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Seismic waves in rocks with fluids and fractures

James G. Berryman

ABSTRACT

Seismic wave propagation through the earth is often strongly affected by the presence of
fractures. When these fractures are filled with fluids (oil, gas, water, CO,, etc.), the type
and state of the fluid (liquid or gas) can make a large difference in the response of the
seismic waves. This paper will summarize some early work of the author on methods of
deconstructing the effects of fractures, and any fluids within these fractures, on seismic
wave propagation as observed in reflection seismic data. Methods to be explored here
include Thomsen’s anisotropy parameters for wave moveout (since fractures often induce
elastic anisotropy), and some very convenient fracture parameters introduced by Sayers
and Kachanov that permit a relatively simple deconstruction of the elastic behavior in
terms of fracture parameters (whenever this is appropriate).

INTRODUCTION

Fractures can play a key role in many reservoirs. Cracks and/or fractures increase rock com-
pliance (reduce stiffness), and thus lower wave speeds. If the distribution in space and/or
orientation of fractures present is not isotropic, then significant anisotropy can be observed
in seismic data. Aligned vertical fractures in particular are important as they can lead to az-
imuthal dependence (i.e., so that results depend on the direction in which any linear surface
seismic array has been emplaced). Fracture-induced effects are also sensitive to fluids within
the fractures. In particular, gas or air will have little effect, while liquids in fractures can stiffen
them so much that liquid-saturated fractures are nearly as stiff as the surrounding rock. For
partially saturated cracks and fractures, the fracture will be almost as compliant as a gas-filled
fracture until 90 to 95% or more of the fracture volume is filled with liquid. Fractures having
patchy saturation (separate and distinct pockets of gas and liquid) (White, 1975; Berryman et
al., 1988; Endres and Knight, 1989; Mavko and Nolen-Hoeksema, 1994; Dvorkin and Nur,
1998; Johnson, 2001; Berryman et al., 2002a; Berryman, 2004) can also behave differently
from any of the other cases mentioned.

Fluids such as oil, gas, water, or CO; are often involved in many of the problems of most
practical interest. Resolution of various practical and scientific issues in the earth sciences
(Wawersik et al., 2001) depends on knowledge of fluid properties underground, and also how
the fluids move. In environmental cleanup applications, the contaminants to be removed from
the earth are typically liquids such as gasoline or oil, or ground water contaminated with
traces of harmful chemicals. In commercial oil and gas exploration, the fluids of interest are
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hydrocarbons in liquid or gaseous form. In analysis of the earth structure, partially melted
rock is key to determining temperature and local changes of structure in the Earth’s mantle. In
all these cases the tool most commonly used to analyze the fluid content is measurements of
seismic (compressional and shear) wave velocities in the earth. Depending on the application,
the sources of these waves may be naturally occurring such as earthquakes, or man-made such
as reflection seismic surveys at the surface of the earth, or ship-based survey methods over
the ocean, vertical seismic profiling from boreholes to surface, or still more direct (but higher
frequency) measurements using logging tools in either shallow or deep boreholes.

In many of the cases mentioned a variety of possible explanations for the observed wave
velocity and attenuation discrepancies between theory and experiment have been put forward,
including viscoelastic effects (velocity decrement due to frequency-dependent attenuation),
fluid-enhanced softening of intragranular cementing materials, chemical changes in wet clays
that alter mechanical properties, etc. Providing some of the analytical and computational tools
needed for treating these difficult problems as well as others for various applications is one of
the goals of the work presented here.

A review article by Berryman (1995) summarized the state of the art in effective medium
theories as applied to heterogeneous rocks and rock/fluid mixtures. I assume throughout that
this material is available to or already known to the reader and will, therefore, not attempt to
repeat this review already covered in the AGU Handbook. Then, I can concentrate on more
recent developments that are the specific focus of the paper.

