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Optimized implicit finite-difference migration for TTI media

Guojian Shan

ABSTRACT
I develop an implicit finite-difference migration algorithm for tilted transversely isotropic
(TTI) media. I approximate the dispersion relation of TTI media with a rational function
series, whose coefficients are estimated by least-squares optimization. The dispersion
relation of TTI media is not a symmetric function, so an odd rational function series is re-
quired in addition to the even one. These coefficients are functions of Thomsen anisotropy
parameters. They are calculated and stored in a table before the wavefield extrapolation.
Similar to the isotropic and VTI media, in 3D a phase-correction filter is applied after the
finite-difference operator to eliminate the numerical error caused by two-way splitting. I
generate impulse responses for this algorithm and compare them to those generated using
the phase-shift method.

INTRODUCTION

Anisotropy is becoming increasingly important in seismic imaging. A vertical transversely
isotropic (VTI) medium is one of the simplest and most practical approximations for anisotropic
media. However, the VTI approximation is only valid for simple geologic formations, where
the bedding plane is horizontal. In an area where the sediments are steeply dipping, such as
anticline structures and thrust sheets, the symmetry axis of the medium is not vertical and the
medium cannot be simply approximated as VTI medium. In these area, it is usually better to
consider them as tilted transversely isotropic (TTI) media. For VTI media, to image steeply
dipping reflector using one-way wave equation, Shan and Biondi (2004) rotate the coordinates.
In the new coordinates, the medium becomes TTI media. For both cases, we need to design
wavefield-extrapolation operators for TTI media.

Compared to those of isotropic and VTI media, the dispersion relation of TTI media is
much more complicated. The dispersion relation of an isotropic medium is very simple, and
we have an explicit expression for it. For a VTI medium, under the assumption that the S-
wave velocity equals zero, we can still derive an explicit formula for its dispersion relation.
The dispersion relation of TTI media is a quartic equation, and we have to solve it numerically.
Conventional implicit finite-difference methods rely on the Taylor series approximation of the
explicit dispersion relation. It is very hard to derive a Taylor series for the dispersion relation
of TTI media. As a result, most wavefield extrapolation algorithms for anisotropic media are
based on either explicit finite-difference (Uzcategui, 1995; Zhang et al., 2001a,b; Baumstein
and Anderson, 2003; Shan and Biondi, 2005; Ren et al., 2005) or phase-shift plus interpolation
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method (Rousseau, 1997; Ferguson and Margrave, 1998). For both explicit finite-difference
methods and phase-shift plus interpolation (PSPI), the complex dispersion relation does not
increase the complexity of the algorithm. However both of them are very expensive; explicit
finite-difference methods for TTI media require running 2D convolutions in 3D and PSPI
requires extrapolating many reference wavefields.

Implicit finite-difference method has been one of the most attractive methods for isotropic
media. It can handle lateral variation of velocity naturally and guarantee stability. Traditional
finite-difference methods, such as the 15◦ equation (Claerbout, 1971) and the 45◦ equation
(Claerbout, 1985), approximate the dispersion relation by the truncation of Taylor series. Lee
and Suh (1985) approximate the square-root equation with rational functions, and optimize
the coefficient with least-squares. This method improves the accuracy with the same com-
putational cost. Under the weak anisotropy assumption, Ristow and Ruhl (1997) design an
implicit scheme for VTI media. Liu et al. (2005) apply a phase-correction operator (Li, 1991)
after the finite-difference operator for VTI media and improve the accuracy. Shan (2006)
approximates the VTI dispersion relation with rational functions and obtains the coefficients
using weighted least-squares optimization.

In this paper, I present an optimized one-way wave equation for TTI media and use a table-
driven implicit finite-difference method (Shan, 2006) for laterally varying media. I compared
the impulse responses of this algorithm with those of phase-shift methods.

OPTIMIZED ONE-WAY WAVE EQUATION OPERATOR FOR TTI

In a VTI medium, the phase velocity of qP- and qSV-waves in Thomsen’s notation can be
expressed as (Tsvankin, 1996):
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where θ is the phase angle of the propagating wave, and f = 1− (VS0/VP0)2. VP0 and VS0 are
the qP- and qSV- wave velocities in the vertical direction, respectively. ε and δ are anisotropy
parameters defined by Thomsen (1986):
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where Ci j are elastic moduli. In equation (1), V (θ ) is qP-wave phase-velocity when the sign
in front of the square root is positive, and the qSV-wave phase velocity for a negative sign.

Rotating the symmetry axis from vertical to a tilted angle ϕ, we obtain the phase velocity
of a tilted TI medium whose symmetry axis forms an angle ϕ with the vertical direction:

V 2(θ ,ϕ)
V 2

P0
= 1+ε sin2(θ −ϕ)−

f
2

±
f
2

√

√

√

√

(

1+
2ε sin2(θ −ϕ)

f

)2

−
2(ε− δ) sin2 2(θ −ϕ)

f
.

