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Generalized Riemannian wavefield extrapolation

Jeff Shragge

ABSTRACT
This paper extends wavefield extrapolation to generalized Riemannian spaces. The key
component is the development of a dispersion relationship appropriate for propagating
wavefield on generalized non-orthogonal meshes. This wavenumber contains a number
of mixed-domain fields in addition to velocity that represent coordinate system geometry.
An extended split-step Fourier approximation of the extrapolation wavenumber is devel-
oped, which provides accurate results when multiple reference parameters sets are used.
Three examples are presented that demonstrate the validity of the theory. An important
consequence is that greater emphasis can be placed on generating smoother computational
meshes rather than satisfying restrictive semi-orthogonal criteria. This result should lead
to more accurate and efficient generalized Riemannian wavefield extrapolation.

INTRODUCTION

Riemannian wavefield extrapolation (RWE) (Sava and Fomel, 2005) generalizes wavefield
extrapolation to non-Cartesian coordinate systems. The original formulation assumed that
coordinate systems are at least semi-orthogonal and characterized by an extrapolation direction
orthogonal to the other two axes. This supposition resulted in a wave-equation dispersion
relationship for the extrapolation wavenumber containing mixed-domain fields additional to
velocity that encode coordinate system geometry. However, semi-orthogonal geometry can
be an overly restrictive assertion because many computational meshes have greatly varying
mixed-domain coefficients that cause numerical instability during wavefield extrapolation.

Initially, RWE was designed for dynamic applications where wavefields are extrapolated
on ray-based coordinate systems oriented in the wave propagation direction. This approach
generally generates high-quality Green’s functions; however, numerical instability (i.e. zero
divisions) occurs wherever the ray coordinate system triplicates. Sava and Fomel (2005) ad-
dressed this issue by iteratively smoothing the velocity model until coordinate system triplica-
tions vanish. This solution, though, is somewhat less than ideal because it counters the original
purpose of RWE: coordinate systems conformal to propagation directions.

A second more geometric RWE application is performing wavefield extrapolation to and
from surfaces of irregular geometry. Shragge and Sava (2004) formulate a wave-equation mi-
gration from topography strategy that poses wavefield extrapolation directly in locally orthog-
onal meshes conformal to the acquisition surface. Although successful in areas with longer
wavelength and lower amplitude topography, imaging results degraded in situations involv-
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ing more rugged acquisition topography. However, a more general observation is the genetic
link between degraded image quality and the grid compression/extension demanded by semi-
orthogonality.

A solution to these two problems is to extend RWE to include non-orthogonal coordinate
systems. This generalized RWE (GRWE) framework removes the semi-orthogonal constraint
to allow propagation in non-orthogonal Riemannian spaces. Non-orthogonality introduces
two additional terms in the GRWE dispersion relationship and makes existing coefficient
terms slightly more involved. The non-stationary coefficients in the resulting extrapolation
wavenumber can be handled with an extended split-step Fourier approach (Stoffa et al., 1990).
Importantly, this solution affords greater flexibility in coordinate system design while facilitat-
ing more rapid mesh generation. Furthermore, greater emphasis can be placed on optimizing
grid quality by controlling grid clustering and generating smoother coefficient fields (Shragge,
2006b).

This paper develops the 3D wave-equation dispersion relationship for performing GRWE.
I first discuss generalized Riemannian geometry and show how the acoustic wave-equation can
be formulated in a non-orthogonal Riemannian space. Subsequently, I develop an expression
for a one-way wavefield extrapolation wavenumber and present the corresponding split-step
Fourier approximation. I then present two analytic 2-D non-orthogonal coordinate systems to
help validate the developed extrapolation wavenumber expressions. The paper concludes with
a more realistic example of GRWE generated Green’s function estimates through a slice of the
SEG-EAGE salt model.

GENERALIZED RIEMANNIAN GEOMETRY

Geometry in a generalized 3D Riemannian space is described by a symmetric metric tensor,
gi j = gj i , that relates the geometry in a non-orthogonal coordinate system, {x1, x2, x3}, to
an underlying Cartesian mesh, {ξ1,ξ2,ξ3} (Guggenheimer, 1977). In matrix form, the metric
tensor is written,

[

gi j
]

