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Residual moveout in anisotropic angle-domain common image
gathers with dipping reflectors

Pierre Jousselin and Biondo Biondi

ABSTRACT
We generalise to dipping reflectors the fundamental concepts for quantitatively relat-
ing perturbations in anisotropic parameters to the corresponding reflector movements in
angle-domain common-image gathers (ADCIGs).
We apply the general methodology to the particular case of residual moveout (RMO) anal-
ysis of reflections from dipping reflectors in a vertical transverse isotropic (VTI) medium.
Synthetic examples show the accuracy of the RMO curves predicted by our kinematic
analysis.

INTRODUCTION

The fundamental concepts presented in Biondi (2005a) of quantitatively relating perturba-
tions in anisotropic parameters to the corresponding reflector movements in angle-domain
common-image gathers (ADCIGs) have been applied to flat reflectors. It showed on real data
how measuring the residual moveout (RMO) in ADCIGs provides the quantitative information
necessary to update the velocity function in a migration velocity analysis (MVA) procedure.

Aiming to generalize that methodology to the most general case, we derive an analytical
analysis of residual moveout in anisotropic ADCIGs with dipping reflectors.

After deriving the kinematic analysis in the general case, we apply the general methodol-
ogy to the particular case of residual moveout analysis of reflections from dipping reflectors
in a vertical transverse isotropic (VTI) medium. Synthetic examples demonstrate the accuracy
of the RMO curves predicted by our kinematic analysis. Furthermore, given the inaccuracy of
the RMO curves predicted when assuming that the reflectors are flat, synthetic examples also
demonstrate the usefulness of the generalization we present.

ANGLE-DOMAIN COMMON-IMAGE GATHERS

We first present a review of the theory for ADCIGs in anisotropic media from both a Kirchhoff
and a “plane-wave” viewpoint (Biondi, 2005a). Those two are independent but yield the same
result and therefore validate each other. We introduce the formulas we will use in the next
sections.
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Generalized migration impulse response in parametric form

The kinematic approach of anisotropic migration (Biondi, 2005a) is based on the generaliza-
tion of integral migration to the computation of a prestack image that includes the subsurface
offset dimension.

Theory of ADCIGs in anisotropic media from a Kirchhoff viewpoint

Figure 1 illustrates the generalization of the migration operator from a Kirchhoff viewpoint.
Simple geometric relations allow us to derive the kinematics of the generalized migration
operator. If we migrate an impulse recorded at time tD , midpoint m D and surface offset h D,
the migration impulse response can be expressed as follows:

zξ = L (αx ,γ )
cos2 αx − sin2 γ

cosαx cosγ
, (1)

mξ = mD − L (αx ,γ )
sinαx

cosγ
, (2)

hξ = h D − H = h D − L (αx ,γ )
sinγ

cosαx
, (3)

where αx is the group dip angle, γ is the group average aperture angle, zξ , mξ and hξ are the
depth, midpoint and subsurface offset of the imaging point as illustrated in Figure 1. L (αx ,γ )
is the average half-path length and is given by

L (αx ,γ ) =
Ls + Lr

2
=

tD

(Sr + Ss)+ (Sr − Ss) tanαx tanγ
, (4)

where Ss and Sr are the group slowness along the source and receiver rays, respectively.

Figure 1: Geometry used for evaluat-
ing the impulse response of integral
migration, generalized to produce a
prestack image function of the sub-
surface offset hξ . pierre1-imp-resp
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The expression for the generalized impulse response of prestack anisotropic migration
leads to the analytical evaluation of the offset dip ( ∂zξ

∂hξ

∣∣∣
mξ=Smξ

) and midpoint dip ( ∂zξ

∂mξ

∣∣∣
hξ=Shξ

)
along the planes tangent to the impulse response. When we adopt the Kirchhoff viewpoint,
the group aperture angles can then be related to the offset dips in the image, and the group dip
angles can be similarly related to the midpoint dips in the image.



