
Stanford Exploration Project, Report 125, January 16, 2007, pages 155–171

154

Stanford Exploration Project, Report 125, January 16, 2007, pages 155–171

David M. Chen and Robert G. Clapp

Data-fusion of volumes, visualization of paths, and revision of
viewing sequences in Ricksep

ABSTRACT
Ricksep is a freely-available interactive viewer for multi-dimensional cubes, capable of
simultaneous display of multiple data sets from different viewing angles, animation of
movement through the data space, and selection of local regions for data processing and
information extraction. Several new features are added to Ricksep to enhance the pro-
gram’s functionality. First, two new data-fusion algorithms synthesize a new data set from
two source data sets, one with mostly high-frequency content, such as seismic data, and
the other with mostly low-frequency content, such as velocity data. Previously separated
high and low-frequency details can now be viewed together. Second, a new projection
algorithm, integrated with Ricksep’s point-picking capabilities, effectively displays arbi-
trary paths through the data space. The algorithm responds to path changes in real time,
restores depth information lost through ordinary projection techniques, and supports the
generation of multiple paths differentiated by point-picking symbols. Third, a viewing
history list is maintained to enable Ricksep’s users to edit and save a sequence of viewing
states. The feature supports undoing and redoing of viewing commands and animation of
viewing sequences, a generalization of the viewer’s movie feature. A theoretical discus-
sion and several examples using real seismic data show how the new features offer more
convenient, accurate ways to manipulate multi-dimensional data sets.

INTRODUCTION

Ricksep is a freely-available interactive viewer created to study multi-dimensional seismic
data volumes (Clapp, 2001; Clapp et al., 2001). The viewer follows earlier efforts by SEP to
visualize and interact with large multi-dimensional volumes (Claerbout, 1981; Ottolini, 1990;
Biondi and van Trier, 1993; Clapp, 1995; Mora et al., 1996). Among Ricksep’s most notable
features currently are simultaneous display of multiple data volumes from different viewing
angles, real-time animation of movement through a volume, and convenient selection of local
regions for processing. Since Ricksep was last released, there has been interest in improv-
ing the program to solve three important issues. First, in velocity analysis, a seismic volume
containing reflection data and a related velocity volume generated from a model are often
compared alongside one another. The seismic volume contains many localized geophysical
structures, which correspond to high-frequency spatial variations. Meanwhile, the velocity
volume changes slowly, resulting in low-frequency spatial variations. To accurately and con-

155

156 Ricksep

veniently study the separated high and low-frequency details together, it would be very useful
to synthesize a single volume that resembles the original high and low-frequency volumes on
small and large scales, respectively. Second, there can be difficulty in displaying a path through
a data volume of dimensionality three or higher. Paths are important to seismic data analysis
because they represent wells going into the ground. If the data space is two-dimensional, the
entire space can be seen and visually tracing out the path is straightforward. If dimensionality
is three or higher, however, it becomes very difficult, and in some cases impossible, to see
samples along the path as the path travels into the volume’s interior. An effective path visu-
alization method is needed for general multi-dimensional volumes. Third, one of Ricksep’s
strengths is its large set of options for viewing a volume. These options include jumping to a
point in the volume, zooming in on a local region, applying various color maps, and switching
perspectives. If all such viewing changes can be recorded in a history list, then the program
can allow users to backtrack their viewing decisions, much like how a word processor undoes
typing changes. The saved history list can be used later for automation of viewing and data
processing commands. A new set of features has been created for Ricksep to solve these prob-
lems. In Section 2, the Velocity View tool for synthesizing a single volume from high and
low-frequency volumes is described. In Section 3, the Path View tool for projecting samples
along a path is presented. History List is the new tool for editing and saving a sequence of
viewing commands in a Ricksep session, and its functionality is explained in Section 4. The
keyboard and menu controls for Velocity View, Path View, and History List are summarized in
Section 5. Finally, the conclusion in Section 6 suggests future improvements for the features
introduced in this paper.

