
Stanford Exploration Project, Report 124, April 4, 2006, pages 1–10

Parallel implementation of image segmentation for tracking 3D
salt boundaries

Jesse Lomask and Robert G. Clapp

ABSTRACT
We distribute the modified normalized cuts image segmentation with random boundaries
algorithm on a parallel network to track 3D salt boundaries. We identify two key steps
of this algorithm for parallelization. Firstly, we parallelize the calculation of the weight
matrix. Secondly, we parallelize the matrix-vector product of the eigenvector calculation.
This method is demonstrated to be effective on a 3D seismic cube.

INTRODUCTION

Normalized cuts image segmentation (Shi and Malik, 2000) is a pattern analysis technique
developed to extract global impressions from images . Hale and Emanuel (2003, 2002) adapted
this technique to painting 3D atomic meshes. Lomask and Biondi (2003); Lomask et al. (2004)
have since applied this technique to tracking salt boundaries. In addition to sparse matrix
storage and random sampling (Shi and Malik, 2000), other memory saving measures such as
random bounds (Lomask and Biondi, 2005) have been implemented in order to reduce the
size of problem thus reducing the exorbitant cost of applying this technique. However, to
tackle realistic 3D data sets, the computational time of this algorithm still needs to be reduced
significantly.

There are two significant computational time bottlenecks in the normalized cuts image
segmentation with random bounds algorithm. This image segmentation technique creates a
matrix containing weights relating each pixel to every other pixel in a local neighborhood.
The weights are dependent on the negative absolute value of the complex trace (instantaneous
amplitude) of the seismic. The matrix is then used to cut the image where the normalized
sum of weights cut is minimized. This normalized cut is minimized by solving an eigenvector
problem. The first bottleneck is the creation of the weight matrix as it can become quite large
requiring a lot of computation time to build. The second bottleneck is the estimation of the
eigenvector which requires numerous matrix-vector products involving the large sparse weight
matrix.

In this paper, we present a parallel implementation of the normalized cuts image segmen-
tation with random bounds technique for tracking 3D salt boundaries. We first review the
algorithm. We then describe how we have distributed the calculation of the weight matrix on
a parallel network. We then describe how we have parallelized the matrix-vector products of
the eigenvector calculation. Lastly, we test this technique on a 3D field seismic cube.

1



2 Lomask and Clapp SEP–124

METHODOLOGY

Normalized cuts image segmentation partitions images into two groups. To do this, it first
creates weights relating each sample to randomly selected samples along paths within local
neighborhoods. These weights are stored in a sparse matrix W. It then finds the cut that
partitions the image into two groups, A and B, by minimizing the normalized cut:

Ncut =
cut

totalA
+

cut
totalB

(1)

where cut is the sum of the weights cut by the partition. totalA is the sum of all weights in
Group A, and totalB is the sum of all weights in Group B. Normalizing the cut by the sum
of all the weights in each group prevents the partition from selecting overly-small groups of
nodes.

The minimum of Ncut can be found by solving the generalized eigensystem:

(D−W)y = λDy, (2)

created from the weight matrix (W) and a diagonal matrix (D), with each value on the diagonal
being the sum of each column of W. The eigenvector (y) with the second smallest eigenvalue
(λ) is used to partition the image by taking all values greater than zero to be in one group, and
its complement to be in the other. For a more detailed description, see Shi and Malik (2000).

Application to seismic

To apply this segmentation method to seismic data, the weight calculation needs to be modi-
fied. Rather than looking for clusters of pixels with similar intensity, we are now looking for
groups of pixels on each side of the bright amplitude salt boundary. Therefore, we want the
weights connecting pixels on either side of the salt boundary to be low and the weights con-
necting pixels on the same side of the salt boundary to be relatively high. Taking the negative
of the maximum amplitude along the shortest path between two nodes as the weight would
insure that the weights connecting pixels on either side of the salt boundary will be low. How-
ever weights on the same side would be alternating from low to high as they go from peak
to trough on the seismic data. This could make the grouping more uncertain. To correct this
problem, we take the negative of the maximum of the absolute value of the complex trace
(instantaneous amplitude) along the shortest path between two nodes.

vi j is a vector representing the shortest path between two nodes i and j but excluding the
nodes themselves. The weight connecting two nodes i and j is determined from the minimum
of the negative instantaneous amplitude A sampled along vi j and a user specified tolerance µ

as:

Wi j =

{

0 (min A(vi j ) <A(vi )) & (min A(vi j ) <A(vj )) & (min A(vi j ) < µ )
1 otherwise. (3)

The algorithm as designed by Shi and Malik (2000) is capable of using weights that are real-
valued instead of binary as we are using here. We have found thus far that binary weights give



SEP–124 Segmentation 3

the best results, but we still wish to experiment with real-valued weights. If we determine that
binary weights are the best way to go, then we can take advantage of the cost savings of using
logical arrays instead of real.