SEP–124 RMO in anisotropic ADCIGs with dips 19

Theory of ADCIGs in anisotropic media from a “plane-wave” viewpoint

From the “plane-wave” viewpoint of the theory of ADCIGs in anisotropic media, the ex-
pression for the generalized impulse response of prestack anisotriopic migration leads to the
following expressions for the offset and midpoint dips:

∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

=

tan γ̃ +
S̃r −S̃s
S̃r +S̃s

tan α̃x

1−
S̃r −S̃s
S̃r +S̃s

tan α̃x tan γ̃
= tan γ̂ , (5)

∂zξ

∂mξ

∣∣∣∣
hξ =Shξ

=

tan α̃x +
S̃r −S̃s
S̃r +S̃s

tan γ̃

1−
S̃r −S̃s
S̃r +S̃s

tan γ̃ tan α̃x
= tan α̂x , (6)

where α̃x is the group dip angle, γ̃ is the group average aperture angle, α̂x and γ̂ are two
angles we introduce and that are related to the midpoint and offset dips. S̃s and S̃r are the
phase slownesses for the source and receiver wavefields, respectively. The phase aperture and
group dip angles can then be related to the offset and midpoint image dips:

tan γ̃ =
tan γ̂ −1S̃ tan α̃x

1+1S̃ tan α̃x tan γ̂
, (7)

tan α̃x =
tan α̂x −1S̃ tan γ̃

1+1S̃ tan γ̃ tan α̂x
, (8)

where 1S̃ is the “normalized slowness difference” (S̃r − S̃s)/(S̃r + S̃s).

KINEMATICS OF THE ANGLE-DOMAIN TRANSFORMATION

In 2-D, ADCIGs are computed by applying a slant-stack decomposition to the prestack image
along the subsurface-offset axis at a constant midpoint. The kinematics of the transformation
are defined by the following change of variable:

γ̂ = arctan
∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

, (9)

zγ̃ = zξ −hξ tan γ̂ , (10)

where zγ̃ is the depth of the image point after the transformation.
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Geometric interpretation

Figure 2 provides a geometric interpretation of the transformation of an image point in the sub-
surface offset domain

(
zξ ,hξ

)
to the corresponding image point in the angle-domain

(
zγ̃ , γ̃

)
.

In this figure,

βs = αx +γ , (11)
βr = αx −γ , (12)
β̃s = α̃x + γ̃ , (13)
β̃r = α̃x − γ̃ . (14)

From a “plane-wave” viewpoint, the image point in the angle-domain is determined by the
intersection of the lines passing through the points

(
zξ ,mξ ±hξ

)
and tilted by β̃s and −β̃r .

This interpretation is consistent with the one for flat reflectors illustrated in Figure 3.

Figure 2: Geometry of the trans-
formation to the angle-domain with
a dipping reflector. The image
point in the subsurface-offset do-
main

(
zξ ,hξ

)
moves to the image

point in the angle-domain
(
zγ̃ , γ̃

)
.
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[NR]

(   ,   )

(   ,    )

βr

βs Lr

rββs

∼

γ∼zγ

ξhξz

α

z

x
S

∼

R

Ls

x

Figure 3: Geometry of the trans-
formation to the angle-domain
with a flat reflector. The image
point in the subsurface-offset do-
main

(
zξ ,hξ

)
moves to the image

point in the angle-domain
(
zγ̃ , γ̃

)
.
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The geometric interpretation of the angle γ̂ is illustrated in Figure 4. According to equa-
tion (10), the depth of the image point in the angle-domain z γ̃ is given by the intersection of
the two lines passing through the points

(
zξ ,mξ ±hξ

)
and tilted by ±γ̂ . For flat reflectors,

γ̂ = γ̃ (Biondi, 2005a), which is consistent with Figure 3.
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Figure 4: Geometric inter-
pretation of the angle γ̂ .
pierre1-cig-2d-aniso-dipping-2
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Relationships between γ̂ , γ̃ and γ