VELOCITY VIEW: DATA-FUSION OF VOLUMES

Separate spectral information in source volumes

High and low-frequency volumes intrinsically convey different types of geophysical infor-
mation which are often analyzed together. Fig. 1 shows slices of a high-frequency, seismic
volume and a corresponding low-frequency, velocity volume on the left and right, respec-
tively. Although users can try to visually match localized structures on the left to large-scale
patterns on the right, it would be easier and more accurate to study a single volume that su-
perimposes the localized structures on the background patterns. Our intended approach is a
form of feature-level image data-fusion, the synthesis of a single image using features from
multiple source images (Bloch and Maitre, 1997). Differences between the two source vol-
umes can also be understood in the spatial-frequency domain. Let h(Ex) and l(Ex) denote the
high and low-frequency volumes, respectively, where Ex = (x1, x2, . . . , xM) is a vector of di-
mensionality M that ranges over the entire data space. Similarly, let H (Ew) and L(Ew) denote
the M-dimensional Fourier transforms of h(Ex) and l(Ex), where Ew = (w1,w2, . . . ,wM) is a vec-
tor ranging over the entire spatial-frequency space. Spectrum H (Ew) can be separated into two
regions: a low-frequency region containing mainly the gray background and a high-frequency
region containing the fine structures. Similarly, L(Ew) can be divided into a low-frequency
region containing the patterns we want and a high-frequency region almost void of content.

Chen and Clapp 157

Figure 1: Seismic (left) and velocity (right) data. bob3-chen-cubes-orig [NR]

Figure 2: Magnitude spectra of seismic (left) and velocity (right) data. bob3-chen-fft-orig
[NR]

158 Ricksep

These facts are confirmed in Fig. 2, which shows the magnitude spectra of the slices from
Fig. 1. In this example, L(Ew) is nearly zero in all high-frequency regions except around the
vertical line w1 = 0, where the regional boundaries in l(Ex) introduce high-frequency compo-
nents. If we add the high-frequency components of H (Ew) to L(Ew), we would synthesize a
new volume that approximately has the background patterns of l(Ex) and the foreground details
of h(Ex). The two data-fusion algorithms presented in Sections 2.2-2.3 follow the framework
depicted in Fig. 3. High and low-frequency components are extracted from the two source
volumes. These components are properly scaled and added together to form the new volume.
The framework can also be used to develop other frequency-selective data-fusion algorithms.

Figure 3: Framework for data-fusion of source volumes. bob3-chen-velview-blocks [NR]

Data-fusion using small intensity deviations

Volume h(Ex) will have a global mean, which we take to be the sample mean

h̄ =
1

V (S)

∫

S
h(Ex) d Ex , (1)

V (S) =

∫

S
d Ex , (2)

where S represents the data space and the integrals are taken over all S. The value h̄ repre-
sents the intensity of the gray background of h(Ex). If we define a quantity d(Ex) = h(Ex) − h̄
for all Ex , we have a measure of the local intensity deviation from the intensity of the gray
background. These deviations produce the local structures observed in h(Ex). The scarcity of
such deviations in l(Ex) corresponds to the near-absence of local structures there. It becomes
evident that a new volume m1(Ex) = l(Ex) + d(Ex) should be created. This approach adjusts the
slowly changing background intensities of l(Ex) by the rapidly changing intensity deviations
from h(Ex). Since volume d(Ex) maps to D(Ew) = H (Ew) − H (E0)/V (S), with V (S) defined by
Eq. 2, the DC component of H (Ew) corresponding to the gray background is mostly removed.
Then, M1(Ew) = L(Ew) + D(Ew). The algorithm adds the primarily low-frequency L(Ew) to the
almost DC-less D(Ew) to synthesize M1(Ew). In practice, a scaled α · d(Ex) is added to l(Ex) to
avoid significant alteration of local means when going from l(Ex) to m1(Ex). The exact value of
alpha depends on the relative signal levels in h(Ex) and l(Ex). Relating back to the framework
in Fig. 3, the upper branch’s extraction of high-frequency components from h(Ex) and scaling

Chen and Clapp 159

are contained in the term α ·d(Ex). The lower branch’s behavior is simpler: all frequency com-
ponents are extracted from l(Ex) and the scaling factor is unity. The synthesized result of the
slices from Fig. 1 is shown in Fig. 4. It can be seen that the first algorithm performs well
in presenting the fine details of h(Ex). Because we avoided significant alteration of the local
means of l(Ex) through the scaling factor α, the textural smoothness and regional boundaries of
l(Ex) are well preserved.

