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Optimized implicit finite-difference migration for VTI media

Guojian Shan

ABSTRACT
I develop an implicit finite-difference migration method for vertical transversely isotropic
(VTI) media with laterally varying anisotropy parameters. I approximate the disper-
sion relation of VTI media with a rational function series, the coefficients of which are
estimated by least-squares optimization. These coefficients are functions of Thomsen
anisotropy parameters. They are calculated and stored in a table before the wavefield ex-
trapolation. The implicit finite-difference scheme for VTI media is almost the same as
that of the isotropic media, except that the coefficients are derived from the pre-calculated
table. In the 3D case, a phase-correction filter is applied after the finite-difference opera-
tor to eliminate the numerical-anisotropy error caused by two-way splitting. This finite-
difference operator for VTI media is accurate to 60◦, and its computational cost is almost
the same as the isotropic migration. I apply this method to a 2D synthetic dataset and a
2D slice of a real 3D dataset to validate the method.

INTRODUCTION

Anisotropy is becoming increasingly important in seismic imaging. If anisotropy is not in-
cluded in migration, reflectors will not be imaged at the right positions, or even worse, they
will be defocused. However, imaging in a general anisotropic medium is still a challenging
problem. A vertical transversely isotropic (VTI) medium is one of the simplest and most prac-
tical approximations for anisotropic media in seismic imaging. Compared to that of isotropic
media, the dispersion relation of VTI media is much more complicated. As a result, phase-
shift-based methods (Rousseau, 1997; Ferguson and Margrave, 1998) and explicit convolution
methods (Uzcategui, 1995; Zhang et al., 2001a,b; Baumstein and Anderson, 2003; Shan and
Biondi, 2005; Ren et al., 2005) are usually used in anisotropic migration, because the com-
plex dispersion relation does not increase the difficulty of these algorithms. However, phase
shift with interpolation requires a lot of reference wavefields, because there are two Thomsen
anisotropy parameters in addition to the vertical velocity. Explicit convolution methods do not
guarantee stability, and they also require long convolution filters to achieve good accuracy.

The implicit finite-difference method has been one of the most attractive migration meth-
ods for isotropic media. It can handle lateral variation naturally and guarantee stability. Tra-
ditional finite-difference methods, such as the 15◦ equation (Claerbout, 1971) and the 45◦

equation (Claerbout, 1985), approximate the dispersion relation by the truncation of Taylor
series. Lee and Suh (1985) approximate the square-root equation with rational functions, and
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optimize the coefficient with least-squares. This can achieve a scheme accurate to 65o. It is
much more difficult to design an implicit finite-difference method for VTI media, because of
the complicated dispersion relation. Under the weak anisotropy assumption, Ristow and Ruhl
(1997) design an implicit scheme for VTI media. Liu et al. (2005) apply a phase-correction
operator (Li, 1991) after the finite-difference operator for VTI media and improve the accu-
racy.

In this paper, I present an optimized one-way wave equation for VTI media and introduce
a table-driven, implicit finite-difference method for laterally varying media. I also apply the
phase-correction filter to reduce the error. I test the scheme with synthetic and real data.

OPTIMIZED ONE-WAY WAVE EQUATION OPERATOR FOR VTI

For isotropic media, the dispersion relation for the one-way wave equation can be represented
as

kz
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kr
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where ω is the circular frequency, v = v(x , y, z) is the velocity, kz is the wavenumber, kr =
√

k2
x + k2

y is the radial wavenumber, and kx ,ky are wavenumbers for x and y respectively. Let
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. The square-root function can be approximated by a series of rational

functions:
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The coefficients αi and βi can be obtained by Taylor-series analysis or rational factorization.
If we consider the second-order approximation (n = 1) and α1 =

1
2 , β1 =

1
4 , we obtain the

traditional 45◦ equation. The coefficients αi and βi can also be obtained by least-squares opti-
mization, and a more accurate finite-difference scheme like the 65◦ equation can be obtained
(Lee and Suh, 1985).

