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Missing Data Interpolation with Gaussian Pyramids

Satyakee Sen

ABSTRACT
I describe a technique for interpolation of missing data in which local operators of many
scales but identical shape serve as basis functions. A data structure known as the Gaus-
sian pyramid is developed to represent image information at different scales. This data
structure in essence consists of a series of lowpass filtered versions of the original image
stacked up one on top of the other forming a pyramid like structure. I first show how to
generate a set of reduced images which stack up to form the Gaussian pyramid structure
and then show how we can use this Gaussian pyramid structure to fill in missing data.
Several examples of filling in missing data with this algorithm are shown and in most
cases the results are comparable with those estimated using a prediction filter approach.

INTRODUCTION

The importance of analyzing images at many scales arises from the nature of the images them-
selves. Any analysis procedure that is applied at a single scale will tend to miss information
at other scales. The immediate solution to this problem would be to carry out the analy-
sis at all possible scales simultaneously. This is especially true for seismic data where the
low frequency components in an image represent the general trend of the image, while the
high frequency components add details to this underlying trend. Recently methods have been
suggested (Abma and Kabir, 2005) in which the missing data is reconstructed by adding in
frequency components to the missing region with each iteration. While the Fourier transform
is a natural way of efficiently separating the various scales in an image, but in the Fourier
domain we can no longer recognize the spatial features in their usual form as in the original
non-transformed domain. A desirable alternative to the Fourier domain representation is an
approach that describes an image at multiple spatial resolutions and also preserves the local
spatial structure of the image at each of these multiple scales.

The simplest way to detect a pattern that may appear in an image at any scale is by simple
convolution of the target pattern, constructed at various scales, with the image or to convolve
a pattern of a fixed size with different versions of the image represented at different resolu-
tions. The immediate bottleneck to this convolution-based method for detecting a pattern is
the enormous cost involved in carrying out all the required convolutions. The computer graph-
ics industry has developed a method termed as the image pyramid data structure for efficient
scaled convolutions through reduced image representation (Burt, 1981). This pyramid data
structure consists of a stack of copies of the initial image such that both spatial density and
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resolution decrease as we move from one level of the stack to the next. This data structure
can be generated with a highly efficient iterative algorithm that requires fewer computational
steps to generate a series of reduced images than are required by the FFT method to compute
a single filtered image (Burt, 1981). Once a fast algorithm is available for generating multi-
resolution images in the spatial domain, missing regions of the image can then be filled up
also at different scales, starting from the coarest scale and proceeding to more and more finer
scales. In this paper I show how interpolation of seismic data can be carried out using the
pyramid structure. The local n point operator that is used as the basis function in the pyramid
generation process represents a Gaussian distribution in the limit n → ∞, hence the pyramid
structure is termed Gaussian pyramid. I first show how the pyramid structure is generated and
then show how interpolation is carried out at different levels of the pyramid to restore missing
data.

GAUSSIAN PYRAMID GENERATION

The Gaussian pyramid generation is done by starting with an initial image g0 and then lowpass
filtering this image to obtain a "reduced" image g1. The image is "reduced" in the sense that
both spatial density and resolution are decreased. This operation can be continued to obtain a
set of images {g0,g1,g2, . . .gn} that form the pyramid image structure. The low pass filtering is
done by a procedure equivalent to convolution by a set of local symmetric weighting functions
(for example a Gaussian distribution). A fast algorithm for generating such a Gaussian pyra-
mid structure is outlined in the next subsection. Along with the Gaussian pyramid generation,
there is also an approximate reverse process of the pyramid generation that tries to expand a
reduced image to its original scale. The same algorithm that is used to form the pyramid can
also be used to perform the expansion operation as outlined in the following subsection.

Gaussian pyramid generation

Suppose we start of with an initial image having N columns and M rows. This image forms the
base or the zeroth level of the pyramid. Each point in the next level is computed as a weighted
average of values in level 0 within a 5-by-5 window, termed as the weighting function. The
size of the weighting function is not critical in the pyramid generation process (Burt, 1981).

The pyramid generation process can now be represented as :

gl(i , j) =

2∑

n=−2

2∑

m=−2
w(m,n)gl−1(2i +m, 2 j +n). (1)

where w(m,n) is the weighting function. This same weighting function is used to generate the
pyramid at each level. Notice that for each dimension the density of nodes is reduced by half
from one level to the next.