Figure 4: Result using the first data-fusion algorithm. bob3-chen-velview-merge1 [NR]

Data-fusion using deviation-dependent weighting

Instead of adjusting the intensities of l(Ex), the second algorithm synthesizes a new volume
from a convex combination of the source volumes h(Ex) and l(Ex). The relative levels of con-
tribution from h(Ex) and l(Ex) are determined by how much h(Ex) deviates from h̄, where h̄ is
defined by Eq. 1 and is the intensity of the gray background in h(Ex). Specifically, we form

m2(Ex) = β(Ex) ·h(Ex)+ (1−β(Ex)) · l(Ex), (3)

β(Ex) =
|h(Ex)− h̄|

max{|h(Ex)− h̄| : Ex ∈ S}
, (4)

where S is the data space. As can be seen from Eq. 4, β(Ex) is spatially-varying weighting
factor between 0 and 1. As β(Ex) → 1, corresponding to large deviations from h̄, m2(Ex) →

h(Ex). For β(Ex) → 0, corresponding to small deviations from h̄, m2(Ex) → l(Ex). The result
m2(x) leans more towards h(Ex) where local structures appear and more towards l(Ex) otherwise.
Another advantage of using the convex combination in Eq. 2 is that if β(Ex) varies smoothly

160 Ricksep

in space, then the synthesized volume m2(Ex) will also vary smoothly in space. Here, in terms
of the framework in Fig. 3, the upper branch’s extraction of high-frequency components from
h(Ex) and scaling depicted are contained in the term β(Ex) ·h(Ex). Similarly, the lower branch’s
extraction of low-frequency components from l(Ex) and scaling are contained in the term (1−

β(Ex)) · l(Ex). When combining the slices from Fig. 1, we obtained the synthesized result shown
in Fig. 5. The advantage of the second algorithm is that it synthesizes the local structures from
h(Ex) in the new volume more accurately than does the first algorithm, but this is done at the
expense of sacrificing a small amount of textural smoothness inherited from l(Ex). Again, the
local means from l(Ex) are well preserved.

Figure 5: Result using the second data-fusion algorithm. bob3-chen-velview-merge2 [NR]

Flexible control of contributions from sources

In practice, the user will often want to control how closely the synthesized volume resembles
the low-frequency volume rather than the high-frequency volume, or vice versa. The interface
for Velocity View provides a slider bar to control the level of contribution to the result m(Ex)
from the source volumes h(Ex) and l(Ex). As the slider moves from left to right, a linear scale
from 0 to 1 is traversed. Denoting the current slider value γ , m(Ex) is generated by

m(Ex) =

{

(2−2γ) ·mi (Ex)+ (2γ −1) · l(Ex) i f γ > 0.5
(2γ) ·mi (Ex)+ (1−2γ) ·h(Ex) i f γ ≤ 0.5

}

, (5)

where i = {1,2} indicates which one of the two data-fusion algorithms previously discussed
is used. The construction in Eq. 5 has the following desirable behavior that 1) as γ → 0,

Chen and Clapp 161

m(Ex) → h(Ex); 2) as γ → 1, m(Ex) → l(Ex); and 3) as γ → 0.5, m(Ex) → m i (Ex). For any value of
γ , m(Ex) is defined to be a convex combination of m i (Ex) and either h(Ex) or l(Ex), depending on
whether or not γ > 0.5.