ANISOTROPY DUE TO FRACTURES

Prior work on effective medium theory (Berryman, 1995) and double-porosity dual-perme-
ability modeling (Berryman and Wang, 2000; Berryman and Pride, 2002a; Pride and Berry-
man, 2003a,b) has most often involved calculation of isotropic properties. In almost all cases,
it is much harder to estimate anisotropic properties because the first step in such a calculation
requires knowledge of both the effects of an oriented inclusion, and knowledge of a distribu-
tion (both in space and in orientation) of such inclusions. Then an additional calculation of
the overall properties based on microdistribution information is needed. Unfortunately, we
will seldom know the microdistribution of the inclusions, and so we are immediately limited
in what we can do scientifically along these lines in most cases. However, there is one ex-
ception to this that arises in the case of flat cracks in otherwise elastic media. This problem
was originally studied in some detail by O’Connell and Budiansky (1976) and Budiansky and
O’Connell (1977). They showed in particular that, in the flat crack limit, a single parameter
— the crack density p — was sufficient to describe the behavior of isotropic systems. This
analysis was good for representing the behavior at very low crack densities. In order to ar-
rive at higher crack densities, these authors made use of an older effective medium theory
sometimes called “self-consistent”, and sometimes more accurately described as “asymmetric
self-consistent.” This approach had the drawback that it overpredicted the effect of cracks on
reducing elastic compliance, and therefore gave a relatively low value p, >~ 9/16 ~ 0.56 at
which the cracked medium would fail. But it is known that failure does not usually occur
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at such small crack densities, so these overall predictions are often criticized on this basis.
[See Henyey and Pomphrey, 1982; Zimmerman, 1991.] Hudson (1980; 1996) used a different
method, the so-called “method of smoothing” first introduced in the mathematics literature, for
the crack problem. Keeping density corrections just to first order in the Hudson approach gives
an improvement over the previously mentioned scheme. Hudson also introduced a second or-
der correction, but Sayers and Kachanov (1991) point out that this approach then violates
rigorous Hashin-Shtrikman upper bounds on the moduli for this problem. They recommend
instead using a differential scheme [see Zimmerman (1991) for an excellent review of the
DS], because the DS tracks Hudson’s first order model at low concentration of cracks, but
never violates the HS bounds at high concentrations.

Elastic energy and the crack density tensor

Sayers and Kachanov (1991) also introduce a very interesting and useful scheme in the same
paper that permits the calculation of constants for anisotropic cracked media from estimates of
the behavior (such as that predicted by DS) for the isotropic case. This approach is a tremen-
dous simplification of an otherwise very difficult technical problem. The key idea they use is
to introduce an elastic potential energy quadratic in the stress tensor that can be expressed in
terms of invariants of the stress tensor in various combinations involving the “crack density
tensor.” This approach results in a fairly complicated energy potential function involving nine
distinct terms. But this function has the advantage that, upon linearization in the crack density,
it reduces to only four terms. Two of these terms are the standard ones for the pure (uncracked)
medium and the remaining two terms contain the linear contributions due to the cracks. Now
it is not obvious that linearization is permissible in the crack density ranges of interest, but
Sayers and Kachanov (1995) showed in later work that the remaining contributions from the
fourth rank crack-density tensor are always small — and therefore negligible in most situa-
tions of practical interest. The neglect of these terms nevertheless implies a certain amount of
error in any calculation made based on their neglect, but — if this error is of the size of our
measurement error or less — it should not be a serious impediment to studies and analysis of
these systems.

To give one example, we find that the corrections to the compliance matrix S;; due to the
presence of an isotropic crack distribution take the form:

2(ni+n2)/3 2n1/3 2m/3
2m/3 2(n1+n2)/3 2m/3
2m/3 2n1/3 2(n1+n2)/3

ASij=p (1

4n2/3 ’
4n2/3
4n2/3

where 11 and 1, are the two coefficients appearing in the Sayers and Kachanov (1991) theory
that depend on the presence of cracks, and p = Nr3/V is the crack density (where N/ V is the
number desnity and r is the radius of the flat cracks when they are penny-shaped as assumed
here). These two coefficients can be determined for any crack density by computing the bulk
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and shear moduli from the compliance matrix Si*j = §;j + AS;; and comparing the results one-
to-one with the results from any effective medium theory one trusts. For these purposes, the
differential scheme (DS) is the one that Sayers and Kachanov (1991) recommend, but I have
shown elsewhere that another scheme — a symmetric self-consistent scheme that is sometimes
called the CPA (for coherent potential approximation) — gives very comparable results. The
results can also be compared to rigorous bounds (this work is in progress) and, therefore, also
used to obtain rigorous upper bounds on both |n1| and 7,. I have done some initial studies of
this type and found that the value of |7;| is generally much smaller in magnitude that of 7,. In
particular, |n;/n2| < 0.01 is typical of the observed results for both DS and CPA.