The weighting function is chosen subject to certain constraints (Burt, 1981). For simplicity
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it is made separable:

w(m,n) = w(m)w(n). (2)

It is normalized to 1 and also made symmetric:

w(i ) = w(−i ), i = 0,1,2. (3)

It is also stipulated that each node contributes equally to nodes at the higher level so that a
typical 5 point weighting function looks like:

w(0) = a,
w(−1) = w(1) = 0.25,
w(−2) = w(2) = 0.25−0.5a.

(4)

where a is a free parameter that controls the shape of the weighting function. For a = 0.4, the
weighting function represents a Gaussian distribution in the limit.

Pyramid expansion

An approximate reverse of the process of generating a pyramid structure is termed as pyramid
expansion. The main function of the expansion algorithm is to enhance a pyramid level of size
M +1 by N +1 to size 2M +1 by 2N +1 by interpolating new sample values between those
at the current level. Thus the expansion process applied l times to an image at pyramid level j
would yield an image gj ,l which is of the same size as an image at the pyramid level j − l that
is gj−l . Formally the expansion operation can be defined as:

gl,n(i , j) = 4
2∑

n=−2

2∑

m=−2
w(m,n)gl,n−1(

i −m
2

,
j −n

2
). (5)

Notice that during the sum only values for which the indices are integer are included as

Figure 1: Three levels of the Gaussian pyramid formation (top panel) and expansion (bottom
panel).In the bottom panel each level is expanded to the next lower level. ssen1-shot2eg [ER]

Figure 2: Four levels of the Gaussian pyramid formation (top panel) and expansion (bottom
panel).In the bottom panel each level is expanded to the next lower level. ssen1-seisw [ER]

Figure 3: Four levels of the Gaussian pyramid formation for data with holes. ssen1-stlinesz
[ER]
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Figure 4: Filling up the holes at each level of the pyramid starting from the topmost pyramid
level (upper left). ssen1-stlinesf [ER]

contribution to the next higher level. A simple example consisting of two shot gathers is used
to demonstrate the pyramid generation and expansion operation in Figure 1. The top panel
of the figure shows three levels of the pyramid while the bottom panel shows the process
of expansion from one level to the next. The next example (Figure 2) consists of a stacked
seismic. Again the top panel of the figure shows the levels of the Gaussian pyramid while
the bottom panel shows the expansion. Each of the images in the top panels of Figures 1
and 2 have been obtained by applying the same 5-by-5 weighting function. Notice that as the
pyramid levels stack up the sample density along each of the two axes reduces by a factor of 2.
During the expansion process (bottom panels of figures 1 and 2) on the other hand the number
of sample point increase by a factor of 2 along each axis.

Mathematical basis of Pyramid Generation

This method of pyramid formation as outlined in the previous section is equivalent to convolv-
ing an image g0 with a weighting function h l as :

gl = hl ⊗g0. (6)

Here the size of the weighting function doubles from one level to the next as does the distance
between the sample points. The shape of the weighting function infact converges rapidly to
a characteristic form with successive higher levels of the pyramid. By characteristic form we
mean the shape of the weighting function with a particular choice of the free parameter a (for
example for a = 0.4 it will approach a Gaussian distribution). The effect of convolving the
image with one of the equvalent weighting functions, hl , is to low-pass filter the image.The
pyramid algorithm mimics this low-pass filtering operation using a small compact two dimen-
sional weighting function and uses a fast algorithm for generating different filtered versions of
the original image.

Laplacian Pyramid

The Laplacian pyramid (Burt and Adelson, 1983) is a sequence of error images L0,L1, . . .Ln
such that each error image is the difference between two levels of the Gaussian pyramid, that
is:

Lj = gj −gj+1,1. (7)

where gj+1,1 is the image at pyramid level j +1 expanded to size of the image at level j . Thus
it is immediately clear tht the Gaussian pyramid formation and expansion process is exact, in
the sense that the original image g0 is fully recoverable, as :

g0 =
∑

Li . (8)
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The way to do this is to first expand the top pyramid level, Ln , and then add the expanded
version to Ln−1 to form gn−1. This process is repeated for each level until we reach the base
of the pyramid where the original image is fully recovered. Since the top of the pyramid does
not have an error image we can treat the image at the top of the pyramid as the error image Ln
:

gn = Ln. (9)