=





g11 g12 g13
g21 g22 g23
g31 g32 g33



=





g11 g12 g13
g12 g22 g23
g13 g23 g33



 , (1)

where g11, g12, g22, g13, g23 and g33 are functions linking the two coordinate systems through,

g11 =
∂xk
∂ξ1

∂xk
∂ξ1

, g12 =
∂xk
∂ξ1

∂xk
∂ξ2

, g22 =
∂xk
∂ξ2

∂xk
∂ξ2

,

g13 =
∂xk

∂ξ1

∂xk

∂ξ3
, g23 =

∂xk

∂ξ2

∂xk

∂ξ3
, g33 =

∂xk

∂ξ3

∂xk

∂ξ3
. (2)

(Summation notation - gi i = g11 + g22 + g33 - is used in equations throughout this paper.) The
associated (or inverse) metric tensor, gi j , is defined by gi j = |g|gi j , where |g| is metric tensor
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matrix determinant. The associated metric tensor is given by,

[

gi j ]=
1
|g|





g22g33 − g2
23 g13g23 − g12g33 g12g23 − g13g22

g13g23 − g12g33 g11g33 − g2
13 g12g13 − g11g23

g12g23 − g13g22 g12g13 − g11g23 g11g22 − g2
12



 , (3)

and has the following metric determinant,

|g| = g33 (g11g22 − g2
12)
[

1−
g11g2

23 + g22g2
13 −2g12g23g13

g33(g11g22 − g2
12)

]

. (4)

Weighted metric tensor, m i j =
√

|g|gi j , is a useful definition for the following development.

ACOUSTIC WAVE-EQUATION IN 3D GENERALIZED RIEMANNIAN SPACES

The acoustic wave-equation for wavefield, U, in a generalized Riemannian space is,

1U = −ω2s2 (x)U, (5)

where the ω is frequency, s is the propagation slowness, and 1 is the Laplacian operator,

1U =
1

√
|g|

∂

∂ξi

(

mi j ∂U

∂ξj

)

. (6)

Substituting equation 6 into 5 generates a Helmholtz equation appropriate for propagating
waves through a 3D space,

1
√

|g|
∂

∂ξi

(

mi j ∂U

∂ξj

)

= −ω2s2
U. (7)

Expanding the derivative terms and multiplying through by
√

|g| yields ,

∂mi j

∂ξi

∂U

∂ξj
+mi j ∂2

U

∂ξi∂ξj
= −

√

|g|ω2s2
U. (8)

Defining n j as,

n j =
∂mi j

∂ξi
=

∂m1 j

∂ξ1
+

∂m2 j

∂ξ2
+

∂m3 j

∂ξ3
, (9)

leads to a more compact notation of equation 8,

n j
∂U

∂ξj
+mi j ∂2

U

∂ξi∂ξj
= −

√

|g|ω2s2
U. (10)

Developing a wave-equation dispersion relation is achieved by replacing the partial differential
operators acting on wavefield U with their Fourier domain duals,

(

mi j kξi − in j
)

kξj =
√

|g|ω2s2, (11)

where kξi is the Fourier domain dual of differential operator ∂
∂ξi

. Equation 11 represents the
dispersion relationship for wavefield propagation on a generalized 3-D Riemannian space.
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One-way wavefield extrapolation

Developing an expression for the extrapolation wavenumber requires isolating one of the
wavenumbers in equation 11 (herein assumed to be coordinate ξ3). Rearranging the results
of expanding equation 11 by introducing indicies i , j = 1,2,3 yields,

m33k2
ξ3

+
(

2m13kξ1 +2m23kξ2 − i n3
)

kξ3 =
√

|g|ω2s2 + i
(

n1kξ1 +n2kξ2

)

−m11k2
ξ1

−m22k2
ξ2

−2m12kξ1kξ2 . (12)

An expression for wavenumber kξ3 can be obtained by completing the square,

m33
(

kξ3 + (2m13kξ1 +2m23kξ2 −i n3)
2m33

)2
=

√
|g|ω2s2 − k2

ξ1

(

m11 − (m13)2

m33

)

− (13)

k2
ξ2

(

m22 − (m23)2

m33

)

− kξ1kξ2

(

2m12 − 2m13m23

m33

)

+ i kξ1

(

n1 − m13 n3
m33

)

+ i kξ2

(

n2 − m23 n3
m33

)

− n2
3

m33 .

Isolating wavenumber kξ3 yields,

kξ3 = −a1kξ1 −a2kξ2 + ia3 ±
[

a2
4ω

2 −a2
5k2

ξ1
−a2

6k2
ξ2

−a7kξ1kξ2 +a8i kξ1 +a9i kξ2 −a2
10
]

1
2 ,
(14)

where ai are non-stationary coefficients given by,

a =







g13

g33
g23

g33
n3

2m33
s

√

g33

√

√

√

√

g11

g33 −

(

g13

g33

)2
√

√

√

√

g22

g33 −

(

g23

g33

)2 [

2g12

g33 −
2g13 g23
(

g33)2

] [

n1
m33 −

m13 n3
(

m33)2

] [

n2
m33 −

m23 n3
(

m33)2

]

n3
m33







T

.