The real advantage of this approach can now be shown very simply using a couple of
examples.

First, consider the situation in which all the cracks in the system have the same vertical
(z-)axis of symmetry. Then, the cracked/fractured system is not isotropic, and we have the
compliance correction matrix

0 0 m
0 0 m
20m +
ASj=p| ™ ™ (1 +n2) - . ?)
22

0

Now it is also not difficult to see that, if the cracks were oriented instead so that all their
normals were pointed horizontally along the x-axis, then I would have one permutation of
this matrix and, if instead they were all pointed horizontally along the y-axis, then I would
have a third permutation of the matrix. If I then want to understand the isotropic correction
matrix in (1), I can average these three permutations: just add the three AS’s together and
then divide by three. Having done that, I exactly recover the isotropic compliance corrections
matrix displayed in (1). This construction shows in part both the power and the simplicity of
the Sayers and Kachanov (1991) approach.

Next, consider the case when all cracks have their normals lying randomly in parallel
planes. Then, if the parallel planes are taken to be horizontal, the cracks are all vertically
aligned as in Figure 1. So, I immediately find the anisotropic (i.e., vertical transverse isotropy
or VTI) result that

(m +n2) n n/2
n (m+mn) ni/2

n/2 ni/2 0

ASij=p (3)

n2
n2
2m

The reader should check that adding two-thirds of (3) to one-third of (2) recovers (1), since
this combination also represents an isotropic ensemble of fractures.
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This same basic concept then works very well for any assumed symmetry that we might
like to model. There is no additional work to be done once (i) the isotropic results are known
(for some EMT) and (ii) the layout of the two n’s in the correction matrix AS have been
determined once and for all for a given elastic symmetry resulting from a specific choice of
crack orientation distribution. Sayers and Kachanov (1991) give a precise prescription for
this. Although I make use of this prescription here, I will not show the details in order to avoid
some of the mathematical complications inherent in their tensorial expressions.

There are interesting and important questions of uniqueness related to the inverse problem
(i.e., deducing the n’s from seismic wave observations) since more than one type of distribution
can give rise, for example, to vertical transverse isotropy (VTI). Then, the question is whether
quantities such as the Thomsen parameters of anisotropy can help us to remove some of these
possible ambiguities from the interpretations of field measurements.

Thomsen parameters

If we have the compliance correction matrix AS;;, then we can quickly find expressions for the
Thomsen seismic wave parameters for weak anisotropy (Thomsen, 1986; 1995; 2002; Rathore
et al., 1995; Riiger, 1998; 2002; Grechka, 2005). Clearly, a weak anisotropy assumption is
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also consistent with the small crack density assumption that was needed above to justify the
use of the Sayers and Kachanov (1991) method.

There are three Thomsen parameters: y, €, and §. Parameter y is essentially the fractional
difference between the S H-wave velocities in the horizontal and vertical directions for a VTI
medium. Similarly, parameter € is essentially the difference between the P-wave velocities in
the horizontal and vertical directions. Parameter § is more difficult to interpret, but contributes
in an essential way both to near vertical P-wave speed variations, and also to the angular
dependence of the SV-wave speed. There are a great many steps that go into Thomsen pa-
rameter calculations since the crack density effects are most conveniently expressed in terms
of the compliance matrix while the Thomsen parameters are usually defined instead in terms
of the stiffness matrix (inverse of the compliance matrix). I will not show my work here, but
merely quote the final result for the case of randomly oriented vertical fractures considered in
the previous subsection.