The angle γ̃ can be calculated from γ̂ = arctan ∂zξ

∂hξ

∣∣∣
mξ =Smξ

and α̂x = arctan ∂zξ

∂mξ

∣∣∣
hξ=Shξ

by solv-
ing the two quadratic equations given by equations (7) and (8):

[
1S̃ tan α̂x −

(
1S̃
)2 tan γ̂

]
tan2 γ̃ +

[
1−

(
1S̃
)2
]

tan γ̃ +1S̃ tan α̂x − tan γ̂ = 0, (15)
[
1S̃ tan γ̂ −

(
1S̃
)2 tan α̂x

]
tan2 α̃x +

[
1−

(
1S̃
)2
]

tan α̃x +1S̃ tan γ̂ − tan α̂x = 0. (16)

The angle γ can be estimated from γ̃ using

tanγ =
tan γ̃ +

1
Ṽ

dṼ
dγ̃

1−
1
Ṽ

dṼ
dγ̃

tan γ̃
. (17)

RMO in ADCIGs

When the migration velocity is correct and the image is focused at zero subsurface offset, the
transformation to angle domain does not change the depth of the image point, and the reflec-
tions are imaged at the same depth for all aperture angles. In contrast, when the reflections are
not focused at zero offset, the transformation to the angle-domain maps the events at differ-
ent depths for each different angle. The variability of the depth z γ̃ with the aperture angle is
described by the RMO function, which we want to measure and quantify as a function of the
perturbation in anisotropic parameters encountered along the propagation paths.

ANISOTROPIC RESIDUAL MOVEOUT FOR DIPPING REFLECTORS

Having generalized to dipping angles the analysis of the kinematics of the offset-to-angle
transformation, we generalize to dipping reflectors the analysis of the residual moveout in
ADCIGs caused by errors in anisotropic velocity parameters. As in Biondi (2005a), we derive
the RMO function by linearizing the relationship of the imaging depth in the angle domain
with respect to perturbations in the anisotropic parameters. The linearization is evaluated
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around the correct migration velocity function; that is, when the image in the subsurface-
offset domain is well focused at zero offset. We derive relationships under the assumption that
the velocity perturbations are limited to a homogeneous half-space above the reflector.

We use a notation that is the same as in Biondi (2005a): the VTI velocity function is
described by the vector V = (VV , VH , VN ), where VV is the velocity of a vertical ray, VH is the
velocity of a horizontal ray and VN is the NMO velocity. The perturbations are defined as the
combination of one multiplicative factor for each of the velocities (ρV ) and one multiplicative
factor for all velocities (ρVV ,ρVH and ρVN ): the perturbed velocity ρV is defined as:

ρV =
(
ρVV ,ρVH ,ρ VN

)
= ρV

(
ρVV VV ,ρVH VH ,ρVN VN

)
. (18)

The velocity-parameter perturbation is a four-component vector ρ=
(
ρV ,ρVV ,ρVH ,ρVN

)
.

In the case of dipping reflectors, the equation for the differentiation of the image point
depth in the angle domain zγ̃ with respect to the i -th component in the perturbation vector can
be written:

∂zγ̃

∂ρi
=

∂zγ̃

∂L
∂L
∂ρi

+
∂zγ̃

∂βs

∂βs

∂ρi
+

∂zγ̃

∂βr

∂βr

∂ρi
+

∂zγ̃

∂β̃s

∂β̃s

∂ρi
+

∂zγ̃

∂β̃r

∂β̃r

∂ρi
. (19)

Expanding the term ∂L
∂ρi

of equation (19), we get

∂L
∂ρi

=
1
2

(
∂Ls
∂ρi

+
∂Lr
∂ρi

)

=
1
2

(
∂Ls

∂Ss

(
∂Ss

∂ρi
+

∂Ss

∂βs

)
+

∂Lr

∂Sr

(
∂Sr

∂ρi
+

∂Sr

∂βr

))
. (20)

