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Cubic Splines  for  image  Interpolation  and 
Filtering 

Abstract-This paper presents  the  use of B-splines as a  tool in various 
digital signal processing  applications.  The  theory of B-splines is briefly 
reviewed,  followed by discussions on B-spline  interpolation  and  B-spline 
filtering.  Computer  implementation using both an efficient  software 
viewpoint  and  a hardware method are discussed.  Finally,  experimental 
results are presented  for  illustrative  purposes in two-dimensional image 
format.  Applications to image and signal processing  include  interpola- 
tion,  smoothing,  filtering,  enlargement,  and  reduction. 

I 
I. INTRODUCTION 

N RELATION to the  many  applications  of  interpolation  in 
signal processing  (see [ 11 ), the need for sampling  rate  adap- 

tion  constantly arises in image  processing. Examples  of  such 
applications  are image resolution  conversion  and image  change 
of scale. Rigorously  speaking, the process of decreasing the 
data  rate is called decimation  and  increasing the  data samples 
is termed  interpolation. However, in the following discussions 
we have not  attempted to distinguish  these two  operations, 
nor  the difference  between  resolution  conversion and image 
scaling  because they all can  be treated  by  the same mathemati- 
cal analysis. Conceptually,  the  resolution  conversion  process 
can be  regarded as a  two-step  operation.  First,  the  discrete 
data is reconstructed  (or  interpolated) into a continuous  curve, 
then  it is sampled at a  different  sampling  rate. This is shown 
in  Fig. 1. Nevertheless, the above steps  are  only  a  mental  pic- 
ture  for  illustrating  the  underlying  principle. In real digital pro- 
cessing, the  procedure  of  reconstruction by  interpolation and 
sampling  at  a  different  rate can  be done  in  one  operation. 
(There is  never a continuous curve existing inside a digital 
processor.) 

In  this  paper we  have focused  our  attention  on  the first box 
in Fig. 1 , i.e., the  interpolation process.  In  principle we are 
seeking a smooth  continuous curve  passing through  a  set of 
discrete data at  certain given spatial  points.  Mathematically 
speaking,  the  interpolated continuous  function  in  one  dimen- 
sion is 

k = l  
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where c k  are the  coefficients to be  determined  from  the  in- 
put data, sk($) are  the  chosen basis functions,  and K is the 
number  of given data  points. 

Even though  the use of  spline  interpolation [2] -[ 121 for  en- 
gineering applications  has gained recent  momentum, results 
have been widely spread  amongst  various  branches  of  electrical 
engineering. The  most  popular  ones,  just to  mention a  few, 
are to  estimate  probability  density  functions [ 131 -[  151 and 
power  spectral  density  functions [ 161 , and to interpolate  noisy 
data [17] -[20]. Schafer  and  Rabiner [1] have  discussed 
sampling  and  interpolation  operations from a more general dig- 
ital signal processing point  of view, in which the spline interpo- 
lation  has not been  mentioned.  Ostrander [21] has  briefly dis- 
cussed and  demonstrated  the use  of  spline transforms  for 
correcting  the  discrete  Fourier  transformed  data.  Caprihan 
[22] has  used  cubic  natural  splines to design finite-duration 
filters. Furthermore, Hou and  Andrews have adopted spline 
interpolation  for image restoration [23] . 

In  this  paper we first  concentrate  our discussion on  how  to 
choose an optimum  and  yet easy to  implement basis function 
for  interpolation.  Such  a  function is the so-called  cubic B- 
spline which  can give smooth  interpolation  for  the given dis- 
crete  data.  The  theory  of  spline  interpolation  and  data  smooth- 
ing  using  spline filtering is then discussed. This theory  has 
been  implemented  by both software  and  hardware  for image 
processing applications.  Both methods are  iterative  procedures 
which are particularly  suited  for digital design. Finally,  results 
from  computer simulation  with  application to image magnifi- 
cation  and  minification are presented  for  comparison  with 
those  obtained  by using other  interpolation  schemes. 