Notice that the value of each node of the Laplacian pyramid is the difference between the
convolutions of two equivalent weighting functions h l and hl+1. This operation is similar to
convolving the image with an appropriately scaled Laplacian weighting function and hence
the name Laplacian pyramid. But the cost involved with this operation would be substantially
more than constructing error images as a difference between two pyramid levels. The Lapla-
cian pyramid can be treated as a set of band-pass filtered versions of the original image just as
the Gaussian pyramid represents low-pass filtered versions of the original image. In the next
section I use the concepts of both Gaussian pyramids and Laplacian pyramids and the fact that
the pyramid forming process is exactly reversible to show how interpolation of missing data
can be done using the pyramid scheme.

GAUSSIAN PYRAMID INTERPOLATION

In this section I show how the Gaussian pyramid structure can be used to perform missing data
interpolation. Consider the image on the upper leftmost side of Figure 3.This image has a 30
point hole in it. Now as the Gaussian pyramid structure for this image is generated both the
image dimension as well as the size of the hole shrinks. At level 3, the hole is only 1 points
long. Thus each level of the Gaussian pyramid contains information about the missing hole
at different scale/size. This shrinking of the holes in the pyramid generation process gives
a strategy to interpolate missing data without the use of prediction filters. Instead of using
prediction filters the image is considered as a sum of patterns at many scales and restoration
of the missing data is carried out at many scales as well.

If the size of the mising piece is comparable to the finest scale features of an image, then
a good estimate of the unknown value at x + δx can be estimated through a simple first order
linear prediction based on the first derivative of the image at the known point x as:

g0(x + δx) = g0(x)+ δx∇g0(x). (10)

However if the missing piece is large then more derivatives would be needed, in other words
we need to examine variations at larger scales as well. An immediate analogy to this problem
would be to look at the missing information itself at various scales. As the Gaussian pyramid
is generated different versions of the image g0 is obtained at different resolutions. The miss-
ing data in the original image is also missing at any other level of the pyramid gi , the only
difference being that the scale or size of the missing piece is reduced. Thus at a coarser spatial
scale we do not need to use a polynomial of high degree to fill in the missing data. At some
level of the pyramid the hole would be of a size comparable to the finest scale features in that
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pyramid level. At this level we can use simple linear prediction to fill in the missing data.
Once the missing piece is filled up at some pyramid level we can then expand, starting from
that level, and wherever a missing piece of information exists we can simply use the value of
the expanded level. The algorithm for the missing data interpolation would then be:

1. Start with the initial image g0.

2. Form pyramid levels g1,g2, and so on

3. If at pyramid level j, missing piece is very small fill gj using linear prediction.

4. Expand gj to gj ,1.

5. Fill in missing space in gj−1 using gj ,1.

6. Expand the filled gj−1 and continue filling and expanding.

7. Finally fill in original image g0 using the filled g1,0.

8. If needed iterate with the filled g0.

9. Stop.

This algorithm is illustrated with the dataset with the hole, shown in Figure 3. First the right
lowermost panel of this figure is filled up using linear prediction (shown on the upper most
left panel of Figure 4). Starting from this filled level, expansion of the filled level followed by
subsequent filling up is done till the original image is filled up (lower right panel of Figure 4).

EXAMPLES

In this section I demonstrate some of the results of applying the Gaussian interpolation scheme
to different datsets. In each of the examples a rectangular hole is punched in dataset which is
then filled up using Gaussian pyramid interpolation.I compare the results obtained using the
Gaussian pyramid scheme with those obtained from filling the hole using a regular prediction
filter approach. The first example is the "Wood" example from Jon Claerbot’s book (Claerbout,
2005). Figure 5 shows four levels of the pyramid structure. At the fourth level the hole is only
2 point long. We use linear prediction to fill in this hole. This filled level is then expanded
to the next lower level which has a missing region. This missing region is filled up using the
information available from the expanded filled level and this process is repeated till we reach
the base of the pyramid. The results of filling up the hole by this method is shown in Figure
6. The top most panel on the left is the upper most level of the pyramid which is first filled
up using linear prediction. The lower right panel is the original image that has been filled up.
For this example 2 iterations of the pyramid formation and expansion process is done. The
reason for this is to improve the pixel quality in and around the hole during the expansion
process.Figure 7 compares the result of the interpolation process using the pyramid scheme
with that obtained using a prediction error filter (PEF) approach. The top two panels show the
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original data (right) and the data with holes punched into it (top left). The lower two panels
show the results using a PEF (lower left) and the pyramid scheme (lower right). The results
are of comparable quality, except at the top and lower boundaries where the pyramid scheme
has troubles due to edge effects during the expansion and reduction process.