PATH VIEW: VISUALIZATION OF PATHS

Interpolating a path from sample points

A path through a volume can be defined as a parametric curve Ex(t) = (x1(t), x2(t), · · · , xM (t)),
where M is the number of dimensions and t is a free parameter. In practice, though, what a user
specifies is not a continuous Ex(t) but rather a finite, discrete set of vectors corresponding to
points along Ex(t), say { Exi : 1 ≤ i ≤ N}. In each dimension j (1 ≤ j ≤ M), a set X j = {(ti , (Exi)j) :
ti = i , 1 ≤ i ≤ N} can be formed, where (Exi)j refers to the jth coordinate of vector xi . So, from
a set of N vectors, M sets each containing N parameter-coordinate pairs are obtained. Each X j
is correctly viewed as a discrete set of samples from the x j (t), a scalar continuous function.
Recovering each xj (t) from its samples X j is a standard problem in interpolation. Assuming
that the user has sampled densely enough so that there are no high-frequency oscillations for
Ex(t) between samples, a good interpolating function for each x j (t) can be constructed using
a cubic spline (Hou and Andrews, 1978). A cubic spline is a curve that passes through the
sample points and has continuous first and second derivatives. Thereafter, the interpolated
curve can be sampled as densely as needed to give a good visual representation of the path.
A very sparse set of starting samples is shown on the left of Fig. 6, marked with x symbols.
Using cubic spline interpolation and then sampling at a higher rate, the curve shown on the
right of Fig. 6 is obtained. The user only has to specify a minimal set of points, as few as two,
to generate a path. In fact, Path View includes an algorithm, described in Section 3.3, to allow
the user to input unordered points, such as first specifying two endpoints and then specifying
a middle point.

Projecting data samples along the path

After path Ex(t) is calculated from the sample points, proper data processing is still required
to clearly display the path. The path has only has length but no volume, making it nearly
invisible. Thus, the path must attain some volume. A straightforward approach is to define a
spherical neighborhood around the path. For each point Ex(t), let the neighborhood be

N (x(t), R) = {Ex(τ) : ||Ex(t)− Ex(τ)|| ≤ R, Ex(τ) ∈ S} , (6)

where S is the data space and R is a variable radius of our selection. Our reason for making R
variable is explained near the end of this section. The existence of the neighborhood greatly
improves the visibility of the path when the path is buried in the interior of a data volume.
Now, instead of a fine string, a bloated tube exists. Ordinary projection techniques still present
problems of visibility. Consider the case depicted on the left of Fig. 7. If a plane slices the
path in the middle as shown, only an oval will appear on that plane. The rest of the path

162 Ricksep

Figure 6: Sample points (left) and interpolated path (right). bob3-chen-path-interp [NR]

can only be revealed as we move the plane up and down but each time still is limited to
just an oval. Instead, we want to see a longer portion of the path projected onto the plane,
depicted on the right side of Fig. 7. The region of intersection should be most clearly visible,
but the other regions should cast shadows onto the plane. Moreover, this effect should occur
in all three viewing dimensions. A novel projection algorithm is developed to improve path

Figure 7: Projection without shadowing (left) and with shadowing (right).
bob3-chen-cube-model [NR]

visibility. Three new volumes pi (Ex), pj (Ex), and pk(Ex) equal in size to the original volume
p(Ex) are created, corresponding to the three viewing directions Ei , Ej , and Ek. We now show the
algorithm for projection along Ei , which produces a set of Ej-Ek slices, but the method is applied
analogously along Ej or Ek. The steps of the algorithm are:

1. Volume pi ,low (Ex) is filled with a dimmed version of p(Ex), specifically pi ,low (Ex) = α ·

Chen and Clapp 163

p(Ex), where we have used α = 0.5. This serves as a background for the paths.