Equation (19) can then be written

∂zγ̃

∂ρi
=

1
2

∂zγ̃

∂L

(
∂Ls

∂Ss

∂Ss

∂ρi
+

∂Lr

∂Sr

∂Sr

∂ρi

)

+

(
1
2

∂zγ̃

∂Ls

∂Ls

∂Ss

∂Ss

∂βs
+

∂zγ̃

∂βs

)
∂βs

∂ρi

+

(
1
2

∂zγ̃

∂Lr

∂Lr
∂Sr

∂Sr
∂βr

+
∂zγ̃

∂βr

)
∂βr
∂ρi

+
∂zγ̃

∂βs

∂βs

∂ρi
+

∂zγ̃

∂βr

∂βr

∂ρi
. (21)

Geometric interpretation of the movements of the image point in the angle-domain

The geometric interpretation of the angle-domain transformation kinematics allows us to sim-
plify equation (21) by showing that the terms multiplying the partial derivatives with respect
to the angles are zero. Equation (21) simplifies to

∂zγ̃

∂ρi
=

1
2

∂zγ̃

∂L

(
∂Ls

∂Ss

∂Ss

∂ρi
+

∂Lr

∂Sr

∂Sr

∂ρi

)
. (22)
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Linearized perturbations caused by changes in L

Figure 5 graphically illustrates the image perturbation related to the first term in equa-
tion (22). It shows the movement of the image points (both in the subsurface-offset domain
and the angle domain) caused by changes in the ray length L. Linearized perturbations

Figure 5: Linearized perturbations
of the image-point locations caused
by changes in the ray length L.
pierre1-cig-2d-aniso-delta1-dipping-1
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Figure 6 graphically illustrates the image perturbation related to the second term in equa-
tion (22). Perturbations in the angle βs cause the subsurface offset-domain image to move
along the tangent to the incident wavefront. Since this movement is constraint along the
tangent, the image point in the angle-domain does not move no matter how large the cor-
responding movement in the subsurface offset domain is. Linearized perturbations caused

Figure 6: Linearized perturba-
tions of the image-point loca-
tions caused by changes in βs .
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by changes in β̃s

Figure 7 graphically illustrates the image perturbation related to the third term in equa-
tion (22). Since we linearize the depth of the image point around the correct migration veloc-
ity function, perturbations in the angle β̃s don’t affect the depth of the imaging point (it is the
main concept of ADCIGs).
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Figure 7: Linearized perturba-
tions of the image-point loca-
tions caused by changes in β̃s .
pierre1-cig-2d-aniso-delta3-dipping-1
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Evaluation of the different terms in equation (22)

We show in Appendix A (equations (A-2) and (A-6))

∂zγ̃

∂L
=

cos2 αx − sin2 γ

cosαx cosγ
+

sinγ

cosαx
tan γ̂ , (23)

and
∂Ls

∂Ss
= −

zξ

Ss cos(βs)
= −

zξ

Ss cos(αx +γ )
, (24)

∂Lr

∂Sr
= −

zξ

Sr cos(βr )
= −

zξ

Sr cos(αx −γ )
. (25)

Using equations (23), (24) and (25), the relationship of the imaging depth in the angle domain
with respect to perturbations in the anisotropic parameters can eventually be written as follows:

∂zγ̃

∂ρi
= −

zξ

2

(
cos2 αx − sin2 γ

cosαx cosγ
+

sinγ

cosαx
tan γ̂

)(
1/Ss

cos(αx +γ )
∂Ss

∂ρi
+

1/Sr

cos(αx −γ )
∂Sr

∂ρi

)
. (26)

This is the fundamental equation of this section, extending the equation given in Biondi
(2005a) to include dipping reflectors.

