugate gradient
For all shots {
Compute single—shot step—length

}

Sum total step—length
Update model

modeling is required (at least) three times: i) forward-propagating wavefield Ps to generate
data W.,; i) back-projecting wavefield residuals P,; and iii) calculating step length y. In
this study, I solve the forward modeling problem using more efficient, though less accurate,
one-way extrapolation operators. The central supposition is that the lower accuracy associated
with one-way operators will be more than offset by efficiency gains and lower memory re-
quirements of finding waveform inversion solutions. A more fundamental question is whether
one-way operators are sufficiently accurate to permit waveform inversion. Demonstrating this
assumption’s validity is a key result of this paper.

One useful strategy for developing effective one-way operators is to consider propaga-
tion in a coordinate system geometry other than Cartesian. For example, one can specify a
sideways-tilted, ray-like mesh where the extrapolation axis is predominately oriented in the
direction of turning-wave propagation. In this reference frame, the bulk of wavefield continu-
ation occurs at low angles to the extrapolation axis where one-way operators remain accurate.
Wavefield propagation on non-Cartesian grids falls under the purview of RWE, which incorpo-
rates mesh geometry directly into the Helmholtz equation through additional spatially varying
coefficients. The differential geometry used to describe coordinate system transformations
in general space is presented in Appendix A, while the operators used in the one-way RWE
approach are developed in Appendix B.

Figure 2 illustrates the geometric transformation between Cartesian (two left panels) and
RWE domains (two right panels). The upper left panel shows a coordinate system mesh over-
lying part of the Pluto velocity model. The upper right panel shows this mesh unfolded to form
a regular grid, underlying which is the interpolated velocity profile. (The RWE coefficients
in Appendix B describe the stretching effects generated by this transformation.) The bottom
right panel shows four superimposed wavefield snapshots (at 1.0s, 2.2s, 3.4s and 4.6s) for a
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Figure 2: Illustration of the waveform inversion forward modeling approach. The left (right)
panels represent the Cartesian (Riemannian) viewpoint. Upper left: Pluto velocity profile
overlain by a dipolar coordinate system mesh. Upper right: Unstretched coordinate system
from upper left panel underlain by the interpolated velocity profile. Lower right: Four super-
imposed broadband wavefields (at 1.0s, 2.2s, 3.4s, and 4.6s) propagated through the velocity
model in the upper right. Lower left: Wavefields from the lower right interpolated to Cartesian.
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point source propagated outward from the left side of the model. Note that while some energy
is lost - for example, at boundaries and steeply dipping energy - the bulk of the wavefield is
extrapolated at low angles through the model. The bottom left panel shows the wavefield from
the bottom right interpolated back to a Cartesian mesh. The rapid near-horizontal advance-
ment of the wavefield through the salt is evident, as are the top-salt reflections arriving at the
free surface.

The remainder of this section describes how I perform forward modeling using RWE op-
erators. I present the rationale for using a dipolar coordinate system, detail an approximate
approach for incorporating source radiation patterns and free-surface reflections, and describe
a wavefield injection approach to back-propagate wavefield residuals.

Dipole Coordinates

One simplifying factor for an RWE approach is using a coordinate system that is (nearly)
orthogonal, such as that developed from a potential field distribution (Shragge, 2006b). Ac-
cordingly, the coordinate system used in the following investigations is a (nearly) orthogonal
mesh derived from the electrostatics potential field distribution, &, of a dipole source formed
by two static charges

1 1
Va2 182G —212 JO -+ 82—

where X1 = [x1,21] and X3 = [x2, z2] are the locations of the two unitary-valued static charges,
and & is an ellipticity factor inducing a vertical stretch.

d(x) = (14)

A dipolar coordinate system can be derived from equation 14 by computing the equipo-
tential surfaces and associated field lines. Figure 3 illustrates this for a dipole of 4 km spacing
and a £=1 ellipticity factor. The potential field distribution nearby the singularities becomes
nearly radially symmetric and mimics the shape of a wavefield emerging from a point source
in a homogeneous medium. For simplicity, I force the initial extrapolation surface to be a
circular arc that directly matches the point source wavefield. Although this introduces a slight
non-orthogonality into an otherwise orthogonal mesh, this is taken into account by the RWE
theory (Shragge, 2006a). In addition, I have situated the source point 50m below the free-
surface in order to simulate ghost reflections commonly found in marine data. The forward
modeled wavefield, W (s, r; w), is thus generated by extracting from the wavefield the values at
the receiver locations on the center line paralleling the free surface at the source depth.