For present purposes, I just want to show in a quick way how this method works, so I will
concentrate on the easiest two parameters which are y and €. For these two parameters, [ have
the following results:

_ Ce6—Ca4 E G @
and
C11 — €33 E G
=— -1 — ~— , 5
€= o [( +v)m+nz]pz(1_v2) meT— o)

where v = (K —2G/3)/2(K + G/3) is Poisson’s ratio, E is related to the host medium’s bulk
(K) and shear (G) moduli by 1/E =1/9K +1/3G, and G = E/2(1 + v). In the second
expression of (5), I have neglected the term proportional to n;p as this term is normally very
small (on the order of 1% of the term retained). It can also be shown that for this model the
remaining Thomsen parameter § takes exactly the same value as € to lowest order in the crack
density parameter.
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Examples of Thomsen’s parameters for various choices of EMT are displayed in Figure
2. The results illustrate how estimates of n; and 7, obtained from four different isotropic
estimation schemes [noninteracting, DS (Zimmerman, 1991), CPA (Berryman, 1980), and
nonsymmetric self-consistent scheme of Budiansky and O’Connell (1976), and O’Connell
and Budiansky (1977)] can then be used to predict what values Thomsen’s parameters should
take in field data.

Some judgment is required then as to the most appropriate EMT to use, and prior work
shows that some knowledge of microstructure can serve as a very useful guide when making
this choice (Berge et al., 1993a; 1995).

Rayleigh wave speed

|
Figure 3: Computation of Rayleigh o9l
wave speed in quartz with horizon- o8l Quartz
tally aligned cracks for three choices o7l
of penny-crack aspect ratio, and a o8l
range of values of the crack den- ?a 05k
sity p. If the assumption/prediction >
that aspect ratio is does not really 0l
matter, just crack density, then all o \\\\
three curves should overlap, as they oall - gjg::n :
do here at the lower crack densities. oo =000 ‘ ‘ ‘
‘ jim1-Qrtzsemilogvrvs3b_rho ‘ [NR] 10° 10° 10" 10° 10 10°

Now, to provide one simple illustration of the use of what has been presented so far, con-
sider the well-known formula for the Rayleigh wave speed v = vg in an isotropic medium [see
Ewing et al. (1957), Al-Husseini ef al. (1981), Weertman (1996)]:

BsBr = Bas: (6)
where Bs = /1 —v%/v2, Bp = /1 —v2/v2, Bos = /1 —v? /202, with v, being the (isotropic)

shear wave speed and v, being the (isotropic) compressional wave speed in the host medium.
For an anisotropic medium having the same transversely isotropic (VTI) symmetry that I have
been considering (for the case of randomly oriented vertical cracks), Musgrave (1959) shows
that the equivalent result for the Rayleigh wave speed v = vy in the plane perpendicular to the
VTI axis of symmetry is determined by the cubic equation

1 5 1, 3 ce6 C66
—g -~ S 1) =0, 7
167 ~ 21 +(2 011)Q+(6‘11 ) @

where g = pov?/ces and py is the density of the medium (which is assumed to be the same as
that of the pure material without cracks, since the cracks are very flat and are not introducing
any significant amount of porosity). [It is not difficult to check that (6) and (7) are equivalent
when the elastic medium is isotropic.]
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From the definitions of y and e, it is now straightforward to see that
ces = ca4(1+2y) ®)
and
c11 = c33(1+2e). &)

Shear modulus c44 = G /(1 +n2Gp), while c33 is found by inverting S;; + AS;; for the 33
component of the stiffness matrix. So we can now easily compute the Rayleigh wave speed
by solving the cubic equation (7). Some results of this type are displayed in Figure 3. In
particular, we find that the crack density is indeed a good parameter to use, as all these plots
for different choices of crack aspect ratio clearly overlap to numerical accuracy in the low
crack density range.

GASSMANN’S EQUATIONS AND FRACTURED MEDIA

It is also important to make a connection between the fracture results quoted above and
Gassmann’s results (Gassmann, 1951; Berryman, 1999) for fluid saturated and undrained
porous media. Even very flat cracks could harbor some fluid at various times and the question
is how this fluid affects the response of the cracks.