(15)

Note that the coefficients contain a mixture of m i j and gi j terms, and that positive definite
terms, a4,a5,a6 and a10 in equation 14, are squared such that the familiar Cartesian split-step
Fourier correction is recovered below.

Split-Step Fourier Approximation

The extrapolation wavenumber defined in equations 14 and 15 cannot be implemented purely
in the Fourier domain due to the presence of mixed-domain fields (i.e. a function of both ξ1
and kξ1 simultaneously). This can be addressed using an extended version of the split-step
Fourier approximation (Stoffa et al., 1990), a popular approach that uses Taylor expansions to
separate kξ3 into two parts: kξ3 ≈ k P S

ξ3
+ kSSF

ξ3
. Wavenumbers k P S

ξ3
and kSSF

ξ3
represent a pure

Fourier domain phase-shift and a mixed ω−x domain split-step correction, respectively.

The phase-shift term is given by,

k P S
ξ3

= −b1kξ1 −b2kξ2 + ib3 ±
[

b2
4ω

2 −b2
5k2

ξ1
−b2

6k2
ξ2

−b7kξ1kξ2 +b8i kξ1 +b9i kξ2 −b2
10
]

1
2 ,
(16)

where bi = bi (ξ3) are reference values of ai = ai (ξ1,ξ2,ξ3). The split-step approximation
is developed by performing a Taylor expansion about each coefficient ai and evaluating the
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results at stationary reference values bi . The stationary values of kξ1 and kξ2 are assumed to be
zero. This leads to a split-step correction of,

kSSF
ξ3

=
∂kξ3

∂a3

∣

∣

∣

∣

0
(a3 −b3)+

∂kξ3

∂a4

∣

∣

∣

∣

0
(a4 −b4)+

∂kξ3

∂a10

∣

∣

∣

∣

0
(a10 −b10) , (17)

where “0” denotes "with respect to a reference medium". The partial differential expressions
in equation 17 are,

∂kξ3

∂a3

∣

∣

∣

∣

0
= b3,

∂kξ3

∂a4

∣

∣

∣

∣

0
=

b4 ω2
√

b2
4 ω2 −b2

10

,
∂kξ3

∂a10

∣

∣

∣

∣

0
= −

b10
√

b2
10 ω2 −b2

10

, (18)

resulting in the following split-step Fourier correction,

kSSF
ξ3

= i b3 (a3 −b3)+
b4 ω2 (a4 −b4)
√

b2
4 ω2 −b2

10

−
b10 (a10 −b10)
√

b4 ω2 −b2
10

. (19)

Note that we could use many reference media followed by interpolation similar to the phase-
shift plus interpolation (PSPI) technique of Gazdag and Sguazzero (1984).

Importantly, even though there are additional ai coefficients in the dispersion relation-
ship, these can be made smooth through mesh regularization such that fewer sets of reference
parameters are needed to accurately represent wavenumber kξ3 . In addition, situations exist
where some coefficients are zero or negligible. For example, the coefficients for a weakly
non-orthogonal coordinate system (i.e. max|{g12, g13, g23}| << max{g11, g22, g33}) within a
kinematic approximation reduce to,

a ≈
[

0 0 0 s/
√

g33
√

g11/g33
√

g22/g33 0 0 0 n3/m33
]T

. (20)

Additional special cases are presented in Appendix A.

EXAMPLE 1 - 2-D SHEARED CARTESIAN COORDINATES

An instructive example is a coordinate system formed by a shearing action on a Cartesian
mesh (see figure 1). A sheared Cartesian coordinate system is defined by,





x1
x2
x3



=





1 0 cosθ

0 1 0
0 0 sinθ









ξ1
ξ2
ξ3



 , (21)

where θ is the shear angle of the coordinate system (θ = 90◦ is Cartesian). This system reduces
to a more workable set of two equations,

[

x1
x3

]

=
[

1 cosθ

0 sinθ

][

ξ1
ξ3

]

, (22)
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Figure 1: 2-D sheared Cartesian co-
ordinates. Left panel: Physical do-
main represented by sheared Carte-
sian coordinates defined by {x1, x3};
Right panel: GRWE domain cho-
sen to be the unit square {ξ1,ξ2}.
jeff1-2Dexamp [NR]