11. BASIC CONCEPT OF SPLINE INTERPOLATION 
From  a  numerical analysis point of  view, the classical poly- 

nomial  interpolation  approaches [ l ]  , eg.,  Lagrange interpola- 
tion [24] , at an increasing  set of data  points all involve the use 
of polynomials  of increasingly  higher degree. That  approach 
has several  severe limitations.  First, we cannot guarantee that 
a  sequence of  Lagrange interpolations to a continuous  func- 
tion f(t) will  converge uniformly to f(U. In fact,  for any 
sequence of sets of interpolation  points,  there  exists  a  contin- 
uous  function f(g) such  that  the sequence  of Lagrange interpo- 
lations to f([) at these  points diverges. Second, while the 
sequence  of  interpolations  may  in  fact converge to f(U, ap- 
proximating f ’ ( U  by the derivatives  of its  interpolation  can  be 
extremely  inaccurate. These problems  can  be  intuitively  linked 
to  two facts  concerning  polynomial interpolation.  First,  poly- 
nomials have a notorious  ability to  “wiggle,” that  is, pinning  a 
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Fig. 1. The resolution conversion process. 

polynomial  down  at  a  few  points  for  a slowly varying function 
may not  produce, in  any  sense,  a  good  uniform  approximation 
to the  function  or its derivatives. This is based on  a  fundamen- 
tal property  that an nth degree polynomial  must  have n roots. 
Second,  polynomials are analytic  functions. As such,  their  be- 
havior  everywhere is totally  determined  by  their  behavior  in 
any  interval.  Thus,  polynomial interpolation is in no sense a 
"local" procedure.  That is, if the  function  to be interpolated 
varies rapidly in some  part  of  the region of  interest,  the effect 
of  this  on the  interpolation  would be felt  everywhere. 

On the  other  hand,  from  the  sampling  theorem  [25] one 
may  attempt to use the  Cardinal  spline [26] as the basis func- 
tions, Le., let 

where fi is the  one-sided  bandwidth  of f(4). And one  then 
concludes  that  from  the  sampling  theorem 

m 

is a perfect  reconstruction  of f(E) if it was originally sampled 
at  or above  the  Nyquist rate. However,  there are many diffi- 
culties  in  doing  this. First,  most  natural images are not diffrac- 
tion  limited.  Second,  the  Cardinal  spline,  though being ana- 
lytic, behaves like an infinite degree polynomial whose supports 
are not local,  which  poses a  computational  problem.  If  trunca- 
tions are made  on  the  upper  and  lower  limits  of  the  summa- 
tion  in (3), oscillations  known as Gibb's phenomenon will 
show  up  in f(.$). Third,  the  interpolation  formula in (3) has 
implicitly  imposed a restriction that  the discrete data {fk} 
must be equally  spaced. 

These  above  considerations lead us rather  naturally to  the 
idea  of  interpolating  a  function by piecewise polynomials,  i.e., 
by analytic  functions which are a piecewise polynomial  of 
fixed degree. The  whole class of piecewise polynomials are 
called splines.  The  spline interpolation  not  only alleviates the 
difficulties, as  we have mentioned  previously,  suffered by the 
classical polynomial  approach,  but also minimizes the least 
squares  errors  of  the  desired  function values and  its derivatives 
at  the  interpolation  points.  In  other  words,  among  the  many 
interpolating  functions passing through  the  data  points  only 
the spline interpolation gives the  smoothest,'  which is also the 
best (in a least  squares sense) approximation. 

111. PROPERTIES OF SPLINE BASIS FUNCTIONS 
In this  paper we are particularly  interested in the B-spline 

functions [4] -[ 121 because they are smooth  and  span  a  finite 
number  of  data  points, i.e.,  their support is local. Because of 
this property we can use them as basis functions in the  inter- 
polation  formula in (1). We shall define  them  mathematically 
in the  following  paragraph. 