(2)



SEP-125 Implicit migration for TTI 219

Here, in contrast to equation (1), ε and δ are now defined in a direction tilted by the angle
ϕ from the vertical direction. VP0 is the qP-wave velocity in the direction parallel to the
symmetry axis.

The phase angle θ is related to the wavenumbers kx and kz by:

sinθ =
V (θ ,ϕ)kx

ω
, cosθ =

V (θ ,ϕ)kz

ω
, (3)

where ω is the temporal frequency. Let Sx = kx/
ω

VP0
, and Sz = kz/

ω
VP0

. We can obtain a
dispersion relation equation from equations (2) and (3):
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where the coefficients d0,d1,d2,d3, and d4 are as follows:
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Equation (4) is a quartic equation and there is no explicit expression for its solution.

Generally, the Padé approximation suggests that if the function Sz(Sr ) ∈ Cn+m , then Sz(Sr )
can be approximated by a rational function Rn,m (Sr):
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are polynomials of degree n and m, respectively. The coefficients ai and bi can be obtained
either analytically by Taylor-series analysis or numerically by least-squares fitting.

For an isotropic or VTI medium, Sz is an even function of Sx . We can approximate the
dispersion relation with even rational functions, such as S2

x , S4
x . For TTI media, Sz is not an

symmetric function of Sx . Therefore, in addition to even rational functions, we need odd
rational functions to approximate the dispersion relation, such as Sx , S3

x . The fourth order
approximation for the dispersion relation of TTI media is as follows:
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where Sz0 = Sz(0) and the coefficients c1,b1,a1,c2,b2,a2 can be estimated by least-squares
methods. They are functions of the anisotropy parameters ε, δ and the tilting angle φ. When
these parameters vary laterally, the coefficients c1,b1,a1,c2,b2,a2 also vary laterally. It is too
expensive to run least-squares estimation for each grid point during the wavefield extrapola-
tion. They can be calculated and stored in a table before the wavefield extrapolation. During
the wavefield extrapolation, given the anisotropy parameters ε, δ, and the tilting angle φ, we
search for these coefficients from the table and put them into the finite-difference algorithm.
Given the coefficients found from the table, the finite difference algorithm in TTI media is
similar to the isotropic media.

FINITE-DIFFERENCE SCHEME

In the approximated dispersion relation (6), replacing Sz and Sx by the partial differential
operators i ∂
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Equation (7) can be solved by cascading as follows:
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Equation (8) can be solved by a phase-shift in the space domain. Let Pn
i = P(ω,n1z, i1x),

where 1x and 1z are the grid size of finite-difference scheme. In equation (9), replacing the
partial differential operators by the finite-difference operators as follows:
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Fourier analysis shows that the finite-difference scheme (11) is stable. Its computational cost
is almost same as that of the finite-difference scheme for isotropic media. Equation (10) can
be solved similarly.

IMPULSE RESPONSES

Figure 1 shows the impulse responses of the optimized implicit finite-difference method.
The medium is homogeneous, in which the vertical velocity of the medium is 2000 m/s, the
anisotropy parameter ε is 0.4, the anisotropy parameter δ is 0.2 and the tilting angle is 30◦.
The travel time of the impulse responses are 0.4s, 0.6s and 0.8s, respectively. The impulse
location is at x = 4000m. For comparison, I also present the impulse responses of phase-shift
(Figure 2) and the impulse responses of plane-wave migration in tilted coordinates (Figure 3).
Notice in Figure 2, although we use the phase-shift method, we can not achieve 90◦ in the right
section. The reason is that the waves on the right side overturn when the propagation direction
is close to the horizontal and the phase-shift method is still a one-way equation based method.
Figure 3 shows the impulse responses generated by plane-wave migration in tilted coordinates
(Shan and Biondi, 2004), which extrapolate the wavefield accurately even when the waves
overturn. Comparing the left section of the impulse responses of Figure 1-3, I find that the
impulse responses of optimized implicit finite-difference is very close to the other two. In the
right section in Figure 1, optimized implicit finite-difference loses accuracy when the waves
propagate almost horizontally or they overturn, since it is still a one-way based method. The
impulse responses in Figure 1 have heart-shaped noise, which are typical evanescent energy
in implicit finite-difference.

CONCLUSION

I present optimized implicit finite-difference method for wavefield extrapolation in TTI media.
It is stable and can handle laterally variation easily. The impulse responses show that it is
accurate for waves that do not overturn.
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Figure 1: Impulse responses of the optimized implicit finite-difference. guojian1-ttiimfd
[ER]

Figure 2: Impulse responses of the phase-shift method. guojian1-ttiphase [ER]

Figure 3: Impulse responses of plane-wave migration in tilted coordinates
guojian1-im2d5pttilt [ER]
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