2. Every path point’s influence needs to be extended beyond the point’s immediate loca-
tion. A useful metric is the orthogonal distance between a point P and a plane D, which
is defined as the distance between P and the point in D closest to P. For a Ej-Ek slice lo-
cated along Ei at xs,i and a path point Exp = (xp,i , xp, j , xp,k , · · ·), the closest point on the
slice to Exp is Exs = (xs,i , xp, j , xp,k , · · ·). Thus, the orthogonal distance is |xp,i − xs,i |. If
this distance is small enough, then a scaled version of the data value at Exp in p(Ex) should
be shown at Exs in pi (Ex). Specifically, for all Exp on the path,

pi (Exs) = max{pi , f ade(Exp), pi ,low(Exs)}, (7)
pi , f ade(Exp) = p(Exp) · e−(xp,i −xs,i)2/(2σ 2

i), (8)

σi =
Ri

10
,

where Ri is the range of the data volume along direction Ei . The value pi , f ade(Exp) de-
fined by Eq. 8 is the data value on the path from the original volume attenuated by a
Gaussian fading factor. The fading factor decreases as the path point and the Ej-Ek slice
are separated farther. Eq. 7 sets a lower threshold for using the attenuated values.

3. The previous step only covers projection at points Exp on the path and should be repeated
for every point Expn in the path neighborhood N (Exp , R) defined by Eq. 6. Redefine Exs to
be the closest point on the Ej-Ek slice to Expn : Exs = (xs,i , xpn, j , xpn,k , · · ·). For all xp on the
path and for all Expn ∈ N (Ex , R),

pi (Exs) = max{pi , f ade(Expn), pi ,low(Exs)}, (9)
pi , f ade(Expn) = p(Expn) · e−(xpn,i −xs,i)2/(2σ 2

i), (10)

The variable radius R plays an interesting role here. There is one problem inherent in
projection: loss of distance information along the direction of projection. Far and near
portions of the path should be displayed differently on a plane of projection. The Gaus-
sian fading in Eq. 10 helps in this regard, but a stronger indicator is needed. Towards
this end, R is made to be a monotonically increasing function of the distance between
the point Expn and Exs , the point on the Ej-Ek slice closest to Expn.

R = αRi ·

√

|xpn,i − xs,i |

Ri
, (11)

where α = 0.2 and Ri is again the range along direction Ei . Since 0 ≤ |xpn,i − xs,i | ≤ Ri ,
the square root term is between 0 and 1 and increases as Expn and Exs are farther away.
Therefore, on any plane of projection, distant parts of a path will appear dimmer due to
Eq. 10 and thicker due to Eq. 11, while near parts of a path will appear undimmed and
thinner. Recovery of distance information along the direction of projection is achieved.

Fig. 8 shows projections onto slices in all three viewing dimensions for a path traversing a
volume diagonally. As the projection radius grows and the projection intensity fades, the
underlying path being projected is farther away from the current slice.

164 Ricksep

Figure 8: Projection of a diagonal path onto orthogonal planes. bob3-chen-pathview [NR]

Real-time generation of multiple paths

In an active Ricksep session, a user can interactively generate new paths using picks. Picks
are symbols used to mark special locations in the data volume. We used picks of type “x”
to represent the path samples shown in Fig. 6. Multiple picks of the same symbol define
the starting representative samples of a path, which can then be fully generated using the
methods described in Sections 3.1-3.2. A different path can be created using a pick of a
different symbol. Since updates to the path can now be viewed in real time, when a pick is
inserted, moved, or removed, the corresponding path changes immediately. Because picks can
be inserted out of order (e.g. in Fig. 6, the middle two picks were inserted after the endpoint
picks were inserted), a sorting algorithm is needed. The algorithm has the following steps:

1. For all picks of the same type, which are at N locations Exp,1, Exp,2, · · · , Exp,N , calculate the
inter-pick distance measure

D(n) =

N
∑

m=1
||Exp,n − Exp,m ||, (12)

For k = argmaxn D(n), the pick at Exp,k is most distant from all the other picks. Let that
pick be the first path sample.

2. Find the closest pick to the previous sample and designate it as the next sample in the
sequence.

Chen and Clapp 165

Table 1: Viewing commands tracked by History List.
Viewing command
Jumping to a point of interest in the volume
Moving gradually along an axis
Zooming in on a region of interest
Changing perspectives (e.g. from cube to flat faces)
Swapping two faces or two axes of the volume
Turning on the Velocity View or the Path View perspectives
Changing volume, background, or overlay colors

3. Repeat the previous step, without reusing any pick already designated as a path sample.
Stop when N path samples are available.

