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Residual moveout of 2D multiples in Angle-Domain
Common-Image Gathers

Gabriel Alvarez

ABSTRACT
I show that, for specularly-reflected multiples, the constant velocity straight-ray approxi-
mation of the residual moveout in Angle-Domain Common-Image Gathers (ADCIGs) is
only appropriate for small aperture angles. The approximation is good for the primaries
because the difference between the migration velocity and the true velocity is likely to
be small. For the multiples, however, this difference may be large and correcting for ray
bending produces a better approximation that leads to better focusing of the multiples in
the Radon domain. This in turn allows a more accurate muting of the multiples. I show
results with two ADCIGs, one synthetic and one real.

INTRODUCTION

When primary reflections are depth migrated with the exact velocity of the medium, their
moveout in Angle-Domain Common-Image Gathers (ADCIGs) is flat (Biondi, 2005). When
they are migrated with the wrong velocity, their residual moveout in ADCIGs can be approx-
imated, to first order, by the equations given in Biondi and Symes (2004). For a flat reflector,
their approximation reduces the residual moveout of the primaries as a function of aperture
angle, to a tangent squared.

Specularly-reflected multiples, when migrated with the velocity of the primaries, behave
as primaries migrated with too slow velocity (Alvarez, 2005). The tangent-squared approxi-
mation can be used to design a Radon transform that focuses the energy of the primaries and
the multiples in and ADCIG according to their residual curvature and so can be used to at-
tenuate the multiples in image space (Sava and Guitton, 2003). This approximation is robust
enough that it can even be used to approximate the residual moveout of diffracted multiples,
provided that another dimension is added to the Radon transform to account for the shift of
the apex of these multiples (Alvarez et al., 2004).

Here I show that the approximation of Alvarez (2005) for the residual moveout of the
multiples is better than the straight-ray approximation, because it takes into account the non-
negligible ray bending of the multiples at the water-bottom interface and by extension any
interface in which the velocity of propagation of the primaries and the multiples is substantial,
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for example at a salt boundary. I show, with both a synthetic and a real ADCIG that the new
approximation is more accurate and that it focuses better the multiples in the Radon domain. I
then show that this results in an improvement of the estimation of the multiples and therefore
in their attenuation.

The first section briefly reviews the theory and shows a comparison of the two residual
moveout curves for a given ADCIG. The next section compares both approximations in the
Radon domain and the following section compares the results of attenuating the multiples with
both approximations on a synthetic and a real ADCIG.

THEORY OVERVIEW

The residual moveout of primaries in ADCIGs, under the approximation of stationarity of the
rays (local constant velocity) is given by (Biondi and Symes, 2004):

1nRMO =
ρ −1

ρ

sin2 γ

(cosα − sin2 γ )cosα
z̄n, (1)

where 1nRMO is the residual moveout function with respect to the aperture angle γ , ρ is
the ration between the migration and the true slowness, α is the reflector dip, z̄ is the true
(unknown) depth of the reflector and n is the unit normal vector to the reflector in the direction
of decreasing depth. For a flat reflector (α = 0) equation 1 reduces to

1nRMO =
ρ −1

ρ
tan2 γ z̄n. (2)

For primaries, we can estimate the true depth z̄ using the migration depth at normal incidence
z0 (Biondi and Symes, 2004) as

z0 =
z̄
ρ

(3)

which leads to the simple result

1nRMO = (ρ −1) tan2 γ z0n. (4)

For specularly-reflected multiples, Alvarez (2005) showed that, for a flat reflector, the func-
tional dependence between the image depth and the aperture angle is given by

zξγ =
zξγ (0)
1+ρ)



1+
cosγ (ρ2

− (1−ρ2) tan2 γ )
√

ρ2 − sin2 γ



 , (5)

where zξγ (0) is the normal-incidence migrated-depth, (i.e. z0) in the previous equations. There
is an important and unfortunate difference in notation, however, because ρ in equations 1
through 4 is the ratio of the migration to the true slowness whereas ρ in equation 5 is the ratio
of the migration to the true velocity. Therefore, in order to get a better idea of how the approx-
imation for the RMO of the multiples (accounting for ray bending at the reflector interface)
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relates to that of the primaries (neglecting ray bending), I rewrite equation 5 replacing ρ by
1/ρ and zξγ (0) with z0 to get:

zξγ =



1+
cosγ (ρ2

− (ρ2
−1) tan2 γ )