The residual moveout 1zRMO is defined as the difference between the reflector movement
at finite aperture angle and the reflector movement at normal incidence. The latter is given by

∂zγ̃

∂ρi

∣∣∣∣
γ=0

= −
zξ

S (αx )
∂S (αx )

∂ρi
. (27)

RMO function with uniform scaling of velocity

In case of uniform scaling of velocity, the derivative of the slowness with respect to a uniform
scaling of the velocity has a simple form:

∂S (x)
∂ρV

= −S (x) . (28)
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The derivatives of the imaging depth zγ̃ and of the residual moveout with respect to the per-
turbation component ρV have the following forms (refer to equations (A-14) and (A-16)):

∂zγ̃

∂ρi
= zξ

(
1+

1− sin2 γ

cos2 αx − sin2 γ
tanγ tan γ̂

)
, (29)

∂1zRMO

∂ρV
= zξ

1− sin2 γ

cos2 αx − sin2 γ
tanγ tan γ̂ . (30)

The dependence of equation (30) on the group angles increases the complexity of its use.
However, we showed in the preceding section that it is possible to compute the angle γ from γ̂ .
We first compute γ̃ from γ̂ by solving a system of two quadratic equations (equations (15) and
(16)) then computes γ from γ̃ by using equation (17). The computational cost of evaluating
the group angles is negligible and it is important to introduce the distinction between the “three
aperture angles”: γ , γ̃ and γ̂ .

Equations (30) and (29) are consistent with the ones derived in the isotropic case with dip-
ping reflectors (Biondi and Symes, 2003). Under the assumption that the medium is isotropic,
γ̂ = γ and the derivatives of the imaging depth z γ̃ and of the residual moveout with respect to
the perturbation component ρV are

∂zγ̃

∂ρi

∣∣∣∣iso
= zξ

(
1+

sin2 γ

cos2 αx − sin2 γ

)
, (31)

∂1zRMO

∂ρV

∣∣∣∣iso
= zξ

sin2 γ

cos2 αx − sin2 γ
. (32)

RMO function with arbitrary scaling of velocity

The derivatives of zγ̃ and 1zRMO with respect to arbitrary perturbations of the individual ve-
locity components (i.e. VV , VH , and VN ) have no simple form in the case of dipping reflectors
and depend on the particular form chosen to approximate the slowness function. The deriva-
tives of zγ̃ are

∂zγ

∂ρVV
= −

zξ

2

(
cos2 αx − sin2 γ

cosαx cosγ
+

sinγ

cosαx
tan γ̂

)(
1/Ss

cos(αx +γ )
∂Ss

∂ρVV
+

1/Sr

cos(αx −γ )
∂Sr

∂ρVV

)
, (33)

∂zγ

∂ρVH
= −

zξ

2

(
cos2 αx − sin2 γ

cosαx cosγ
+

sinγ

cosαx
tan γ̂

)(
1/Ss

cos(αx +γ )
∂Ss

∂ρVH
+

1/Sr

cos(αx −γ )
∂Sr

∂ρVH

)
, (34)

∂zγ

∂ρVN
= −

zξ

2

(
cos2 αx − sin2 γ

cosαx cosγ
+

sinγ

cosαx
tan γ̂

)(
1/Ss

cos(αx +γ )
∂Ss

∂ρVN
+

1/Sr

cos(αx −γ )
∂Sr

∂ρVN

)
.(35)

Conversion of depth errors into traveltime errors in heterogeneous media

The same relationships can be easily adapted to heterogeneous media (Biondi, 2005b) by
converting the depth errors in ADCIGs into traveltime errors that can used for tomography.
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The conversion to traveltime errors is done by rewriting the chain of partial derivatives:

∂zγ

∂t
=

∂zγ

∂L
∂L
∂t

,

∂zγ

∂t
=

(
cos2 αx − sin2 γ

cosαx cosγ
+

sinγ

cosαx
tan γ̂

)
Sr + Ss

1+1S̃ tan(αx ) tanγ
. (36)