Recall first that Gassmann’s result on the effect of fluids in a porous medium in anisotropic
media can be expressed by using a compliance correction matrix of the form:

B BB Bips
BiB B3 /32,§3
ASU — _y—l 131183 182183 133 (10)

0

where the fluid bulk modulus appears only in the factor y, and the coefficients 81,8,,83 satisfy
a sumrule of the form Z?:l Bi=a/K;=1/K;s—1/K,,, and « =1 — K4/K,, is the Biot-
Willis coefficient (Biot and Willis, 1957). The bulk moduli K; and K,, are, respectively, the
drained (porous) bulk modulus of the overall system and the mineral modulus whenever there
is only one mineral present in the system (as I will assume here for the present). [The scalar
drained modulus K, for an anisotropic system is identical to the Reuss average for the bulk
modulus of the compliance matrix.] When the system is responding anisotropically as in the
case of a set of cracks having vertical symmetry axis in the example (3), we can easily make
(10) compatible with the structure of (3) by first ignoring the coefficient 1 (which is known to
be quite small anyway), and then setting 8; = B> = 0. No other possibiities are available. This
means that Gassmann’s results are introduced into the anisotropic problem by making a fluid-
dependent perturbation to n;p and ignoring 71 p, since its value is two orders of magnitude
smaller.
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Gassmann’s formula for an isotropic medium can be written in the form:

0(2

(@—¢)/Kn+o/Ky’

where K, is the undrained bulk modulus, K is the drained bulk modulus, K, is the mineral
or solid modulus, Ky is the bulk modulus of the pore fluid, ¢ is the porosity and o =1 —
K4/K,,. This result can be rearranged in order to express it in terms of compliances, instead
of stiffnesses, as

K,=K;+

1D

11 K K\
L1 e R Ky (12)
K, Kq Ky Kfa K
Now for fractured media having no other porosity ¢ except the fractures themselves, I have
¢—47Tb3 (d)N_47r (d) (13)
37\ v T3\

where the crack density is p = Nb>/V, N/V is the number of cracks per unit volume, b is the
radius of the (assumed) penny-shaped crack, and a/b is its aspect ratio. Substituting (13) into
(12) shows that crack density p is always multiplied by the factor (1 — K /K,,) in Gassmann’s
formula, and this result thereby provides a convenient means of introducing the fluid effects
into the formulas for compliance in the presence of distributions of cracks.

The preceding review of Gassmann’s original derivation shows that it is not appropriate
to replace all occurrences of p in (1) by p(1 — K¢ /K,,). Only those terms that determine the
strain response to the principle stresses need to be considered. Furthermore, the analysis of
the symmetry conditions has shown that only those terms involving 1, need to be modified.
If we neglect n; for the remainder of this argument (it is small anyway — a 1% effect — as
stated previously), then we find that, for an isotropic system,

([ (1=K;/Kp) 0 0 \
0 (I1-K¢/Ky) 0
0 0 (1—K /K
AS; =~ 2P 2 L
3 2
2

\ /

Changes in the pertinent compliances are therefore given by

1
A<K—> =2mp(1 = Ky/Kp) 15)

u

for the undrained bulk modulus K, and

1
A =— ) = 4mp(1 — K /K5, (16)
Gers
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which is the change in the uniaxial shear modulus due the presence of cracks containing fluids.
Then, I recover the result of Mavko and Jizba (1991) easily by noting first that the change in
the undrained shear modulus for the isotropic system is

N 2a( )42 %0 (17)
—_ e = x 0,
G,) 5 \G, )5

since there are two equal shear contributions from the upper left hand 3 x 3 submatrix of (14),
while the three remaining contributions to shear compliance exhibit no fluid dependence and
so do not contribute here. Then, finally, I have

(@)=%(x)
Al—)=—=A(—), (18)
Gy 15 K,

in agreement with previous results of this type (Berryman et al., 2002b). So this formalism
provides an efficient means of correctly deriving both old and new results.

Berryman et al. (2002b) show that the factor 14—5 in (18) holds strictly only for very flat
cracks, and that the appropriate factor in other situations can be either higher or lower than %,
depending on details. The neglected terms depending on the Sayers and Kachanov parameter
n1 provide very small corrections to the drained moduli, but actually have no dependence
on fluid saturation, and so have no influence on the relationship between undrained (fluid

saturated) moduli shown in (18).