Definition: Let n: to < t1 < . < tn < & +, be a partition 
of  the interval [ to ,  tn + ' 3  on  a real axis. A B-spline of degree 
n on n is, by definition,  the  following piecewise polynomial: 

where 

i.e., a  unit  step  function 

and 

n = 0 ,  1,2; . .  

A sketch of the first four  lower  order  B-splines  for  the  uni- 
formly spaced data  points is shown in Fig. 2, where A = & - 
t k - 1 .  Furthermore,  for  the  uniformly  spaced  data  points 
(knots), one can show  from (4) that  B1 = Bo * Bo,  Bz = 
B o * B o * B o , B 3 = B o * B o * B o * B o ; ~ ~ , w h e r e + d e n o t e s  
convolution. 

Evidently  the Bo is a sample  and  hold  function  such  that  the 
interpolation  becomes  replication  with possible discontinuities 
at  the  knots.  The  interpolation by B1  becomes piecewise 
straight  line connections  between  the  knots. Likewise the in- 
terpolation  by  B2 is a  graph  composed  of  a  sequence  of  parab- 
olas which  join  at  the  knots  continuously  together  with  their 
slopes.  Finally, the  interpolation  by B,  is composed  of  a se- 
quence  of  third degree piecewise polynomials  which  join  at  the 
knots  continuously  together  with  their  slopes  and curvatures.' 

Now it becomes  obvious  that  interpolation  by using Bo  and 

'Here the  term "smoothest"  means that  the  norm of the (n - 1)th 'As a  reminder the curvature of a  plane curve is defined as 
derivative of the  nth  order spline between  the  data  points is the smallest. f"(g)/{l + [f'(t)] I }  3/2. 
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B1 does not yield  satisfactory  results. On the  other  hand, 
when the  order  of spline  increases beyond  three,  it spans more 
knots.  In  this case it behaves more like  normal  polynomial  in- 
terpolation  and  the local basis advantage  evaporates.  There- 
fore,  from a smooth  interpolation  and easy implementa- 
tion  point of  view, the  cubic  spline is a  good  choice for  the 
basis function.  The  cubic  8-spline  being piecewise analytic 
and spanning five knots is very  flexible. Furthermore,  it  has 
the advantage  of  offering  good  approximation  of the  function 
values and  its  first  and  second derivatives at  the  knots.  For 
most engineering interpolation  problems,  this is a  good  ap- 
proximation.  Therefore, in the rest of  this  paper we only dis- 
cuss cubic B-spline functions. 

To be  explicit,  from (4)  the cubic B-spline for  uniformly 
spaced knots is  given by 

s(g - g k )  - B 3 ( t ;  g k - 2 ,   t k - 1 ,   t k ,   ( k + l >   t k + 2 )  

= [(t - tk-,I3 ~ ( t  - t k - 2 ) -  4( t  - g k - d 3  

. u(< - t k  - I 6 - t k l 3  u(t - t k )  

- 4 ( t -  g k + d 3  u(g- g k + l )  

A normalized  cubic B-spline is plotted in Fig. 3. 
One  perhaps  has  noticed that  the B-spline  basis functions  de- 

fined  in (4)  and Fig.  2  are  strictly  positive.  This property is 
very attractive  for image  processing applications because in 
ordinary  pictures the  picture  elements (pixels), being  light  in- 
tensities or reflectances,  should  always  be  nonnegative  quanti- 
ties. In case the discrete data are noisy  or have certain  amounts 
of  fluctuation,  it is often desirable to use positive basis func- 
tions  for  the  interpolation  such  that  the positivity of the  inter- 
polated image is guaranteed. 

Moreover,  we notice  from (5) that  for  uniformly spaced dis- 
crete  data,  the  cubic B-spline  is shift-invariant. Using it as a 

basis function, (1) can be  regarded  as a  convolution  sum  be- 
cause,  with very little  error, we  can extend  both  the lower  and 
the  upper  summation  limits to --03 and too, respectively. This 
is due to  the local support  property of cubic B-splines.  In 
other  words,  the  interpolation  operation, using cubic B-spline 
basis functions as defined  in (l), now becomes  a  linear,  shift- 
invariant  filtering  operation  and the  cubic B-spline  basis func- 
tion  becomes  the  filter  impulse  response.  The  filtering  prop- 
erty  of  cubic B-splines is further  studied  in  Section V preceded 
by  the  development  of  interpolation  formulas  in Section  IV. 