Synthetic-data examples of RMO functions in ADCIGs

To verify the accuracy of the RMO functions derived in this section, we perform several nu-
merical tests using synthetic data modeled and migrated using an anisotropic source-receiver
modeling program and its adjoint. As in Biondi (2005b), this program performed depth ex-
trapolation by numerically solving the following dispersion relation:

kz =
ω

VV

√
ω2 − VH

2k2
x

ω2 +
(
VN

2
− VH

2)k2
x

, (37)

where ω is the temporal frequency, and kx and kz are the horizontal and vertical wavenumbers,
respectively. This dispersion relation corresponds to the following slowness function (Fowler,
2003):

2S2
VTI (θ ) = S2

Ell (θ )+
√

S4
Ell (θ )+ SV

2 (SN
2
− SH

2)sin2 2θ , (38)

where,

S2
Ell (θ ) = SV

2 cos2 θ + SH
2 sin2 θ , (39)

is the elliptical component.

We tested the theory with the set of anisotropic Thomsen parameters of the Taylor Sand
(ε = 0.110,δ = −0.035 → η = .155) described in Tsvankin (2001). Figures 8 to 10 show
examples of the application of the RMO function expressed in equation (30) when perturbing
the velocity uniformly (ρV = .95). In the different examples, we didn’t approximate the values
of γ but computed them from the values of γ̂ .

Figure 8 shows that for flat reflectors, the RMO function we derived accurately tracks the
actual RMO function when the perturbations are sufficiently small to be within the range of
accuracy of the linearization. This is consistent with the results presented in Biondi (2005b).
The relative lack of accuracy at large aperture angle is due to the limited offset range we used
for the modeling and the migration.

The top panel of Figure 9 shows that for a 15◦ dipping reflector the RMO function we de-
rived accurately tracks the actual RMO function (the relative lack of accuracy at large aperture
angle is due to the limited offset range we used). However the bottom panel shows that the
use of the RMO function given in Biondi (2005b) (i.e. assuming that the reflector is flat) gives
comparable results.
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The top panel of Figure 9 shows that for a 30◦ dipping reflector, the RMO function we
derived perfectly matches the actual RMO (we used a larger offset range). The bottom panel
shows that the RMO function given in Biondi (2005b) (i.e. assuming that the reflector is flat)
gives poor results. It justifies a posteriori the need for generalizing to dipping reflectors the
concepts of quantitatively relating perturbations in anisotropic parameters to the corresponding
reflector movements in anisotropic ADCIGs.

CONCLUSIONS

In this paper, we generalized to dipping reflectors the fundamental concepts for quantitatively
relating perturbations in anisotropic parameters to the corresponding reflector movements in
ADCIGs.

We applied that general methodology to the particular case of RMO analysis of reflections
from dipping reflectors in a VTI medium. Our synthetic examples demonstrate the accuracy
of the RMO curves predicted by our kinematic analysis and the inaccuracy of the RMO curves
predicted when assuming that the reflectors are flat. It proves the usefulness of our gener-
alization we presented in this paper. It should enable accurate migration velocity analysis
procedures in complex areas where anisotropic wavefield continuation migration is required.
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APPENDIX A

DERIVATION OF THE DERIVATIVE OF THE ANGLE-DOMAIN DEPTH WITH
RESPECT TO THE COMPONENTS OF THE PERTURBATION VECTOR

Derivation of equation (26)

• Using the kinematics of the transformation to the angle domain (equation (10)) and the
equations of the migration impulse response (equations (1) and (3)),

∂zγ̃

∂L
=

∂zξ

∂L
−

∂hξ

∂L
tan γ̂ , (A-1)

∂zγ̃

∂L
=

cos2 αx − sin2 γ

cosαx cosγ
+

sinγ

cosαx
tan γ̂ . (A-2)

• Differentiating the equality L s Ss + Lr Sr = tD with respect to Ss,

∂Ls

∂Ss
Ss + Ls = 0, (A-3)

∂Ls
∂Ss

= −
Ls
Ss

. (A-4)

Using the simple geometric relationship L s cosβs = zξ , we eventually get

∂Ls

∂Ss
= −

zξ

Ss cosβs
= −

zξ

Ss cos (αx +γ )
. (A-5)

