next up previous print clean
Next: About this document ... Up: REFERENCES Previous: Algorithm for Computation

Step-by-Step Algorithm

The iterative solution method can be broken down into a number of distinct steps: i) define initial grid using blending functions in equation 29; ii) compute functions $g_{11}(\mathbf{s^0_{ij}})$, $g_{12}(\mathbf{s^0_{ij}})$,$g_{22}(\mathbf{s^0_{ij}})$, $g(\mathbf{s^0_{ij}})$, Lij(u0), Lij(v0), Mij(u0), Mij(v0), $P_{ij}(\mathbf{s}^0)$,$Q_{ij}(\mathbf{s}^0)$, and $b^l_{ij}(\mathbf{s}^0)$; iii) compute uij0+1/2 by solving equation 31; iv) compute vij0+1/2 by solving equation 32; v) compute uij0+1 by solving equation 33; vi) compute vij0+1 by solving equation 34; vii) perform tolerance test in equation 51; and viii) repeat steps 2-7 until tolerance is reached.

 


next up previous print clean
Next: About this document ... Up: REFERENCES Previous: Algorithm for Computation
Stanford Exploration Project
4/5/2006