Radiation Patterns and Free-surface

Two additional factors that warrant comment are the effects of source radiation patterns and
the free-surface (see sketch in figure 4). A dipolar coordinate system can partially account for
these effects. I generate the initial source wavefield by extracting the direct arrival wavelet
from a receiver nearby the source point and spreading it across the 180° arc to form a radially
symmetric wavefield. To impart a more realistic radiation pattern, I then introduce an angular
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cosine radiation amplitude filter that helps ensure that the wavefield has zero amplitude (at
least initially) at the free surface.

Free-surface effects can be approximately incorporated by allowing waves to propagate
in a vertically mirrored velocity model. Figure 5 illustrates the expected arrivals from the
mirroring procedure. The top panel shows the expected reflected and ghost arrival polarities,
while the bottom shows the rays modeled with the mirrored velocity approach. Note that
negating the radiation pattern in the mirrored velocity panel generates an effective free-surface
ghost, including the R=-1 free-surface reflection coefficient. First-order multiples are also
present, but have incorrect polarities that could cause problems in the inversion. Multiples
arising from deeper reflectors, though, arrive later and are routinely windowed out from the
data.

Forward modeling examples

Figure 6 presents forward modeling results for the Pluto dataset. The left and right panels
show the wavefield generated by a fourth-order FD and RWE modeling, respectively. The
finite-difference Pluto data on the left is the pressure field component calculated in an elastic
model. The RWE data in the right panel are generated according to equation B-14. Note that
the reflections apparent near zero-offset in the left panel are completely absent from the right
panel. This is because the algorithm cannot propagate reflected waves directly upwards on
near-vertical paths because propagation angles are too steep to the extrapolation axis. The
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Figure 4: Sketch showing factors complicating modeling wavefield propagation with one-way
extrapolation operators. Properly modeling wavefields requires generating multiple arrivals
- direct, wide-angle reflections and ghosts - as well as handling the free-surface and source
radiation patterns. |jeff1-Shot-config ‘ [NR]
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wavefields at farther offsets (i.e. >16kft), though, become increasingly similar both kinemat-
ically and dynamically.

The waveforms input to the inversion algorithm at exploration scale are usually limited
to the first few hundred milliseconds after the first arrival. Hence, examining the match be-
tween FD and RWE waveforms in this time interval provides insight into the quality of the
forward modeling results. Figures 7 and 8 present waveform comparisons at four wide-offsets
(>15kft) and four near-offsets (< 15kft), respectively. Both waveforms are low-pass filtered to
a frequency band typically used for exploration-scale waveform inversion (high corner of 12
Hz). At far offsets the RWE waveforms match those from the FD modeling to a good degree,
especially directly after the first arrival. The matches at nearer offsets are fairly poor as ex-
pected given the obviously disparate nature of the wavefields shown in figure 6, though show
improvements with increasing offset.

Back-projection by wavefield injection

The next step is to develop a procedure for back-projecting the residual wavefield. 1 use a
waveform injection approach based on equation B-15 that is the adjoint operation of extracting
data from the wavefield at acquisition depth. An initially zero-valued wavefield is propagated
backwards from the farthest receiver toward the source point. As the wavefield reaches each
successive receiver location, the residual at that point is injected into the global wavefield and
extrapolated to the next step. This process is repeated for all receivers back to the final step
closest to the source point. Note that the one-way formulation precludes back-projection of
wavefield interactions occurring at a distance farther than the current extrapolation step. (This
is the equivalent to an inability to propagate a turning wave upward to the surface in downward
continuation.)