Random bounds

By applying bounds we greatly reduce the size of the problem. Even though the weight matrix
(W) is stored as a sparse matrix (only non-zero values are stored), it can still be very large.
Typically, the size of the sparse weight matrix is the size of the input image multiplied by the
number of samples taken from each pixel’s search neighborhood. In 2D, this can be twenty to
thirty times the size of the input image. In 3D, this problem may be even worse. Therefore, any
reduction in the size on the input image is helpful. These bounds can acquired from several
sources. For instance, these initial rough bounds can be found by first running the algorithm
with small search neighborhoods and coarse sampling.

Figure 1: A cartoon of a masked salt boundary. It is long and thin with a discontinuous salt
boundary snaking across it. jesse1-pic2 [NR]

Unfortunately, the normalized cut segmentation method tends to partition elongated im-
ages along their shortest dimension. For instance, Figure 1 is a cartoon of an elongated image
with a salt boundary snaking across it. If the segmentation algorithm were to function as
hoped, the minimum cut would be found along the salt boundary. However, because the salt
boundary is discontinuous, it is likely that the minimum of the normalized cut in equation (1)
will be found by cutting the image vertically where the image is thin.

To correct this problem, we exploit the fact that the upper boundary will necessarily be in
Group A and the lower boundary will be in Group B. In other words, we want to force the
segmentation algorithm to put the coarsely picked bounds in different groups.

We can enforce this constraint during the creation of the weight matrix (W). Recall that
this matrix contains weights relating each sample to other samples along paths within a neigh-
borhood. For any given sample, if its search neighborhood happens to cross a coarse boundary,
it becomes weighted to another sample at a random distance along the boundary. This can be
imagined by wrapping the image on a globe so that both the upper and lower bounds collapse



4 Lomask and Clapp SEP–124

to points at the poles. When estimating the weight matrix, every time a path crosses the north
or south pole, it continues down the other side. By implementing these “Random” boundaries,
we are effectively removing the upper and lower boundaries.

i

j

b

j’ b’

boundary α

α

Figure 2: A cartoon illustrating random bounds. jesse1-fig1 [NR]

In Figure 2, two nodes, i and j, of a 2D image are plotted separated by a boundary indi-
cating that node j is outside of the bounds. Vector vi j represents the shortest path connecting
them but excluding the nodes themselves. nb and tb are the unit normal and tangent vectors
where vi j crosses the boundary at location b. Together, nb and tb, make a basis on to which
vector vbj is projected and then mapped on to another basis at b′ at a random distance along
the boundary. In summary, if j is outside the boundary, then vi j ′ defines the path instead of vi j
as:

vi j = vib +vbj (4)
vb′ j ′ = b′

− (vbj ·nb)nb′ − (vbj · tb)tb′ (5)
vi j ′ = vib +vb′ j ′ . (6)

3D implementation

The most significant difference between 3D image segmentation and 2D image segmentation
is during the generation of the weight matrix, the rest of the algorithm is almost identical.
When creating the weight matrix, instead of randomly sampling from a circular neighborhood,
we sample from a sphere. Of course this means that more points are sampled per node. This,
in turn, means, that the sparse matrix is considerably less sparse and the entire algorithm more
expensive. Therefore, even with sparse matrices and tight boundaries, we still need to look for
ways of reducing the computional-time cost of this algorithm for 3D problems.



SEP–124 Segmentation 5

PARALLEL IMPLEMENTATION

Parallel calculation of the weight matrix

We have distributed the calculation of the weight matrix on a beowulf cluster using the parallel
infrastructure described in Clapp (2005). The complete image and masks are distributed to
each node. This is necessary because the random bounds requires random jumps around the
image. Different jobs are assigned different rows of the weight matrix, no communication
beween nodes is necessary while calculating the weight matrix. Upon completion, the weights
are collected into a single sparse matrix on the master node

Parallel calculation of the eigenvector

To calculate the eigenvector with the second smallest eigenvalue, we use ARPACK Fortran77
software (Lehoucq and Scott, 1996) as recommended by Shi and Malik (2000) . This is a
package of routines designed specifically for computing a few eigenvectors and eigenvalues
for large sparse matricies.

The ARPACK interface requires the user to supply the subroutine that does the matrix-
vector multiplication, The matrix-vector multiplication is the most expensive portion of cal-
culating the eignvector, and therefore the obvious target for parallelzation. We implement the
eignvector calculation in a modified master-slave scheme.

The slave nodes are intialized with a portion of the off-diagonal elements of the matrix.
The master node is given a vector by the ARPACK library. It sends that vector to the first
slave node and then begins to create the output vector by multiplying the diagonal terms of
the matrix. Upon receiving the input vector the first slave node, it passes the vector the second
slave node, and then begins multiplying the input vector by its portion of the off-diagonal
terms creating its own output vector. This process is repeated by all of the slave nodes. The
master node upon finishing multiplying the diagonal terms passes the output vector to the first
slave node. It adds it to its output vector, and passes it to the second slave node. The process
is repeated until the last slave node, which passes the completed matrix multiplication to the
master node.

