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Interval velocity estimation through convex optimization

Ben Witten and Michael Grant

ABSTRACT

Convex optimization is an optimization technique which maximizes efficiency by fully
harnessing the convex nature of certain problems. Here we test a convex optimization
solver on a least-squares formulations of the Dix equation. Convex optimization has many
useful traits including the ability to set bounds on the solution which are explored here.
As well, this example serves as a test for the feasibility of convex optimization for future,
more expensive tomography problems.

INTRODUCTION

Interval velocity estimation is a fundamental problem in seismology. The simplest technique
for finding interval velocity is the Dix equation (Dix, 1952) which analytically inverts the root-
mean-square (RMS) velocity for interval velocity. The Dix equation has many flaws including
the assumption of a vertically stratified earth and numerical problems that can cause the in-
version to become unstable for rapidly varying velocities. To better constrain the solution,
the Dix equation is often cast as a least-squares problem, which is regularized in time with a
differential operator that penalizes rapid variations to produce a smooth result (Clapp et al.,
1998).

Valenciano et al. (2003) expanded on this work to use both ¢, and ¢; regularization. The
¢, regularization is justified when the expected velocity model is smooth. When geological
expectations dictate abrupt changes in interval velocity £ regularization can be utilized to
preserve sharp boundaries when they are present, yet allows for smooth velocity elsewhere.

Since least-squares problems are already convex, this is a perfect problem to test the utility
of convex optimization. Here we utilize convex optimization to solve the problem of interval
velocity estimation using the same examples as those present by Valenciano et al. (2003) for
the £, and ¢, regularization, which used conjugate gradient methods. As well, bounds will be
enforced on the solution to further constrain the Dix inversion to a more geologically sensible
answer.

LEAST-SQUARES DIX EQUATION

The Dix equation is a nonlinear relationship between RMS velocity and interval velocity.
It is, however, linear in the square of the interval velocity. This linearized formulation of
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the Dix equation was solved by Clapp et al. (1998) by using a preconditioned least-squares
optimization with spatial smoothness constraints. In this approach or data fitting goal is to
minimize the residual of

W(Cu—d)~0 (1)

where u is a vector whose components range over vertical traveltime depth T and whose values
are the interval velocity squared vizm. d is the data vector which has the same range as u, but
whose values are the scaled RMS velocity squared fv%e us/ AT where /At is the index on the
time axis. C is the casual integration operator. And W is a weight matrix which is proportional

to our confidence in RMS velocities.

Since the fitting goal, equation 1, is unstable when there are high frequency variations in
RMS velocity, a regularization term is added to penalize this erratic behavior. As done by
Valenciano et al. (2003), first order derivatives are used. This system of equations is

W Cu—-d)~0
e D;ux 0
e, Dyux 0 ()

where D; and Dy are first-order finite differences derivatives in traveltime and midpoint, re-
spectively. €; and €, balance the relative importance of the two model residuals, effectively
controlling the smoothness.

The approach taken towards the regularization terms will determine whether a smooth or
discontinuous model is found. ¢, regularization will produce a smooth result. If a discontinu-
ous velocity is geologically expected, such as for carbonates, £ regularization can be used to
produce a blocky model (Valenciano et al., 2003).

CONVEX OPTIMIZATION

A problem is a convex optimization problem if it has the form

minimize fy(x)
subjectto fi(x) <b;,i=1,...,m 3)

where fo,..., fin and by,...,b, are convex functions and x exists in a convex set, S (Boyd and
Vandenberghe, 2004). Convex optimization problems have many attractive features including
the guarantee of local minima to be global and strong optimality, feasibility, and sensitivity
information. As well, there are reliable and efficient numerical algorithms to solve these prob-
lems. Since this Dix formulation is a least-squares problem, which is already convex, it seems
natural to try convex optimization techniques to find the solution.

The data fitting goal, equation (1), can be rewritten in optimization notation as

minimize |[W(Cu—d)|» “4)
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where | - || means the least-squares norm. When necessary regularization terms are added the
full set of goals, equation (2) becomes

minimize [|[W(Cu—d)l|2+ ||e:D-ul; + [[exD-ull; 5)

in optimization notation. If i is 2 then an £, regularization is used and a smooth model is
obtained. If i is 1 then an ¢ regularization is used and the result is a blocky model, instead.

Even after inversion, there may be points in the model space which do not make geological
sense, usually due to picking errors caused by poor resolution. Convex optimization allows for
bound constraints to be imposed on the solution, which can correct for such inconsistencies.
If we constrain the solution then we have

minimize |W(Cu—d)|2+ [le;D.ul]; + [[exD-ul|;
U = Unmax

U = Umin, (6)

where vimax and vy are the square of the maximum and minimum allowable velocity models,
respectively.

To do the convex optimization, c¢vx (Grant et al., 2006) will be used. cvx is a MATLAB
based system for solving convex optimization problems. It allows constraints and objectives
to be specified with common MATLAB syntax.

REAL DATA EXAMPLES

125 CMP’s from a 2-D prestack data set that was acquired in the Gulf of Mexico were used.
Since the Gulf of Mexico usually exhibits flat reflectors, this is suitable for the Dix equation.
The region is also faulted which implies discontinuous velocities.