Calculating the gradient term in equation 9 is possible after specifying the forward and
back-propagation modeling operations. Figure 9 presents an example of a gradient vector for
a source and receiver pair separated by 4 km over a mirrored half-space velocity model (up-
per left panel). The upper right panel shows a monochromatic wavefield propagated forwards
from the source point, while the lower right panel shows the wavefield back-propagated from
the farthest receiver. The multiplication of these two wavefields is shown in the lower left
panel. Woodward (1992), who discusses a similar experiment, terms the result in the lower
left "a wavepath" - or the monochromatic analog of a ray-path in the infinite-frequency ap-
proximation. Note that the similarity between the wavepath in figure 9 and that of Woodward
(1992), whose approach is based on a Rytov approximation.

INVERSION RESULTS

This section details the tests of the waveform inversion procedure described above on a 1D
synthetic data model (left panel of figure 10). The velocity perturbation is centered at 1 km
depth, is 0.2 km thick, and is 10% greater than the background field of 2 kms~'. The goal of
the waveform inversion test is to reconstruct the velocity perturbation starting from an initially
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Pluto Finite Difference Data Wavefield Extrapolation Data

4000 8000 12000 16000 20000 24000 4000 8000 12000 16000 20000 24000

Offset (ft) Offset (ft)

Figure 6: Comparison of the Pluto dataset wavefield generated by a fourth-order finite differ-
ence approach (left panel) and the wavefield generated by the RWE modeling approach (right
panel) for a source position at 80 kft. ‘ jeffl —DataCompare‘ [ER]
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Figure 7: Examples of waveform matching for various wide offsets, with the corresponding
residuals for the wavefields shown in figure 6. Top left: 17 kft offset; top right: 19.5 kft offset;
bottom left: 22 kft offset; and bottom right: 24.5 kft offset. |jeff1-WideOffsets ‘ [ER]
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Figure 8: Examples of waveform matching for various near offsets, with the corresponding
residuals for the wavefields shown in figure 6. Top left: 8 kft offset; top right: 10 kft offset;
bottom left: 12kft offset; and bottom right: 14 kft offset. |jeff1-NearOffsets ‘ [ER]
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constant velocity model of 2 kms™'. The true velocity profile was input to the SU finite

difference modeling package (Stockwell, 1997), which generated data consisting of a linear
direct arrival and two reflection hyperbolas of opposing sign (right panel).

Distance (m) Distance (m)

1900 2000 2100 2200 2300 0 1000 2000 3000
| | | |

0091
S0

(ur) qydeq
0027
(s) suuyy,
T

008
T

00¥%

] 0
w

Figure 10: Model used for the waveform inversion test (left panel) and the data generated by
FD modeling (right panel). ‘ jeff I-ModelData‘ [ER]

Synthetic data were subject to initial preprocessing, including low-pass filtering (high cor-
ner of 12Hz), windowing to eliminate boundary artifacts, and zeroing traces < 2 km from the
source point. I applied the the latter procedure because the RWE modeling procedure cannot
generate accurate wavefield data nearer to the source point. A subset of frequencies ranging
from 3-12 Hz in roughly 0.25 Hz intervals were selected for inversion.

Figure 11 presents the waveform inversion results after 5 non-linear iterations. The left
panel shows the final estimated perturbation, while the multiple profiles in the right panel
show the cumulative velocity perturbation recovered at each integer frequency value between
3-12 Hz. The recovered velocity profile perturbation is centered almost at the correct location.
Significant negative side lobes are present both above and below the true perturbation. This
observation is somewhat expected because it exhibits a similar phenomenon to that noted in
the 1D experimental findings of Sirgue and Pratt (2004).

The recovered perturbation evidently does not contain certain spatial frequency compo-
nents. One way to better understand this is examining the Fourier spectra of the 1D depth
profile (see figure 12). This panel shows the spatial frequency content of both the model and
estimated perturbation. The recovered perturbation is lacking energy at the lower frequencies
and is somewhat overestimated at mid-range. This observation suggests that the inversion does
not use data with either: i) low enough temporal frequencies; or ii) sufficiently wide offsets to
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Figure 11: Waveform inversion result for the model and data shown in figure 10 after 5
non-linear iterations in the 3-12 Hz frequency band. Left panel: Recovered vertical veloc-
ity profile. Right panel: Vertical velocity profile built up by each successive integer frequency.
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generate the "image-stretch" phenomena (Sirgue and Pratt, 2004).