θ
ξ

1

ξ
3X

X

3

1

Physical Space Canonical Space

that has a metric tensor gi j given by,

[

gi j
]

=

[

∂xk
∂ξ1

∂xk
∂ξ1

∂xk
∂ξ1

∂xk
∂ξ3

∂xk
∂ξ1

∂xk
∂ξ3

∂xk
∂ξ3

∂xk
∂ξ3

]

=
[

g11 g13
g13 g33

]

=
[

1 cosθ

cosθ 1

]

, (23)

with a determinant |g| = sin2 θ and an associated metric tensor gi j given by,

[

gi j ]=
1

sin2 θ

[

1 −cosθ

−cosθ 1

]

. (24)

Note that because the tensor in equation 24 is coordinate invariant, equation 10 simplifies to,

1U = gi j ∂2
U

∂ξi∂ξj
= −ω2s2

U, (25)

and generates the following dispersion relation,

gi j kξi kξj = ω2s2. (26)

Expanding out these terms leads to an expression for wavenumber kξ3 ,

kξ3 = −
g13

g33 kξ1 ±

√

√

√

√

s2ω2

g33 −

(

g11

g33 −
(

g13

g33

)2
)

k2
ξ1

. (27)

Substituting the values of the associated metric tensor in equation 24 into equation 27 yields,

kξ3 = cosθ kξ1 ± sinθ

√

s2ω2 −k2
ξ1

. (28)

A numerical test using a Cartesian coordinate system sheared at 25◦ from vertical is shown
in figure 2. The background velocity model is 1500 ms−1 and the zero-offset data consist of
4 flat plane-waves t = 0.2,0.4,0.6 and 0.8 s. As expected, the zero-offset migration results
image reflectors at depths z=300, 600, 900, and 1200 m. Note that the propagation has created
boundary artifacts: those on the left are reflections due to a truncated coordinate system while
those on the right are hyperbolic diffractions caused by truncated plane-waves.
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Figure 2: Sheared Cartesian coordi-
nate system test. Coordinate system
shear angle and velocity are θ = 25◦

and 1500 ms−1, respectively. Zero-
offset data consist of 4 flat plane-
wave impulses at t = 0.2,0.4,0.6 and
0.8 s that are correctly imaged at
depths z = 300,600,900, and 1200 m.
jeff1-Rays0 [ER]

EXAMPLE 2 - POLAR ELLIPSOIDAL

A second instructive example is a stretched polar coordinate system (see figure 3). A polar
ellipsoidal coordinate system is specified by,

[

x1
x3

]

=
[

a(ξ3)ξ1 cosξ3
a(ξ3)ξ1 sinξ3

]

. (29)

Parameter a = a(ξ3) is a smooth function controlling coordinate system ellipticity and has
curvature parameters b = ∂a

∂ξ3
and c = ∂2a

∂ξ2
3

. The metric tensor gi j is,

[

gi j
]

=
[

a2 ξ1 a b
ξ1 a b ξ 2

1 (b2 +a2)

]

, (30)

with determinant |g| = a4ξ 2
1 . The associated metric and weighted associated metric tensors

are given by,

[

gi j ]=

[ b2+a2

a4 − b
a3 ξ1

− b
a3 ξ1

1
a2 ξ2

1

]

and
[

mi j ]=

[

ξ1(b2+a2)
a2 − b

a
− b

a
1
ξ1

]

. (31)

Tensors gi j and mi j specify a wavenumber appropriate for extrapolating wavefields on a 2-D
non-orthogonal mesh (see equation A-7). However, because the coordinate system is spatially
variant, we must also compute the ni fields: n1 = a2+2b2−ac

a2 and n3 = 0. Inserting these values
yields the following extrapolation wavenumber kξ3 ,

kξ3 =
ξ1b
a

kξ1 ±

√

a2ξ 2
1 s2ω2 − ξ 2

1 k2
ξ1

− ikξ1ξ1

(a2 +2b2 −ac
a2

)

. (32)
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Figure 3: Polar ellipsoidal coordinate
system example. jeff1-2Dex2 [NR]
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The kinematic version of equation 32 is,

kξ3 = ξ1

[

b
a

kξ1 ±
√

a2s2ω2 − k2
ξ1

]

, (33)

while the orthogonal polar case (i.e. a = 1) recovers the following,

kξ3 = ±ξ1

√

s2ω2 − k2
ξ1

. (34)

Figure 4 shows an ellipsoidal polar coordinate system defined by a = 1+0.2ξ3 −0.05ξ 2
3 .