The second example consists of the "Brick" dataset again from Jon Claerbot’s book (Claer-
bout, 2005). Here three levels of the Gaussian pyramid are constructed and 2 iterations are
done for the pyramid formation and expansion process. Figure 8 compares the interpolation
result oultined here with the PEF based approach (lower two panels of figure 8). The interpola-
tion result is pretty satisfactory, except for the blurring effect in the missing region. The third
example consists of the "Herring bone" dataset. Figure 9 compares the interpolation result
with that of the original dataset. The hole is again being filled relatively well.

Figure 5: Four levels of the Gaussian pyramid. ssen1-woodhole [ER]

Figure 6: Filled levels of the Gaussian pyramid starting from the uppermost level (top left) to
the lowermost level (bottom right). ssen1-woodfill [ER]

Figure 7: Data with holes (top left), original data (top right), filled using PEF (bottom left)
and filled using the pyramid scheme (bottom right). ssen1-woodcomp [ER]

The fourth example consists of a stacked seismic section. Again a hole is punched in the
middle (left panel of Figure 11) which we try and restore. Three levels of the pyramid structure
for this example is shown in Figure 10. After the third level the hole is four points long, which
is filled up using normalized linear prediction. The expansion and filling up, starting from the
third level of the pyramid is started, and the results of interpolation are shown in Figure 11.
The method has trouble trying to interpolate the uncollapsed diffraction hyperbolas and other
artifacts present in the stacked section.

CONCLUSION

In this paper I have outlined a method for interpolation of missing data at multiple scales. The
Gaussian pyramid structure has been used to represent data at various scales or sizes. Using
this data structure interpolation can be effectively carried out starting from the top level of the
pyramid and then expanding downwards, until we reach the base of the pyramid where we can
fill up the missing piece in the original data. Several iterations of the reduction and expansion
process might be needed. The chief reason for this is to improve the pixel amplitude in the hole
at the top level of the pyramid, from where we start the interpolation process. The pyramid
forming process is extremely inexpensive and thus several iterations can be easily afforded.
There are however some boundary issues with this method. Artifacts can be generated at the
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Figure 8: Data with holes (top left), original data (top right), filled using PEF (bottom left)
and filled using the pyramid scheme (bottom right). ssen1-brickcomp [ER]

Figure 9: Data with holes (left), original data (middle) and filled data (right). ssen1-herrcomp
[ER]

boundary primarily because a boundary node never gets a contribution from the whole 5 point
window either during reduction or expansion. Also amplitude balancing for the pixels in the
missing part of the dataset at the top of the pyramid, from where the interpolation starts, is an
important issue. Developing sophisticated and systematic method for this amplitude balancing
has not been attempted and remains a topic for future research. The blurring effect seen in most
of the results is due to this amplitude balancing issue.

Another important issue with this method, with regards to seismic data, is that it may not
be possible to construct too many levels of the pyramid. In such a case however we can easily
construct a small prediction filter to fill in the data at the coarsest pyramid that we can have
and start filling up from there. Moreover since the hole is bound to shrink during the pyramid
formation process the filter estimation may actually be more convenient. The method outlined
in this paper looks at the problem of missing data interpolation at many different spatial scales,
rather than trying to estimate the missing data directly from the original image. It is however
different in principle from many multi-scale approaches proposed earlier. The main issue that
most multi-scale methods try and address is the problem of estimating a PEF effectively. The
pyramid scheme on the other hand tries to stay away from the process of PEF estimation and
instead tries to fill in data at multiple spatial resolutions.
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Figure 11: Data with holes (left), original data (middle) and filled data (right).
ssen1-WGstackcomp [ER]
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