One detail important for stabilizing the inversion is to include a near-surface filter on the
model space. I implement the filter as a frequency-dependent vertical mask that prevents
changes to the velocity model within the first Fresnel zone of the wavepath. The masking
operation is essential because it rejects stronger near-surface anomalies that lead to significant
non-linear behavior and corresponding wavepath defocusing. I applied no other regularization
scheme in the inversion problem solution; however, additional terms could in principle be
included.

CONCLUDING REMARKS

This paper presents an alternate forward modeling step of frequency-domain waveform in-
version based on operators derived from one-way wave-equations. Wavefield extrapolation is
performed on generalized coordinate grids designed to conform to the bulk propagation paths
of turning waves. The resulting waveforms are fairly similar to those generated by FD mod-
eling at wider offsets. The results of waveform inversion on synthetic data demonstrate the
ability of the approach to invert for moderate velocity perturbations.

The work presented herein shows that the RWE forward modeling approach has significant
potential, which motivates additional research on a number of topics. While the next develop-
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ment stage would be applying the technique to a 2D dataset, it is important to speculate that
this approach should upscale to 3D seismic data volumes with relative ease. This statement is
support by the observation that a single iteration of waveform inversion should theoretically
be equivalent to a wave-equation migration of three frequencies in a 3D data volume. Impor-
tantly, migrations of this size are routine in industry, which suggests that 3D RWE waveform
inversion is computationally feasible.

The results also motivate additional work towards improving the amplitude accuracy of
the one-way RWE operators. An initial improvement would be including the amplitude factor
described by Zhang et al. (2003), which is missing from conventional wavefield extrapolation
(Claerbout, 1985). Use of this term should generate data closer to the amplitudes predicted
by ray theory. Future work could also implement the one-way operators of Thomson (2005)
that derived from a "true-amplitude" one-way wave-equation that incorporates reflection and
multiple-scattering losses.
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APPENDIX A

Generalized Riemannian Geometry

Geometry in a generalized 3D Riemannian space is described by a symmetric metric tensor,
gij = gji» that relates the geometry in a non-orthogonal coordinate system, {xi,x2,x3}, to
an underlying Cartesian mesh, {£1,£,,&3} (Guggenheimer, 1977). In matrix form, the metric
tensor is written

811 812 813 811 812 413
[gii]=1 821 &2 g3 |=| g2 g2 g3 |, (A-1)
831 832 833 813 823 §33

where g11, g12, 822, €13, £23 and g33 are functions linking the two coordinate systems through

oxy 0xy oxy 0xy 0xy 0Xxy
gN=——7—7, =777 80 = -0
0&1 0&; 0&1 0& 081 0&3
0xy 0Xxy 0xi 0Xxy oxy 0xy
gR=—7—, B =7"—, 8B3=——. (A-2)
08> & 08 0&3 083 0&3

(Summation notation - g;; = g11 + g22 + €33 - is used in equations throughout this paper.) The
associated (or inverse) metric tensor, g/, is defined by g;; = |g| g"/, where |g| is metric tensor
matrix determinant. The associated metric tensor is given by

- 1 8083 — 83 813823 — 812833 £12823 — &1382
[¢"] = g | gnsnT8En  gngs— g g8 —g18s |- (A-3)
812823 — 813822 812813 — 811823 811822—8%2

and with the following metric determinant

2 2
811823+822813—2g12g23813i|‘ (A4)

gl = g33(g11822—g1)) | 1 — 5
833(811822 — &1»)

Weighted metric tensor, m"/ = \/]g[ g"/, is another useful definition for the following develop-
ment.