The upper left panel shows a v(z) = 1500 + 0.2 z velocity function overlain by a coordinate
system mesh. The upper right panel presents velocity model as mapped into the GRWE do-
main. The data used in this test consisted of 4 flat plane-waves. Given this experimental setup,
propagating flat plane-waves should not bend in the Cartesian domain because of the v = v(z)
velocity model, even though there is velocity variation across each extrapolation step in the
GRWE domain. Hence, the impulses have curvature in the GRWE domain (lower right panel).
The lower left panel shows the GRWE domain imaging results mapped back to a Cartesian
domain. Consistent with theory, the flat plane-waves are imaged as flat reflectors. Note that
the edge effects are again caused by coordinate system and plane-wave truncation.

EXAMPLE 3 - GRWE GREEN’S FUNCTION GENERATION

The final test uses GRWE to generate estimates of Green’s functions. The test velocity model
is a slice of the SEG-EAGE salt model (see figure 5). The contrast between the salt body and
sediment velocities cause the wavefield to exhibit complicated propagation including signif-
icant wavefield triplication and multipathing. The upper left panel shows the velocity model
with an overlain coordinate mesh generated by the differential method discussed in Shragge
(2006a). The mesh is a ray-based coordinate system because the first and last extrapolation
steps are formed by the 0.04 s and 2.25 s travel-time isochrons from a first-arrival Eikonal
equation solution. The velocity model in the GRWE domain is illustrated in the upper right
panel.

The lower right panel shows the impulse response test in the GRWE domain. The 7 impul-
sive waves conform fairly well to the travel-time steps, except where they enter the salt body to
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Figure 4: Ellipsoidal polar coordinate system test example. Upper left: v(z) = 1500 + 0.2 z
velocity function overlain by a polar ellipsoidal coordinate system defined by parameter a =
1+0.2ξ3 −0.05ξ 2

3 . Upper right: velocity model in the GRWE domain. Bottom right: Imaged
reflectors in GRWE domain. Bottom left: the GRWE domain image mapped to a Cartesian
mesh. jeff1-Polar [ER]
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the lower left of the image. The migration results mapped back to Cartesian space are shown
in the lower left panel. The wavefield to the left of the shot point is fairly complicated and
the energy in the salt body and the corresponding upward refracted (and perhaps reflected?)
wavefields are strongly present. Figure 6 presents a comparison test between GRWE and
Cartesian extrapolation. Beneath and to the right of the shot point the wavefields are fairly
similar except for a phase-change. However, they are significantly different to the left because
Cartesian-based extrapolation cannot propagate energy laterally with the same accuracy and
upward at all. Hence, this energy is absent from the wavefield in the lower panel.

CONCLUDING REMARKS

This paper extends the theory of Riemannian wavefield extrapolation to generalized 3D non-
orthogonal coordinate systems. The extrapolation wavenumber decouples from the other
wavenumbers allowing us to use an extended split-step Fourier approximate solution. The
examples indicate that wavefields can be extrapolated on non-orthogonal coordinate meshes.
This generalization allows users to design meshes that have smoother mixed-domain fields
that should lead to more accurate and efficient GRWE.
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Figure 5: Example of GRWE generated Green’s Functions on structured non-orthogonal mesh
for a slice through the SEG-EAGE Salt data set velocity model. Top left: Salt model in
physical space with an overlain ray-based mesh. Top right: Velocity model in the GRWE
domain. Bottom right: Wavefield propagated in ray-coordinates through velocity model shown
in the upper right. Bottom left: Wavefield in bottom right interpolated back to Cartesian space.
jeff1-SPexamp [ER]
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Figure 6: Results of a comparison test between generalized Riemannian wavefield extrapola-
tion (top panel) and Cartesian-based extrapolation (bottom panel). jeff1-SPcompare [ER]
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APPENDIX A

The extrapolation wavenumber developed in equation 14 is appropriate for any non-orthogonal
Riemannian geometry. However, there are a number of situations where symmetry or partial
orthogonality are present. Moreover, one may wish to make a kinematic approximation where
all of the imaginary components of the wavenumber are ignored. These situations are dis-
cussed in this Appendix.