The approach taken for obtaining the RMS velocities is the same as that in (Valenciano et
al., 2003), but will briefly be recreated here. First, velocity analysis was preformed on each
CMP. Then an auto-picker was used to pick the maximum stacking power corresponding to
the best RMS velocity at each CMP position. An example velocity analysis with picks for
a single CMP is shown on the top of Figure 1. The velocity values from all the CMPs can
be combined to form a complete RMS velocity model space. This is shown on the bottom
of Figure 1. Please note that the velocities picked in Figure 1 are in slowness rather than
velocity, while the complete RMS model space is in velocity. This is because the conjugate
gradient method used a slowness model, but the convex optimization failed with slowness
and velocity had to be used. This limitation may be because the values were all close to 0
forcing the solution down or due to the narrow range of slowness values. Thus the images
computed with conjugate gradients were computed in slowness and inverted to velocity, while
the convex optimization images were computed directly with velocity values. Figure 2 shows
the stacked section which displays the faulting mentioned above. The middle panel has the
faults highlighted and the bottom panels shows the same faults on the raw RMS velocity. It is
interesting to note that the raw RMS velocity shows the faults clearly.
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Figure 1: Top: Auto-picked RMS velocity of one CMP from a 2-D prestack dataset. Bottom:
Raw RMS velocity map for all 125 CMPs |ben1-vel-vrms | [ER]

The top of Figure 3 shows the interval velocity resulting from solving equations (2) with
¢, regularization. The bottom of Figure 3 shows the interval velocity when equation (5) is
solved with ¢, regularization. Note that all interval velocities are clipped at their respective
maximums. Both images in Figure 3 are very similar showing that convex optimization is at
least equivalent to conjugate gradients in terms of quality of solution.

If we now look at the solutions to equations (2) and (5) solved with a ¢; regularization,
shown in Figure 4, we can see that, as expected, a much blockier solution is found. As in the
previous figure, the top panel of Figure 4, created by conjugate gradients, is very similar to the
bottom image, solved with convex optimization.

In the ¢ regularization image, the faults do show up faintly. If we overlay the same lines
shown in Figure 2 onto Figure 4, this becomes more obvious as shown in Figure 5. The faults
may be slightly more obvious in the problem solved with evx, which is blockier than with
conjugate gradients. The difference in “blockiness” is due to the different €’s and how they
are applied in each case.

There appears to be some low velocity anomalies near the bottom of the interval velocity
solution. This is predominately seen in the blocky models, but there are uncharacteristically
low velocities at late times in all the models. As we can see from the stack in Figure 2, there is
no evidence to support such velocities. To correct this we can constrain the solution further by
adding bounds when solving the convex optimization problem. If we assume that the interval
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Figure 2: Top: Stacked data using the raw RMS velocity. Middle: Stack data with lines
showing the faults. Bottom: RMS velocity with same lines showing the faults. |benl-stackl
[ER]
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Figure 3: Top: Interval velocity computed using conjugate gradients with ¢, regulariza-
tion. Bottom: Interval velocity computed using convex optimization with £, regularization.
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Figure 4: Top: Interval velocity computed using conjugate gradients with ¢; regulariza-
tion. Bottom: Interval velocity computed using convex optimization with ¢; regularization.
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Figure 5: Same as Figure 4 except with lines marking fault locations. |ben1-L1-interp ‘ [CR]

velocity v(z) increases linearly with depth:
v(z) =votaz, (N

then we can get a general estimate of the interval velocity. This is shown in Figure 6. Velocities
20 percent above and below this model are used as the maximum and minimum constraints in
equation (6). Figures 7 and 8 show the bounded constrained ¢, and ¢ solutions, respectively.
As we can see, the low velocities occurring at late times have been attenuated.

CONCLUSIONS

Convex optimization methods show promise for solving least-squares problems. As exempli-
fied by the least-squares Dix equation, convex optimization can yield similar results to those
obtained through conjugate gradient methods. Yet convex optimization also has the advan-
tage of imposing geologically constrained bounds to further enhance the solution. The £; cvx
solution also shows a slightly better ability to pick up the faults than the conjugate gradient
method. As stated above, this could simply be a function of € choice.

The convex optimization solver may not be as fast as conjugate gradient methods, but
the solution obtained is guaranteed to be correct. The conjugate gradient solution is usually
obtained by iterating until we are tired. The convex solver, on the other hand, works until a
preset accuracy is achieved. In these problems, this precision was set at 10~°. The efficiency
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Figure 6: Model from which the upper and lower velocity constraints are formed. Upper is
20% greater than this everywhere and the lower is 20% less. |benl-bounds | [CR]
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Figure 7: Solution by convex optimization with £, regularization and bound constraints.
|ben1-L2vint-cvx-bounded | [CR]
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Figure 8: Solution by convex optimization with ¢; regularization and bound constraints.
| benl-L1vint-cvx-bounded | [CR]

of £, versus ¢ regularization is quite striking. It takes 8 times more iterations to do the £ than
the ¢,, but only 3 times as many when both are bounded. This is difference comparable to that
of conjugate gradients.

To apply convex optimization larger problems and more complex operators, a convex op-
timization solver that does not rely on MATLAB is needed. While the evx software is efficient
and easy to use, it is limited by MATLAB'’s efficiency and lack of memory. If a new solver
can be created convex optimization could be successful for future endeavors.
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