IV. THEORY OF B-SPLINE  INTERPOLATION 
Granting  that (5) is the basis function  for  interpolation we 

are  going to use, we shall develop an interpolating  formula  in 
this  section owing to  the local support  and shift-invariant 
properties  of  the  cubic  B-spline. 

Let  us  consider f ( t )  at 

< = g k f X A  o s X < = l .  (6) 

From  the  definition  of  the cubic B-spline in (5) and illustrated 
in Fig. 4, f ( 4 )  in (1) becomes 

1 f(g)=z {ck-1  [(E- & ~ - 3 ) ~  - 4(E- < k - d 3  

‘6(g- t k - d 3  - 4 ( < -  gk>31 

f C k + O [ ( ~ - ~ k - 2 ) 3 - 4 ( ~ - ~ k - l ) 3 t 6 ( ~ - ~ k ) 3 1  

‘ C k + l [ ( t -   t k - d 3  - 4 ( t -  g d 3 i  
c k  + 3  [(t - i k I 3  1 > *  (7) 

Substituting (6) into  the above, we  have 

f([k f XA) = - {Ck - 1  [(3 f X ) 3  - 4(2 
1 

6A 

+ 6(1 - 4x3] 

-t c k +  [(2 - 4(1 -t 6x3] 

+ c k + l  [(I +x)3 - 4x3] f c k + 2 x 3 }  

where 

Equation (7) allows us to find  the  interpolation  at  any  point 
between  knots. 

In  particular, at  the  node  point t =  g k ,  i.e., x = 0,  (8) gives 
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Fig. 3. The normalized  cubic  B-spline. 

x = o  x =  1 X 

Fig. 4. ? ( E )  interpolated by cubic  B-splines. 

Written  in  vector  form for f ( E )  at  the  node  points, we have 
from (8) and (lo), 

where 

Extending  the above one-dimensional case to  two  dimen- 
sions, (1) can be written as [ 121 

Let us consider f ( E ,  77) at  the  point ( E  = t k  t xA, 77 = 771 + yA), 
where 0 <=x <= 1 and 0 s y  5 1 .  Following (8), 

Evidently, matrix E is strictly  diagonally dominant  with posi-  where 
tive real diagonal  entires,  hence, it is positive  definite. In addi- 
tion,  it is banded,  real,  and  symmetric.  The  inversion  of E 
should then be easy to find. We should  like to emphasize  here cj = ( c k - l ,  j ,  ck,  j ,  ck + I ,  j y  ck +z, j )  

that f at  the  nodes given by (1 1) are  the given sampled dataf? and is given by (9). 
I t  is therefore valid to write 

bj = (boj, b l j ,  b2j, b3jIt 

t 

In  particular,  considering (15) at  the  node  point (&, v l ) ,  i.e., 
f = E c  (13) x = 0 andy = 0, we have 
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t4(~k-1,Zt4~k,Ztck+1,Z)t(ck-l,Z+1 

+4ck,  Z + 1  ’ c k + l ,  Z+l)l (1 7) 

forallk=1,2,...,KandZ=l,2,...,L. 
Written  in matrix  form, (1 7) becomes 

F = ECE (1 8) 

where F is a matrix  composed of the  object samples at  the 
knots, c i s  the  matrix  with  elements c k l ,  and E is  given by (12). 