From the geometric relationship Lr cosβr = zξ , we similarly show

∂Lr
∂Sr

= −
zξ

Sr cosβr
= −

zξ

Sr cos (αx −γ )
. (A-6)

Derivation of equation (29)

In case of uniform scaling of velocity,

∂zγ̃

∂ρV
= −

zξ

2

(
cos2 αx − sin2 γ

cosαx cosγ
+

sinγ

cosαx
tan γ̂

)(
1

Ss cos(αx +γ )
∂Ss

∂ρi
+

1
Sr cos(αx −γ )

∂Sr

∂ρi

)
,

∂zγ̃

∂ρV
= −

zξ

2

(
cos2 αx − sin2 γ

cosαx cosγ
+

sinγ

cosαx
tan γ̂

)(
−

Ss

Ss cos(αx +γ )
−

Sr

Sr cos(αx −γ )

)
,

∂zγ̃

∂ρV
=

zξ

2

(
cos2 αx − sin2 γ

cosαx cosγ
+

sinγ

cosαx
tan γ̂

)(
1

cos(αx +γ )
+

1
cos(αx −γ )

)
. (A-7)
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The quantity 1
cos(αx+γ ) +

1
cos(αx−γ ) can be written

1
cos(αx +γ )

+
1

cos(αx −γ )
=

cos(αx +γ )+ cos(αx −γ )
cos(αx +γ )cos(αx −γ )

, (A-8)

=
2cosαx cosγ
cos(2αx )+cos(2γ )

2
, (A-9)

=
2cosαx cosγ

2cos2 αx−1+2cos2 γ−1
2

, (A-10)

1
cos(αx +γ )

+
1

cos(αx −γ )
=

2cosαx cosγ

cos2 αx − sin2 γ
. (A-11)

Using equation (A-11), equation (A-7) simplifies to

∂zγ̃

∂ρV
= zξ

(
1+

sinγ

cosαx

cosαx cosγ

cos2 αx − sin2 γ
tan γ̂

)
, (A-12)

= zξ

(
1+

sinγ cosγ

cos2 αx − sin2 γ
tan γ̂

)
, (A-13)

∂zγ̃

∂ρV
= zξ

(
1+

1− sin2 γ

cos2 αx − sin2 γ
tanγ tan γ̂

)
. (A-14)

Derivation of equation (30)

Recalling equation (27),

∂zγ̃

∂ρi

∣∣∣∣
γ=0

= −
zξ

S (αx )
∂S (αx )

∂ρi
,

in case of uniform scaling of velocity,

∂zγ̃

∂ρV

∣∣∣∣
γ=0

= zξ . (A-15)

The derivative of the residual moveout with respect to the perturbation component ρV has the
following form:

∂1zRMO

∂ρV
= zξ

1− sin2 γ

cos2 αx − sin2 γ
tanγ tan γ̂ . (A-16)
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Figure 8: ADCIGs obtained for a flat reflector when a constant anisotropic velocity was per-
turbed by ρV = .95. Superimposed onto the images is the RMO function computed using the
RMO function we derive in this paper (equation (30)). pierre1-Rho-95-Alpha-0 [CR]



SEP–124 RMO in anisotropic ADCIGs with dips 31

Figure 9: ADCIGs obtained for a 15◦ dipping reflector when a constant anisotropic velocity
was perturbed by ρV = .95. Superimposed onto the images are the RMO functions computed:
a) using the RMO function we derived in this paper (equation (30)); b) assuming that the
reflector is flat, i.e. using the equation derived in Biondi (2005b). pierre1-Rho-95-Alpha-15
[CR]
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Figure 10: ADCIGs obtained for a 30◦ dipping reflector when a constant anisotropic velocity
was perturbed by ρV = .95. Superimposed onto the images are the RMO functions computed:
a) using the RMO function we derived in this paper (equation (30)); b) assuming that the
reflector is flat, i.e. using the equation derived in Biondi (2005b) pierre1-Rho-95-Alpha-30
[CR]
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