The sorting algorithm works well for all paths that are sampled at a sufficiently high rate, even
those with large amounts of curvature.

HISTORY LIST: REVISION OF VIEWING SEQUENCES

History List maintains a sequential list of all viewing commands used during a Ricksep ses-
sion. The latest command is appended to the end of the dynamically growing list. Table 1
lists the types of commands recorded. Undoing the latest command corresponds to moving
back one step in list. Multiple commands can be undone by moving further back in the list.
Similarly, redoing an undone command corresponds to moving forward one step in the list.
Fig. 9 shows a series of viewing changes. First, the cursor is moved from the center to the
lower left corner of the front face. Second, the viewing perspective is changed from a cube
to flat faces. Third, a sub-region of the front face is magnified. At this point, there are four
history elements in the list. Fourth, the previous magnification is undone by returning to the
third history element in the list. Fifth, instead of reapplying the magnification, a change of
perspective from flat faces to front face is requested. This replaces the previous fourth his-
tory element (magnification) by a new element (perspective change). Finally, the perspective
is changed again, this time from front face to side face, leaving five history elements in the
list. Transfer of viewing states between different Ricksep sessions is also possible. A user can
generate a sequence of viewing states in one session, save the history information to a file, and
load the saved viewing states into a different session. Precise restoration of viewing states is
therefore realized. The history file can be externally edited into a new recipe for automated
viewing of multiple data sets, giving rise to the possibility of batch processing. Additionally,
History List is capable of animating a viewing sequence, thereby extending Ricksep’s movie
feature to cover all viewing changes in general.

166 Ricksep

Figure 9: Sequence of viewing changes. bob3-chen-hist-seq [NR]

INTERFACE INSIDE RICKSEP

Controls for Velocity View

Velocity View can be invoked from the command line by adding one parameter (“velview”) to
the usual Ricksep invocation for multiple volumes:

Rickmulti < seismic.T velocity.T [other arguments] velview=1

The order of specifying the input volumes is important, since Velocity View treats “seismic.T”
as the high-frequency volume and “velocity.T” as the low-frequency volume. The synthesized
volume appears in the place of the high-frequency volume. Moving the VEL VIEW slider
on the control panel alters the resemblance of the result to a source volume, as described in
Section 2.4. Shifting the slider far left, we obtain the high-frequency volume. Shifting the
slider far right, we obtain the low-frequency volume. All of the controls for Velocity View are
listed in the above table.

Controls for Path View

The main mechanism for interactively creating paths is the use of picks, as described in Section
3.3. To create new paths, follow these steps:

1. Turn on Path View (see first action listed in the above table).

2. Make a pick anywhere in the cube using the current symbol, say “x”.

Chen and Clapp 167

Table 2: Controls for Velocity View.
Action Control
Turn off Velocity View [menu] VelView > Separate Cubes
Turn on Velocity View and [menu] VelView > Synthesize by
synthesize by adjusting intensities Adjusting Intensities
Turn on Velocity View and synthesize [menu] VelView > Synthesize by
by copying differences Copying Differences
Shift resemblance towards high- [slider] VEL VIEW > left
frequency volume
Shift resemblance towards low- [slider] VEL VIEW > right
frequency volume

3. Make another pick using symbol “x” and observe the formation of a path joining the
two picks.

4. Make additional picks using symbol "x" or edit (move, delete, etc.) existing picks of
type “x” to alter the “x” path.

5. To start a new path, switch the pick symbol (see second action listed in Table 5.2) to
something different, say “y”.

Using different symbols, the user can create multiple paths through the cube. Additionally, the
user has the option of using a pre-constructed path file to invoke Path View. This can be done
at the command line by adding one parameter (“path”):

Ricksep < data.T [other arguments] path=pathFile.H

The path constructed from the file is associated with the pick symbol “F” (for file) and several
representative “F” picks are made on the user’s behalf. This path can thereafter be treated as
if it was manually generated from “F” picks. Once in Path View, the user can navigate across
the volume as usual. To move along the current path itself, the user has available the controls
listed in the table below.