V. THEORY OF B-SPLINE  FILTERING 
To gain some  physical  insights on  the linear  filtering prop- 

erty  of  the  cubic B-spline function, we next  turn  to  the spatial 
frequency  domain.  Taking  the  Fourier  transform  on both 
sides of ( 5 )  and using the  shift  invariant  property  of  the B- 
spline function, we  have 

K 
f ( o )  = S[sO(t ) ]  c k e - j w S k  (1 9) 

k = l  

where 

so(0 = B3(E; t - 2 ,  E-1 Y l o ?  ( 1  9 t 2 )  

and B 3 ( t :  [ - 1 ,  go, g l ,  g2)  is  defined in ( 5 ) .  Now  for  a 
uniform  partition  with  mesh size A, gk = kA and  from Fig. 2 

The  window  function Wo(h) is known as a  Parzen  window 
[27] which is nonEegative,  has  finite  second moment,  and  it 
can  be shown  that Wo(o) + 0 as Hence,  (19)  becomes 

A 

K 
F(w) = r&(w) Cke-ikwa 

k = l  

One interpretation of (21), as shown  in Fig. 5 ,  is therefore  a 
string of impulses  pasgng  through  a  Parzen  window  filter 
with  transfer  function Wo(w). The  output of the  filter is the 
smoothed  interpolation f($). Another  interpretation of (21) 
is based on  the  adoption  of windowing  in the discrete  Fourier 
transform.  Suppose  now  the  Fourier  transform  of  a  discrete 
data  set { f k }  is desired. However, errors  often  result  in  the 
Fourier  transform if a  direct  discrete  Fourier  transform is car- 
ried out.  The  errors are commonly  caused  by  undersampling 
and  truncation  on { f k } .  One  way to reduce  these  errors is to 
perform  a  continuous  Fourier  transform  on f([), where ? ( E )  
is given by (1). The  resultant  Fourier  transform is of  course 
(21),  of  which the coefficients { c k }  are related to { fk} through 

Furthermore, as compared  with  other existing  window  filters, 
the Parzen  window  filter is optimum in  the sense that  the 
power  spectrum  of f($) has  the smallest  variance [27]  for a 
random  sequence { c k }  as shown in  (21). One would expect 
good  smoothing  results  for using such as an  interpolation fil- 
ter.  In  fact,  this  smoothing  property can  be clearly shown if 
we consider  a continuous  input f(t) to the Parzen  window fil- 

(13). 

Applying the generalized mean value theorem  [28] since 
so@ - &) is one-sign in the interval ( g k - 2 ,  Ek + 2 )  and using the 
unity  normalization  property  of  B-spline, we have from  (22) 

f ( t k )  =f(g’)  
where E’ is a  point  in (& - 2 ,  & + 2 ) .  If f(t) happens to be 
symmetric  in  this  interval,  then f ( & )  is  also the median value 
offig) in that  interval. 

In  image  processing practice, we like to impose an upper 
bound  on  the  interpolated result. This is because most  physi- 
cal imaging systems have a  limit  on  the  maximum brightness 
of an image, e.g.,  film saturation,  cathode ray tube  phosphor 
heating,  etc.  Thus,  for a given upper  bound  on  the sampled 
data f, this  implies that  the coefficients cj  are bounded  accord- 
ing to (13),  and it will be  shown  in  the  following  that  the  con- 
tinuous  output of the  Parzen  window  filter is also bounded. 
Obviously,  this is due to the  smoothing  nature of the  filter. 
Furthermore, we can  show  that  the second derivative estimate 
is  also bounded;  this is in  accordance  with our constant usage 
of the  second derivative  as a  measure of smoothness  in  the 
cubic B-spline function.  The  two-dimensional  notation  for 
imagery,  however, is  unnecessarily complicated  and  conse- 
quently, we  will stick to the  one-dimensional  formulation. 

Making  use of  (21) in the following  Fourier  transform  rela- 
tionship, we have 

where C0(w) is defined in (20).  From Schwarz’s inequality 
we have 

where 

, r m  

Then  applying Parseval’s formula to  the right-hand side  of (23), 
we  get 

for any $ 
where 

K 
R: = 2 e;. 

k = l  
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Fig. 5. The Parzen window filter. 

Thus, if  we impose that fQ) <M, one  of the possible bounds 
on  the ci's is 

Geometrically,  this  means that  iff([) is within  a  sphere in the 
spline  coefficient  space,  the  radius  of that sphere is propor- 
tional to the  Euclidean norm in that space. 