3D Semi-orthogonal Coordinate Systems - Semi-orthogonal coordinate systems occur
where one coordinate is orthogonal to the other two coordinates (Sava and Fomel, 2005). In
these cases the m13 and m23 components of the weighted metric tensor are identically zero,
which leads to the following extrapolation wavenumber,

kξ3 = ia3 ±
[

a2
4ω

2 −a2
5k2

ξ1
−a2

6k2
ξ2

−a7kξ1kξ2 + ia8kξ1 + ia9kξ2 −a2
10
]

1
2 , (A-1)

where,

a =



0 0
n3

2m33
s

√

g33

√

g11

g33

√

g22

g33
2g12

g33
n1

m33
n2

m33
n3

m33





T

. (A-2)

which are the coefficients recovered by Sava and Fomel (2005).

3-D Kinematic Coordinate Systems - Wave-equation migration amplitudes are generally
inexact in laterally variant media - even in a Cartesian based system. Hence, one benefi-
cial approximation that reduces computational cost is to consider only the kinematic terms in
equation 14. This approximate generates the following extrapolation wavenumber,

kξ3 = a1kξ1 +a2kξ2 ±
[

a2
4ω

2 −a2
5k2

ξ1
−a2

6k2
ξ2

−a7kξ1kξ2 −a2
10
]

1
2 , (A-3)

where,

a =



−
g13

g33 −
g23

g33 0
s

√

g33

√

g11

g33 −
(

g13

g33

)2
√

g22

g33 −
(

g23

g33

)2 2 g12

g33 −
2 g13g23
(

g33
)2 0 0

n3

m33





T

.

(A-4)

3-D Kinematic Semi-orthogonal coordinate systems - Combining the two above restric-
tions yields the following extrapolation wavenumber,

kξ3 = ±
[

a2
4ω

2 −a2
5k2

ξ1
−a2

6k2
ξ2

−a7kξ1kξ2 −a2
10
]

1
2 , (A-5)

where,

a =



0 0 0
s

√

g33

√

g11

g33 −
(

g13

g33

)2
√

g22

g33 −
(

g23

g33

)2 2 g12

g33 −
2 g13g23
(

g33
)2 0 0

n3

m33





T

.

(A-6)
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Note that the expression 8 = 1, and that components of the metric tensor are significantly
simplified.

2-D Non-orthogonal coordinate systems - Two-dimensional situations are handled by
identifying ξ2 = 0. Hence, all derivatives in the associated metric tensor g i j with respect
coordinate ξ2 are identically zero. Hence, a 2-D non-orthogonal coordinate system can be
represented by

kξ3 = a1kξ1 + ia3 ±
[

a2
4ω

2 −a2
5k2

ξ1
+a8ikξ1 −a2

10
]

1
2 , (A-7)

where,

a =



−
g13

g33 0
n3

2m33
s

√

g33

√

g11

g33 −
(

g13

g33

)2
0 0

n1

m33 0
n3

m33





T

. (A-8)

2-D Non-orthogonal Kinematic Coordinate Systems - Two-dimensional kinematic sit-
uations are handled through identity ξ2 = 0. Again, all derivatives in the associated metric
tensor gi j with respect coordinate ξ2 are identically zero, and the 2-D non-orthogonal kine-
matic extrapolation wavenumber is

kξ3 = a1kξ1 ±
[

a2
4ω

2 −a2
5k2

ξ1
−a2

10
]

1
2 , (A-9)

where,

a =



−
g13

g33 0 0
s

√

g33

√

g11

g33 −
(g13

g33

)2
0 0 0 0

n3

m33





T

. (A-10)

2-D Orthogonal Coordinate Systems - Two-dimensional situations are handled with ξ2 =
g13 = 0. Accordingly, all derivatives in the associated metric tensor g i j with respect coordinate
ξ2 are identically zero, and the 2-D non-orthogonal coordinate system is represented by

kξ3 = ia3 ±
[

a2
4ω

2 −a2
5k2

ξ1
+ ia8kξ1 −a2

10
]

1
2 , (A-11)

where,

a =



0 0
n3

2m33
s

√

g33

√

g11

g33 −
(

g13

g33

)2
0 0

n1

m33 0
n3

m33





T

. (A-12)

2-D Orthogonal Kinematic Coordinate Systems - The above two approximations can
be combined to yield the following extrapolation wavenumber for 2-D orthogonal kinematic
coordinate systems,

kξ3 = ±
[

a2
4ω

2 −a2
5k2

ξ1
−a2

10
]

1
2 , (A-13)

where,

a =



0 0 0
s

√

g33

√

g11

g33 −
(

g13

g33

)2
0 0 0 0

n3

m33





T

. (A-14)