For VTI media, the true dispersion relation requires solving a quartic equation numerically
(Shan and Biondi, 2005). With the assumption that the S-wave velocity is much smaller than
the P-wave velocity, the dispersion relation for VTI media can be obtained analytically and
represented as follows:
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where vp = vp(x , y, z) is the vertical velocity, and ε = ε(x , y, z) and δ = δ(x , y, z) are the
anisotropy parameters defined by Thomsen (1986):

ε =
C11 −C33

2C33
,δ =

(C11 +C44)2
− (C33 −C44)2

2C33(C33 −C44)
,



SEP–124 Implicit migration for VTI 19

where Ci j are elastic stiffness moduli. Let Sz =
kz

ω/vp
and Sr =

kr
ω/vp

. This dispersion relation
can be further simplified under the weak anisotropy assumption, and it can be approximated
as

Sz ≈ 1−
α1S2

r
1−β1 S2

r
, (4)

where α1 = 0.5(1 + 2δ) and β1 =
2(ε−δ)
1+2δ

+ 0.25(1 + 2δ) (Ristow and Ruhl, 1997). The coeffi-
cients α1 and β1 are obtained analytically by Taylor-series analysis.

As in the isotropic case, the coefficients αi and βi can also be obtained by least-squares
optimization. The advantage of least-squares approximation is that I do not have to derive
an explicit approximated expression for the dispersion relation analytically. This is especially
useful for anisotropic media. For VTI media, I can use the true dispersion relation, and no
assumption of small S-wave velocity and weak anisotropy is necessary.

Generally, the Padé approximation suggests that if the function Sz(Sr ) ∈ Cn+m , then Sz(Sr )
can be approximated by a rational function Rn,m (Sr):

Rn,m (Sr) =
Pn(Sr)
Qm(Sr )

, (5)

where

Pn(Sr ) =

n
∑

i=0
ai S i

r

and

Qm(x) =

m
∑

i=0
bi S i

r

are polynomials of degree n and m, respectively. The coefficients ai and bi can be obtained
either analytically by Taylor-series analysis or numerically by least-squares fitting.

Figure 1: Dispersion relation: curve
A is the true dispersion relation; B
is the aprroximate dispersion relation
by Tayor-series analysis; C is the ap-
proximate dispersion relation by opti-
mization. guojian2-kz1 [ER]
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Figure 2: Relative dispersion error:
curve D is the relative dispersion er-
ror of the approximation by Taylor-
series analysis; E is the relative dis-
persion error of the approximation by
optimization. guojian2-err1 [ER]

We can obtain the coefficients ai and bi by solving the following optimization problem:
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where φ is the maximum optimization angle. This problem can be changed to
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The optimization problem (7) can be solved by a least-squares method. Given ε and δ, we can
solve ai and bi from equation (7), and we can approximate kz as follows:
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ω
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r
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r
. (8)

As Ma (1981) suggested, if m = n, equation (8) can be further split into a rational-function
series as follows:
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The dispersion error of approximation (9) is given by
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The relative dispersion error is defined by 1kz/kz .

For the second-order approximation (m = 1,n = 1), Figure 1 shows the true and approxi-
mated dispersion relation, given ε = 0.4 and δ = 0.2. In Figure 1, curve A is the true disper-
sion relation curve. B is the approximated dispersion suggested by Ristow and Ruhl (1997),
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in which α1 = 0.700000 and β1 = 0.635714. C is the approximated dispersion relation by
the least-squares optimization, in which α1 = 0.664820 and β1 = 0.948380. The dispersion
relation by optimization (C) approximates the true dispersion relation better than the approxi-
mation using Taylor-series analysis and the weak anisotropy assumption.

Figure 2 shows the relative dispersion error. D is the relative dispersion error of the ap-
proximation using the Taylor-series analysis. E is the relative dispersion error of the optimized
one-way wave operator. Figure 2 shows that opimization greatly improves the dispersion re-
lation. If we accept a one-percent dispersion error, the optimized one-way wave-equation is
accurate to 60◦ while the approximation using Taylor-series analysis is accurate to only 30◦.