APPENDIX B

One-way Riemannian wavefield extrapolation

The acoustic wave-equation for wavefield, U, in a generalized Riemannian space is
VU = —0’s* (x) U, (B-1)

where the w is frequency, s is the propagation slowness, and V? is the Laplacian operator

U = L i <mij %) (B-2)
Vgl 3¢ & )
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Substituting equation B-2 into B-1 generates a Helmholtz equation appropriate for propagating
waves through a 3D space

L0 (U e i
\/@3&(’"]3%)_ s U. (B-3)

Expanding the derivative terms and multiplying through by /|g| yields

amou . 3*U 5 5
— +m" = —/|glo s U. (B-4)
9§; 0§; 9§08
Defining n; as
am' aml om%*  dm3
nj = = + + , (B-5)
9 951 95 083

leads to a more compact notation of equation B-4

U 92U
nj— +m'" =
0&; 0&;0&;

Developing a wave-equation dispersion relation is achieved by replacing the partial differential
operators acting on wavefield U with their Fourier domain duals

—|glo?*s*U. (B-6)

(m" ke, —inj) ke, = /Iglo’s”, (B-7)

where kg, is the Fourier domain dual of differential operator 3%. Equation B-7 represents the
dispersion relationship for wavefield propagation on a generalized 3-D Riemannian space.

Solving for the extrapolation wavenumber

Developing an expression for the extrapolation wavenumber requires isolating one of the
wavenumbers in equation B-7 (herein assumed to be coordinate £3). Rearranging the results
of expanding equation B-7 by introducing indicies i, j = 1,2,3 yields

m¥kz, + (2m ke, +2m> kg, —in3) ke, =
Iglo’s® +i (nike, +noke,) —m' kg —m*kZ —2m ke ke, (B-8)

An expression for wavenumber k¢, can be obtained by completing the square

2m
m>)? o 13m23 . 13 . 23 n2
kgz <m22 - (m—33)) — kg ke, <2m12 - mm—3n31> +i ke (”1 - mm3gls> +ike, (”2 - mm3gl3> - m—§’3

Isolating wavenumber k¢, yields

2mB3 ke, +2mB ke, —in 2 m!3 2
m (kés +( L 3)> = |g|w2s2—k§l (m“ - (mas) )_ (B-9)

1
kg, = —arks, —azks, +iaz + [aiwz - a?ké - aéké —arkg ke, +agi kg, +agi ke, — a%o] ’,
(B-10)
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where a; are non-stationary coefficients given by

T
2 2
e B B gl (g3 2 (¢ 212 251323 n omVng ny m®ng 3
B 3 >3 PEE PRSI W B\ P 5 (@B m3 T (33)? PRI I

(B-11)

Note that the coefficients contain a mixture of m”/ and g/ terms, and that positive definite
terms, as,as,ae and ajo in equation B-10are squared, such that the familiar Cartesian split-step
Fourier correction is recovered.

For general 2D situations, the coefficients in equation B-11 reduce to

T
g n3 s g (gBY’ mo_omBns | m
a=|— —_— — — | = — —= |
¢33 2m3 /g% g3 \ g3 m33 (m33)2 m33
(B-12)
while a strictly orthogonal 2D mesh leads to the following coefficients
T
11
n3 S 8 ni n3
a=|(0 0 — —-— 0 0 —, 0 — B-13
33 PEE PEE m33 m33 (B-13)

One-way wavefield extrapolation

The expression for kg, forms the basis for a one-way extrapolation operator that can be used to
propagate wavefields on generalized coordinate meshes. This requires that a wavefield at step
&3 (i.e., U(&3, kg, , ke,; w)) be propagated to the next step &3 + A&z (i.e., U(§3 + A&3, ke, ke, , w))
according to

U(E3 + A3, ke, ke, ) = U(E3, ke, , ke, 0) e R 253, (B-14)

The back-projection of residuals required for waveform inversion can be implemented
easily according to the adjoint process of equation B-14,

U(E3 + A&3, ke, ke, @) = U(Es ke, keys ) e TR A5, (B-15)

Note that the coefficients above are spatially variant which requires employing a typical ap-
proach (e.g. split-step Fourier, FFD or phase-screens) for developing a mixed « — x domain
exponential operators. This study uses the split-step Fourier approach detailed in Shragge
(2006a) using the extrapolation wavenumber k¢, defined by equation B-13.
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