DECONSTRUCTION

The ultimate goal of the work presented has been to enable some approaches to the problem of
characterizing reservoirs, especially reservoirs containing fractures, using seismic data. This
idea is obviously not a new one (Lynn ef al., 1995). But some of the consequences of the
Sayers and Kachanov (1991) method need more detailed exploration and explication, and I
will provide some of that discussion in the following two examples. I first treat a fairly typical
reflection seismic example, and then show how to use similar ideas in a different way for very
shallow imaging and characterization.

Reflection seismic example

Assume for the sake of argument that all three Thomsen parameters, y, €, and §, have been
determined for a given reservoir and that the reservoir exhibits VTI characteristics. If the reser-
voir does not exhibit VTI symmetry, then I might need to consider HTI (horizontal transverse
isotropy) or some still more complicated type of anisotropy. But, for VTI, we need to know
something about the variety of behaviors that are possible in the presence of fractures. Equa-
tions (4) and (5) show the results expected if the fractures are vertical and randomly oriented.
But there are obviously other possibilities as well, and to have a better chance of making a
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valid interpretation of the observed behavior, we need to know more about the range of possi-
bilities for the Thomsen parameters. I will not attempt to be exhaustive here, but just present
one other result that can clearly be distinguished by such data.

Consider the case of horizontal fractures. Then, the axis of symmetry is vertical, and so the
reservoir would exhibit VTI symmetry again, just as in the case of vertical fractures randomly
oriented. But the resulting expressions for the Thomsen parameters in terms of the Sayers and
Kachanov (1991) parameters are quite different.

I find
Ce6 — C.
=0 T8 06, (19)
2c44
and
C11 —C33 E 2G
€= o [(1+v)m +’72]P(1_U2) meT— (20)

The background shear modulus is G, and corresponding Poisson ratio is v. Again, I find that
8 = € to the lowest order in the crack density parameter. Also, I have neglected the termin 1 in
the final expression as this is on the order 1% of the term retained. So I find that the magnitude
of the coefficients in this case differs by a factor of 2 from those of randomly oriented vertical
fractures as in Eqs. (4) and (5). But more importantly, the sign of these expressions is opposite
that of this other case.

Equations (19) and (20) could have been found in a very simple way from the results of
previous sections by using the following argument: We know that an isotropic distribution
of fractures is represented in the Sayers and Kachanov (1991) formalism by the correction
matrix (1) and, furthermore, that (1) is also the weighted sum of (2) and (3) — specifically,
2/3x Eq. (3) plus 1/3x Eq. (2). So the similarly weighted averages of the individual Thomsen
parameters for these two cases must add up to zero (since Thomsen’s parameters vanish for
isotropic media). In fact, this is exactly what we have found to be true. We could have used
this fact to provide a quicker (and much more elegant) derivation of (19) and (20) than the
method I actually used. Of course, the utility of this type of argument is limited to the linear
contributions of crack density to the Thomsen parameters that I have been considering here.

In both examples, the Thomsen parameter measurements may be used to estimate the
magnitude of the 12 product assuming the background shear modulus G and the background
Poisson ratio v are known, or can be estimated. But, horizontally fractured systems can also
be easily distinguished from vertically fractured systems, since the sign of the constants is
opposite in these two scenarios.

It would be helpful for interpretation purposes to enumerate other related scenarios that
could be distinguished from these two by using the anisotropy parameter data. I will leave such
problems, especially those involving azimuthal dependence (and therefore not VTI), to future
work. There is no fundamental problem with computing the relations between the Thomsen
parameters and the Sayers and Kachanov parameters for arbitrarily complicated choices of
fractured reservoir scenarios. All can be studied, but making good choices about which of the
necessarily limited number of scenarios time permits us to consider are also the most fruitful
ones will be one of the key steps in the process.
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Shallow example

The preceding example assumed that typical reflection seismic data collection could be per-
formed at the site of interest. But suppose instead that the region of interest is quite shallow,
possibly very soft and/or compliant sediments or soils, and that, in particular, it is not possible
to obtain shear wave data directly. Then what can be done?