TABLE-DRIVEN IMPLICIT FINITE-DIFFERENCE MIGRATION

For the second-order approximation (m = 1,n = 1), equation (9) is the following cascaded
partial differential equation in the space domain:

∂
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vp
P , (11)
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In isotropic migration, α1 and β1 are constant. In VTI media, α1 and β1 are functions of the
anisotropy parameters ε and δ. For laterally varying media, the value of α1 and β1 also vary
laterally. It is too expensive to calculate α1 and β1 for each grid point during the wavefield
extrapolation. I calculate α1 and β1 for a range of ε and δ and store them in a table before the
migration. I then generate maps of α1 and β1 from the table. With the map of the coefficents
α1 and β1, the finite-difference scheme for VTI media can be performed in the same way as
an isotropic migration.

PHASE CORRECTION FILTER

In the 3D case, as in the isotropic migration, the dispersion relation is split into x and y
components as follows:
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P . (13)

This two-way splitting causes numerical anisotropy, which can be remedied by a phase-
correction filter (Li, 1991) in the Fourier domain as follows:

P = Pei1zkL , (14)
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Figure 3: Impulse responses: (a) Optimized finite-difference method; (b) Finite-difference
method by Tayor-series analysis; (c) Phase-shift method. guojian2-impulse [CR]
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where vr
p is the reference vertical velocity, εr and δr are the reference anisotropy parameters,

and αr
1 and βr

1 are the optimized finite-difference coefficients corresponding to the anisotropy
parameters εr and δr .

NUMERICAL EXAMPLES

Impulse response

Figure 3 shows the impulse responses of a homogeneous VTI medium. The vertical velocity
of the medium is 2000 m/s, the anisotropy parameter ε is 0.4 and the anisotropy parameter
δ is 0.2. The travel-time of the impulse is 2 seconds. Figure 3(a) is the impulse response
of the optimized implicit finite-difference operator, Figure 3(b) is the impulse response of
the finite-difference operator by Taylor-series analysis suggested by Ristow and Ruhl (1997),
and Figure 3(c) is the impulse response of the phase-shift operator, using equation (3) as the
dispersion relation. Comparing these three impulse responses, we can see that the impulse
response of the optimized implicit finite-difference operator (Figure 3(a) ) is more accurate
than the impulse response from Taylor-series analysis (Figure 3 (b)). The impulse response in
Figure 3(a) is accurate to 60◦, while the impulse response in Figure 3(b) is accurate to only
30◦. The impulse responses also verify the relative-dispersion-relation error analysis in Figure
2.

A synthetic dataset

Figures 4-6 show a synthetic model for VTI media. Figure 4 is the velocity model, Figure 5
is the map of the anisotropy parameter ε, and Figure 6 is the map of the anisotropy parameter
δ. There are 720 shots in total and the maximum offset for each shot is 8000 meters. The
challenging part of this model is to accurately image the steep fault, salt flank and the two
abnormal sediments near the right corner of the salt body. I run a plane-wave migration, using
the optimized implicit finite-difference operator as the extrapolator. I generate 70 plane-wave
sources, for which the take-off angles at the surface range from −40◦ to 40◦. Figure 7 shows
the image. Notice that the steeply dipping salt flank and the fault are well imaged. The steepest
part of the salt flank is about 60◦. The abnormal sediments also are well imaged.

A real dataset: ExxonMobil MC311

Figures 8 and 9 show the map of two anisotropy parameters, ε and δ, for a 2D slice of the real
dataset MC311. Notice the strong anisotropic layers around the salt body. Figure 10 shows the
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Figure 4: Vertical velocity model. guojian2-vpani [ER]

Figure 5: Anisotropy parameter ε. guojian2-epsani [ER]
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Figure 6: Anisotropy parameter δ. guojian2-dltani [ER]

Figure 7: Implicit finite-difference migration. guojian2-imfdhess [CR]
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image obtained by plane-wave migration, using the optimized implicit finite-difference oper-
ator as the extrapolator. The steeply dipping sediments around the salt below the anisotropic
layers are well imaged. Figure 11 shows the image obtained by plane-wave migration, using an
implicit isotropic operator plus a 5 point explicit anistropic correction filter (Shan and Biondi,
2005) as the extrapolator. The two images are comparable, while the implicit finite-difference
method is much cheaper.