Furthermore, f " ( v  is also bounded in the  same above set- 
ting.  This  can be easily  shown as  we notice  that 

m 

f " ( 6 )  = & o'F^(o) e i w E  d o .  
-m 

Substituting (21) into  the above equation we get 

Then  applying  Schwarz's  inequality, 

where 

. /-- 

Kg has  a  finite value because Wo(o) -+ 0 as Finally, 
A 

~ ' Y u I  ' <= K; R: 

or 

If"(.9 I 5 K 
K1 

iff ([) <,M and R, = M / K l .  
The above relationships have clearly  shown that f"(E) is 
bounded  iff([) is or vice-versa. 

(25) 

I\ 

VI. COMPUTER IMPLEMENTATION 
As shown  above, (1) and (1 5 )  constitute  the  fundamental  in- 

terpolation  formulas  for using cubic  B-splines  in  one and  two 
dimensions.  Those  formulas also allow us  to perform noninte- 
ger factor image resolution  conversion,  magnification,  and 
minification.  Nevertheless, to  develop  a  fast  interpolation al- 
gorithm by taking  advantage  of  the  local basis property we 

should  like to derive two  methods which  can be implemented 
by software and hardware. 

A .  Software  Method 
It is  evident that  a three-dimensional  plot  can  be  generated 

from (15) for f ( x ,  y )  at each (x, y) .  However,  this  multiple 
dimension  table-look-up  method  by using (1 5) can be further 
simplified in the following  fashion.  The  coefficient C matrix 
was obtained  from an inverse interpolating  operation  on  the 
input  data F ,  i.e., from (18) 

c = E - ~ F E - ~  (26)  
where matrix E is  given in (1 2). We notice  that E is positive, 
symmetric,  tridiagonal,  and  diagonally  dominant. Even so, to 
invert E,  classical methods such as the  Cholesky  decomposi- 
tion  method [29] can be applied since Eis also  positive  definite, 
and  there  exists  a  simple  algorithm for  computing E-' [30] 
which  states as such  for E-' = (vk, 1 ) ~  X K ,  

where 

P1 = 1 

Pz = 2  

Pi= 4 ~ i - ~  - Pi-' for i = 3 , 4 , . - - , K .  (28) 

Having found  the  coefficients C from  the input  data F,  the 
one-dimensional  interpolation  formula in (7) is applied to 
every row of C then  to every  column  of C. In fact,  the simula- 
tion  results  shown  in  Section VI1 were obtained in this  way. 

B. Hardware Method 
In  this section we shall  describe  a  scheme to realize  the  cubic 

B-spline  interpolator  by  a  physically  realizable  digital  filter. 
First let us consider  the  one-dimensional  interpolation  relation 
in (1) which is a  discrete  convolution  sum for  the discrete data 
{ci}. In  digital  processing  the  continuous  coordinate must 
be digitized,  say E = n6 where II is a  running  integer  and 6 is 
the physical  spacing  between  adjacent  digitized data. By doing 
so, the z transform' o f f  is  equal to the  product of  each of the 
z transforms of c and so. Now we would  like to derive the z 
transform  of s from  the basic  relation in ( 5 ) .  

From the basic  definition  of  one-sided z transform 

Z(s)= s ( n ) z - n  
m 

n=O 
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we obtain  the z transform  of n3 as [31] A. Image  Magnification 

- - Z - l  

(1 - -1 4 z )  
(1 t 42-1 t 2 - 2 1 .  