Controls for History List

Viewing history is automatically tracked during each Ricksep session by History List. All
controls for History List are listed in Table 4. The current position in the list is indicated in
the message bar at the bottom of the Ricksep window. By saving the current history to a file,
the user can restore the current viewing state in a different Ricksep session.

168 Ricksep

Table 3: Controls for Path View.
Action Control
Turn on/off Path View [menu] PathView > Path View On/Off

[key] Shift + p
Select a different symbol [menu] Pick > Change Pick Properties

[key] Right mouse + c
Jump to start of path [menu] PathView > Path Start
Jump to middle of path [menu] PathView > Path Middle
Jump to end of path [menu] PathView > Path End
Move forward along path [key] +
Move backward along path [key] –
Play movie along path in [menu] PathView > Animate Path
forward direction Forward
Play movie along path in [menu] PathView > Animate Path
backward direction Backward
Pause animation [menu] PathView > Pause Animation

[key] Control + p

Table 4: Controls for History List.
Action Control
Undo last command [menu] Navigate > Undo Move

[key] Control + u
Redo last undone command [menu] Navigate > Redo Move

[key] Control + r
Undo to start of list [menu] Navigate > Undo to Start
Redo to end of list [menu] Navigate > Redo to End
Animate undo sequence to [menu] Navigate > Animate Undo
start of list to Start
Animate redo sequence to [menu] Navigate > Animate Redo
end of list to End
Pause animation [menu] Navigate > Pause Animation

[key] Control + p
Save history to file [menu] Main > Write History File
Load history from file [menu] Main > Load History File

Chen and Clapp 169

CONCLUSION

The several new features added to Ricksep are effective aids in data-fusion of volumes, visual-
ization of paths, and revision of viewing sequences. Velocity View provides an accurate, con-
venient method of visually correlating localized structures and large-scale patterns. Path View
enables clear visualization of paths that were previously invisible. History List provides for
automation of viewing commands by saving the viewing history in an editable list. Moreover,
all three features have simple interfaces and work in conjunction with the viewer’s previous
capabilities. There is a good foundation on which to build future improvements to Ricksep.
For Velocity View, the interface can be changed to allow multiple data-fusions to occur simul-
taneously. For example, if there are two pairs of high and low-frequency volumes, the two
synthesized cubes can both be shown in the same window. For Path View, as a generalization
of creating paths from picks, entire surfaces can be generated from picks. The mathematics
of multi-dimensional interpolating is not significantly more difficult than the mathematics of
one-dimensional interpolation, but implementing this functionality in Ricksep is nontrivial.
For History List, other than the message bar informing users of the current position in the list,
there is no other information about previous and following viewing states. A better interface
would include a preview pane that includes information about viewing states before and after
the current state.

REFERENCES

Biondi, B. and J. van Trier, 1993, Visualization of multi-dimensional seismic data sets with
CM-AVS: SEP, 79, 1–12.

Bloch, I. and H. Maitre, 1997, Data fusion in 2d and 3d image processing: SIBGRAPI (Brazil-
ian Symposium on Computer Graphics and Image Processing), IEEE CS Press, Proceedings
of SIBGRAPI, 127–135.

Claerbout, J. F., 1981, On-line movies: SEP, 28, 395–408.

Clapp, R. G., M. L. Prucha, et al., 2001, SEP manual: SEP, 110, 183–333.

Clapp, R. G., 1995, SEP AVS user guide: SEP, 84, 395–408.

Clapp, R. G., 2001, Ricksep: interactive display of multi-dimensional data: SEP, 110, 163–
172.

Hou, H. S. and H. C. Andrews, 1978, Cubic splines for image interpolation and digital filter-
ing: IEEE Transactions on Acoustics, Speech, and Signal Processing, 26, 508–517.

Mora, C. B., R. G. Clapp, and B. Biondi, 1996, Visualization of irregularly sampled seismic
data with AVS: SEP, 93, 75–86.

Ottolini, R., 1990, Seismic movies on the Xview graphics system: SEP, 65, 301–305.

170 Ricksep

224