CONCLUSION

I present an implicit finite-difference migration method for VTI media. The scheme is de-
signed by approximating the dispersion relation with rational functions and solving the co-
efficients by least-squares methods. The coefficients of finite-difference are obtained from a
table, which is calculated before the wavefield extrapolation. This implicit finite-difference
method guarantees stability, and its computational cost is almost the same as isotropic implicit
finite-difference migration. Both dispersion-error analysis and impulse response indicate that
the implicit finite-difference operator is accurate to 60◦. The migrations for the synthetic and
real datasets show that this implicit finite-difference method can extrapolate the wavefield ac-
curately in laterally varying media.

ACKNOWLEDGMENTS

I would like to thank Faqi Liu from Amerada Hess for useful discussions. I would like to
thank Amerada Hess for making the synthetic dataset available and ExxonMobil for making
the real dataset available.

REFERENCES

Baumstein, A., and Anderson, J., 2003, Wavefield extrapolation in laterally varying VTI media
in 73rd Ann. Internat. Mtg. Soc. of Expl. Geophys., 945–948.

Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geophysics, 36, 467–
481.

—, 1985, Imaging the Earth’s Interior: Blackwell Scientific Publications.

Ferguson, R. J., and Margrave, G. F., 1998, Depth migration in TI media by nonstationary
phase shift in 68th Ann. Internat. Mtg. Soc. of Expl. Geophys., 1831–1834.

Lee, M. W., and Suh, S. Y., 1985, Optimization of one-way wave-equations (short note):
Geophysics, 50, 1634–1637.

Li, Z., 1991, Compensating finite-difference errors in 3-D migration and modeling: Geo-
physics, 56, 1650–1660.



SEP–124 Implicit migration for VTI 27

Figure 8: Anisotropy parameter ε. guojian2-epsex7000 [ER]

Figure 9: Anisotropy parameter δ. guojian2-dltex7000 [ER]



28 Shan SEP–124

Figure 10: Implicit finite-difference migration. guojian2-imfdex7000 [CR]

Figure 11: migration with an isotropic operator plus an explicit anisotropic correction filter.
guojian2-exfdex7000 [CR]



SEP–124 Implicit migration for VTI 29

Liu, F., Day, R., Hanson, D., Whitmore, D., Mosher, C., and Sinton, J., 2005, A stable wave
equation migration method in 3D VTI media: 67th Ann. Internat. Mtg., EAGE, Expanded
Abstracts, P002.

Ma, Z., 1981, Finite-difference migration with higher-order approximation: 1981 joint meet-
ing of the China Geophysical Society and Soc. of Expl. Geophys., Beijing China.

Ren, J., Gerrard, C., McClean, J., and Orlovich, M., 2005, Wave equation prestack depth
migration in laterally varying VTI media: 75th Ann. Internat. Mtg., Soc. of Expl. Geophys.,
Expanded Abstracts, 104–107.

Ristow, D., and Ruhl, T., 1997, Migration in transversely isotropic media using implicit oper-
ators in 67th Ann. Internat. Mtg. Soc. of Expl. Geophys., 1699–1702.

Rousseau, J. H. L., 1997, Depth migration in heterogeneous, transversely isotropic media
with the phase-shift-plus-interpolation method in 67th Ann. Internat. Mtg. Soc. of Expl.
Geophys., 1703–1706.

Shan, G., and Biondi, B., 2005, 3D wavefield extrapolation in laterally-varying tilted TI media:
75th Ann. Internat. Mtg., Soc. of Expl. Geophys., Expanded Abstracts, 104–107.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966.

Uzcategui, O., 1995, 2-D depth migration in transversely isotropic media using explicit oper-
ators: Geophysics, 60, 1819–1829.

Zhang, J., Verschuur, D. J., and Wapenaar, C. P. A., 2001a, Depth migration of shot records
in heterogeneous, tranversely isotropic media using optimum explicit operators: Geophys.
Prosp., 49, 287–299.

Zhang, J., Wapenaar, C., and Verschuur, D., 2001b, 3-D depth migration in VTI media with
explicit extrapolation operators in 71st Ann. Internat. Mtg. Soc. of Expl. Geophys., 1085–
1088.