Now letting A = m6, where m 2 1 is a  fixed  integer  and mak- 
ing  use of  the shifting  theorem  in z transform to ( 9 ,  we get 
the z transform of so 

So(z)  = - -Z(n3)  [z'" - 4zm t 6 - 4z-m t z - ' ~ ] .  (29) 
1 

6m6 

Evidently, the z transform of so given by (20) is  also the  trans- 
fer function  of  the digital interpolator we have sought for, 
which can  be written in the following  short-hand  form, 

where 
1 

H 1  ( z )  = (1 t 42-1 + 2-2)/z-1 
H2(z)=z'(m-1)  

H3(Z) = (1 - Z")/(l - z-1) 

= Z - k .  
m-1 

(33) 
k = O  

F^(z) and C(z)  denote  the z transforms off^ and c. 
In the above formulation, i.e., (20)-(33),  we  have  assumed 

that m is a positive integer  and m 2 1. This is because  we only 
consider the integer factor up-conversion  or the integer factor 
magnification here.  For  this reason we shall call the circuit 
shown in Fig. 6 an  up-converter.  For  a  down-converter,  the 
role of  input  and  output in the above formulation shall be  in- 
terchanged  and  its  transfer function is the inverse of (30). For 
noninteger  resolution  conversion we need to connect  the  up- 
converter  and  down-converter  in  cascade. For  example,  the 
up-converter will give 1 : m conversion  and the  down-converter 
will deliver p :  1  conversion, then  the over-all conversion  ratio 
is 1 : mip where both m and p are integers, but  they  may  not 
have a common divisor. 

The digital interpolator described by (30) can  be viewed as 
six digital filters, i.e., one H l ( z ) ,  one H2(z) ,  and  four H 3 @ )  
connected in cascade as depicted  in Fig. 6 .  Each  one can be 
easily implemented  by  present digital hardware  such as adders, 
shifted  registers, and  read-only  memory (ROM) or  programma- 
ble read-only  memory (PROM). 

VII. EXPERIMENTAL  RESULTS 
In  this  section we shall present  the  experimental  results of 

picture  enlargement  and  reduction  by using different  interpo- 
lation  schemes. The  purpose is to compare  the cubic B-spline 
interpolation  results  for  both image magnification  and  mini- 
fication  with  those  obtained  from  other  commonly  familiar 
methods. 

Three  methods have been  simulated for image enlargement; 
they are replication,  bilinear,  and  cubic B-spline interpolations. 

By replication we mean  that  each pixel is repeated  inside  an 
m X m square, where m is the linear  magnification  factor. In 
other  words,  the  interpolating basis function is the sample- 
hold  function Bo,  as shown  in Fig. 2. 

By bilinear  interpolation we mean  that we operate  on every 
row  of  data  and  then every column  of  data  by  the  following 
interpolating  formula: 

f ( k  t r) = r f ( k  f 1) t (1 - r )  f ( k )  (34) 

for 0 <= r 5 1. In other  words,  the  interpolating basis function 
is the  Chateau  function B1 as shown in Fig. 2. 

The  computer  simulation results  obtained  by using the above 
three  interpolation  schemes are shown  in Figs. 7  and 8. The 
pictures displayed in Figs. 7  and 8 are 5 12  by 5 12 sizes enlarged 
from 64 by 64 originals. Among  those, images in Figs. 7(a) 
and  8(a) are obtained  from  the  replication  interpolation, in 
Figs. 7(b) and  8(b)  from the bilinear interpolation,  and  in Fig. 
7(c) and (d) and Fig. 8(c)  and  (d) from  the  cubic B-spline in- 
terpolation.  The  difference  between  those  in Figs. 7(c) and 
8(c)  and  in Figs. 7(d)  and  8(d)  is that in Figs. 7(d) and  8(d) we 
have  used the original 64 by 64 image pixels in lieu of the  cor- 
rect 64 by 64 C coefficients. 

In  comparing  those  results  from  the  three  different interpo- 
lation  procedures,  the  replication  has  resulted  in "jaggies" 
along the  edges. In the high  resolution region the bilinear and 
cubic B-spline interpolations have shown some differences, 
demonstrated  in Fig. 8(b)  and (c). Some  high-frequency  detail 
loss can  be noted in Fig.  8(b) for which the bilinear  interpola- 
tion was used.  Understandably,  the  superior  performance of 
cubic B-spline interpolation is due to  some negative coefficients 
in C which can  preserve the resolution  and the  contrast  of  the 
original image.  This  becomes  apparent if we  compare images 
in Figs. 7(c) and 8(c) with  those  in Figs.  7(d) and 8(d). On  the 
other  hand,  the noise in the original  girl picture can be  filtered 
out if the original  image pixels at  the  knots  in lieu of  the C co- 
efficients have been  used  in  the  cubic B-spline interpolation 
formula.  This is  clearly demonstrated  in Fig.  7(d) as compared 
with the noisy  picture  in Fig.  7(c). 