One of the most common problems with traditional compressional wave surveys is ground
roll. Ground roll is typically composed of Rayleigh and/or Love waves, and usually the
Rayleigh wave component is the one we need to eliminate because it is contaminating the P-
wave data near the shot point. The Rayleigh wave speed depends on both the compressional
and shear wave speeds of the medium, and — being a surface wave — it is most strongly influ-
enced by the topmost layers of the earth (usually those within about one wavelength from the
surface). So for shallow imaging and analysis, why not consider using Rayleigh wave speed
measurements together with P-wave speed measurements to infer the S-wave speed.? The
pertinent S-wave speed in an anisotropic (VTI) medium is the shear wave speed in the sym-
metry plane (perpendicular to the axis of symmetry). So the formula shown previously (7) is
pertinent, but it needs to be used in a different way to find the shear wave speed vy = /ce6/ 0,

when v, = \/c11/po and vg are known.

To accomplish this goal, I first square (6). The result is a quartic equation for g = (vg/vy)>.
In this case, vg is known, but v is unknown (opposite of the earlier case). But this difference
does not cause any difficulty in the analysis. The equation can be rearranged into the form:

1, 15 3, v% %
—q " —= —q —|1+— — =0. 21
64 —79 t34 (+U[27 q+v§ 2
Equation (21) is straightforward to solve by iteration using a simple Newton-Raphson scheme
(Hildebrand, 1956; Press et al., 1988). Generally a good starting value for the scheme will be
g == 0.8 as this corresponds roughly to a trial value of vg = 0.9v;.

Having once determined the value of vy = 4/c11/p9 — using the measured Rayleigh wave
speed and the compressionial wave speed v, — in the symmetry plane, Thomsen parame-
ter analysis can be combined with the Sayers and Kachanov (1991) method in order to de-
duce useful information about the nature of the heterogeneities causing the anisotropic at the
macroscale. Once these wave speeds are known, the analysis for interpretation can proceed in
essentially the same manner as in the previous example.
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TABLE 1. Examples of Sayers and Kachanov (1991) parameters 71(p) and 1,2(p) when crack
density p << 1 for penny-shaped cracks. Four choices of effective medium theory are
considered: NI (non-inteacting), DS, (differential scheme), CPA (coherent potential
approximation), and SC (the Budiansky and O’Connell self-consistent scheme). Note that
crack density is defined here as p = Nr3/V, where N/V is number density of cracks, and
A = mr? is the area of the circular crack face.

m (GPa~) 1 (GPa™')
NI | -0.000216 0.0287
DS | -0.000216 0.0290

CPA | -0.000258 0.0290
SC | -0.0000207 0.0290

DISCUSSION AND CONCLUSIONS

Sayers and Kachanov (1991) introduced a convenient method of analyzing fractured (but oth-
erwise) elastic systems. I showed here that their method can be successfully generalized to
fluid-saturated fractures. Furthermore, when their method is used in conjunction with Thom-
sen’s anisotropy parameters (Thomsen, 1986), we find not only analytical results that aid our
intuition about these complex problems, but also a means to deconstruct velocity data and
then to interpret the nature (approximate crack density) of fractures in the system being stud-
ied. The magnitudes of the parameters 1 and 1, can be determined in a straightforward way
using any effective medium theory we trust (Kachanov, 1994; Prat and BaZant, 1997; Grechka,
2005); and also this calculation can be done just for the isotropic (and, therefore, the simplest)
case. For examples, see TABLE 1. These parameter values do not change. Only the crack den-
sity parameter, the crack orientation distributions, and possibly the crack shapes, etc., change.
For very dilute fracture systems, any of the standard effective medium theories will actually
produce virtually the same values of the parameters n; and 7,. The only variable is the crack
shape, which I have assumed here (as is most commonly done) to be penny-shaped cracks with
small aspect ratios. Values of 1 and n; can vary with changes in the assumed microstructure
(i.e., other choices of crack shapes), but values could be tabulated once and for all for the
low density limit with any choices of crack shape we might ever want to consider and then
the numbers would be universally available. Users would not need to be experts in effective
medium theory to make use of these results — although they would, of course, still need to
be experts in the interpretation of seismic data and, in particular, of the Thomsen parameters
themselves.
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