By implementing the matrix multiplication in this form, a good level of load balancing, and
minimal communication wait time is acheived. We ran the approach on a Infinband network
and were able to do 200 iteration of 2 billion non-zero matrix elements in 55 minutes.

Parallel Issues

Our current bottleneck is a software design issue. Much of SEPlib, assumes axes no larger than
231 by using integers. If we exceed this number we get semi-random errors. Another potential
problem is the way we implemented the eignvector calculation. If we scale to many nodes, the



6 Lomask and Clapp SEP–124

communication time will dominate, and we will significantly degraded performance. We have
so far avoided this problem by running on a low-latency, high-bandwidth network.

FIELD TEST CASES

We tested this method on a Gulf of Mexico 3D data set.

Figure 3: A Gulf of Mexico 3D data set with a prominent salt boundary. jesse1-gom3d.dat
[ER]

In Figure 3 is a 3D seismic cube from the offshore with a prominent salt boundary. Figure
4 shows the mask used to define the bounds. In this case, we used the velocity model to define
the upper and lower bounds. Alternatively, we could have garnered the bounds from a first
pass on a sub-sampled cube.

The second smallest eigenvector from the method is displayed in Figure 5. The eigenvector
is split along the salt boundary rather than along its shorted dimension as would have resulted
without random bounds. Figure 6 displays the envelope of the data with the resulting salt
boundary pick overlaying it. Notice it does a good job of tracking the peak of the amplitude.
This illustrates that our method can be applied to 3D cubes. This is not surprising as the
method has already been applied successfully to 3D atomic meshes (Hale and Emanuel, 2003).

Some errors can be seen in Figure 7 where the picks are now overlaying the seismic data.
The errors occur in two places. One place is where the instantaneous amplitude of the salt
boundary is weak and the other area is near the boundary. The weak amplitude error can
also be seen in Figure 5, where the eigenvector is smoother. This illustrates the need for this
method to utilize more than one attribute to delineate the salt boundary.



SEP–124 Segmentation 7

Figure 4: A mask used to define the upper and lower bounds of the salt interface. This was cre-
ated from the velocity model. In cases, where a velocity model is not available, a similar mask
can be created from segmenting a sub-sampled cube or from a rough manual interpretation.
jesse1-gom3d.maskfig [ER]

Figure 5: The second smallest eigenvector that is used to partition the image. Notice it is
smooth where the amplitude does not delineate the boundary well. jesse1-gom3d.peig [CR]



8 Lomask and Clapp SEP–124

Figure 6: The boundary is extracted from the image in Figure 5 and overlain on the instanta-
neous amplitude of data. It accurately tracks the boundary. jesse1-gom3d.horizon_overlay1
[CR]

Figure 7: As Figure 6 except the boundary is overlain on the data itself. Notice it accurately
tracks the boundary except where the amplitude is weak. It also has difficulty at the boundary
of the image itself. jesse1-gom3d.horizon_overlay2 [CR]



SEP–124 Segmentation 9

CONCLUSIONS AND FUTURE WORK

We have successfully parallelized two key steps of this segmentation method: the calculation
of the weigtht matrix and the estimation of the eigenvectors. Now, with a large enough clus-
ter, almost any sized post-stack 3D data set can be globally segmented. This is an exciting
development in that this algorithm is becoming significantly more practical.

In many places on salt boundaries the amplitude can become weak and the boundary can
more easily be tracked using another attribute such as instantaneous frequency. On first glance
it seems straight forward to estimate the weights of the normalized cuts image segmentation
method using multiple attributes but to balance the weights in an optimal way may be some-
what challengeing. We hope to address this problem in the near future.

ACKNOWLEDGMENT

We would like to thank BP for allocating resources used to write this paper.

REFERENCES

Clapp, R. G., 2005, Inversion and fault tolerant parallelization using Python: SEP–120, 41–62.

Hale, D. and J. U. Emanuel, 2002, Atomic meshing of seismic images: Soc. of Expl. Geophys.,
Expanded Abstracts, 2126–2129.

Hale, D. and J. U. Emanuel, 2003, Seismic interpretation using global image segmentation:
Soc. of Expl. Geophys., Expanded Abstracts, 2410–2413.

Lehoucq, R. B. and J. A. Scott, 1996, An evaluation of software for computing eigenvalues of
sparse nonsymmetric matricies: Preprint MCS-P547-1195, Argonne National Laboratory,
Argone III.

Lomask, J. and B. Biondi, 2003, Image segmentation for tracking salt boundaries: SEP–114,
193–200.

Lomask, J. and B. Biondi, 2005, Image segmentation with bounds: SEP–120, 179–186.

Lomask, J., B. Biondi, and J. Shragge, 2004, Improved image segmentation for tracking salt
boundaries: SEP–115, 357–366.

Shi, J. and J. Malik, 2000, Normalized cuts and image segmentation: IEEE Trans on Pattern
Analysis and Machine Intelligence, 22, no. 8, 838–905.