B. Image Minijication 
In  this  section we shall show  some  simulation  results  by us- 

ing different  methods  for  binary (i.e., black-white) image mini- 
fication. Figs. 9 and 10 show  the original binary image prior 
to minification.  The  reduced image by using cubic B-spline in- 
terpolation is shown  in Fig. 11.  For  the purpose  of  compari- 
son, we  have  used the  truncated sinc functions as defined in 
(2) as basis functions.  The  reduction  results are shown in Fig. 
12(a)-(c), respectively, for  different  truncation  intervals. Fig. 
12(a) is for  the sinc  function  truncated to  the first  zero cross- 
ing,  12(b)  for  the  second  zero crossing and 12(c)  for the  third 
zero crossing. These truncated sinc  functions are shown  in Fig. 
13.  It is evident from Fig. 12(a) that  the blurring  of the reduced 
images  is due to  the very low-pass  nature of the  truncated sinc 
in Fig. 13(a). Furthermore,  the cavities and  the missing lines 
in Fig. 12(b)  and (c) are due to the negative overshoots  in the 
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Fig. 7.  Enlargement by interpolation comparisons (original is 64 X 64, 
output is 512 X 512). (a) Replication. (b) Bilinear interpolation. (c) 
Cubic B-spline interpolation. (d) Cubic B-spline interpolation with in- 
correct coefficients. 

Fig. 9. Original text  for minification  comparison. 

truncated sinc functions in Fig. 13(b)  and (c), which also cause 
reduced  oscillation of pixels.  In addition, because of  this oscil- 
lating property, we have found  that  the  reduced images by us- 
ing sinc function  interpolation are sensitive to the  quantization 
level on  the  output  data. On the  other  hand,  the  reduced  im- 
ages by using cubic B-spline interpolation is insensitive to  the 
change of  quantization level. For  the  results as shown  here, 
the  quantization level in either  direction is halfway  between 
white  and  black  and  the  reduction  ratio is 0.647. Aspredicted, 
the  best image  is resulted  from using the  cubic B-spline inter- 
polation. In other  words,  the  cubicB-spline  interpolation  tends 
to give a faithful  minification  of  the original image. 

As  we have mentioned in Section VI, that  for  minification 
the roles of  input  and  output are interchanged as compared 
with  the case of  magnification.  The  simulation  results  shown 
here were obtained  with  the basis functions  spanned over the 
output  knots. 

VIII. CONCLUSION 
From an engineering analysis and  application  point  of view, 

we have studied  the  interpolation  and  smoothing  property  of 
the  cubic B-spline function.  Its local support  and shift-invariant 
properties  offer very attractive computational  procedures. 
Computing  algorithms  implemented  by  software  and  hardware 

(C) (dl 
Fig. 8. (a)  Replication.  (b) Bilinear interpolation. (c) CubicB-splinein- 

terpolation. (d) Cubic B-spline interpolation with incorrect  coefficients. 

Fig. 10. Original text  for minification  comparison. 
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Fig. 11. 0.647 reduction of Figs. 9 and 10 by cubicd-spline  interpolation. 

have been  discussed.  Computer  simulations  with  applications 
to image magnification,  minification  enlargement,  and noise 
smoothing have shown  that  the  cubic B-spline interpolation is 
superior to  other  interpolation  methods. 
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(C) 

Fig. 12.  0.647 reduction of Figs. 9 and 10 by  truncated sinc function 
interpolation. (a) Using Fig. 13(a). (b) Using Fig. 13(b). (c) Using 
Fig. 13(c). 
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