√

1−ρ2 sin2 γ





z0

1+ρ
. (6)

Finally, since 1nRMO = z0 − zξγ we get:

1nRMO =



1−
cosγ (1− (ρ2

−1) tan2 γ
√

1−ρ2 sin2 γ





z0

1+ρ
n, (7)

which, for small γ , reduces to

1nRMO = (ρ2
−1) tan2 γ

z0

1+ρ
= (ρ −1) tan2 γ z0n. (8)

This is the same as equation 4. This result is intuitively appealing because it shows that
the approximation of neglecting the ray bending at the reflecting interface deteriorates as the
aperture angle increases which is when the ray bending is larger.

Figure 1 shows a comparison of the residual moveout curves for an ADCIG computed with
equations 7 (ray-bendinga pproximation) and 8 (straight-ray approximation). The residual
moveouts correspond to a water-bottom multiple from the flat interface of a two layer model
where the top layer is water and the second layer is a half space. The velocity of the water
layer is 1500 m/s and its thickness is 500 m. The velocity of the half space is 2500 m/s. The
migration was done with the true velocity model. Therefore, there is significant ray bending
of the multiple at the reflecting interface. Figure 2 shows the actual ADCIG with the depth
moveout as a function of angle superimposed for both approximations. For large aperture
angles the departure of the straight ray approximation can be significant.

Figure 1: Residual moveout curves
for an ADCIG from a two flat-layer
model. The curves correspond to
straight ray and the ray-bending ap-
proximations to a water-bottom mul-
tiple. gabriel3-rmos2 [CR]
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Figure 2: ADCIG for a water-
bottom multiple from a two flat-
layer model. The dotted curve cor-
responds to the straight ray approxi-
mation whereas the solid curve cor-
responds to the ray-bending approxi-
mation. gabriel3-adcig1 [CR]

COMPARISON OF RADON TRANSFORMS

The better fit of the ray bending approximation to the actual moveout of the multiple, as
shown in Figure 2, suggests that a better focusing may be achieved for the multiples in the
Radon domain by using equation 6 as the kernel of the Radon transform. To assess validity
of this claim, I used the same synthetic data presented in Sava and Guitton (2003). Figure 3
is their figure 1 and shows a CMP and an ADCIG contaminated with multiples. Clearly,
the primaries are flat in the ADCIGs (above about 350 m), whereas the multiples show the
expected overmigrated residual moveout. The general expression for the Radon transform in
the angle domain is (Sava and Guitton, 2003)

z(q,γ ) = z0 +q g(γ ). (9)

The straight-ray approximation uses

g(γ ) = tan2 γ . (10)

The ray-bending approximation uses

g(γ ) =
1

1+ρ





cosγ (ρ2
− (1−ρ2) tan2 γ )

√

ρ2 − sin2 γ

−ρ



 . (11)

Figure 4 shows a comparison of both Radon transforms for the ADCIG shown in the left panel
of Figure 3. Notice that the focusing of the primaries does not change since their moveout is
zero. The multiples, on the other hand, are better focused with the new transform since the
curvature more closely represents their residual moveout in the ADCIGs. In order to assess
the improvement in focusing power of the new transform with real data, I applied both Radon
transforms to an ADCIG from a real dataset (Sava and Guitton, 2003). Figure 5 shows the AD-
CIG and the transforms computed with the straight-ray and the ray-bending approximations.
Again, the ray-bending approximation improves the focusing of the primaries. This may be
better seen in the envelopes of the two transforms.
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Figure 3: A data CMP and an ADCIG from a simple synthetic model. Figure taken from Sava
and Guitton (2003). gabriel3-synth [NR]

Figure 4: Comparison of Radon transforms of the ADCIG shown in panel (a) of Figure 3.
Panel (a) corresponds to the straight-ray approximation whereas panel (b) corresponds to the
ray-bending approximation. Panel (c) and (d) are the envelopes of panels (a) and (b) respec-
tively. gabriel3-radon1 [CR]
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Figure 5: ADCIG from a real dataset (a), the Radon transform corresponding to the straight-
ray approximation (b), and the Radon transform with the ray-bending approximation (c). Pan-
els (d) and (e) are the envelopes of panels (b) and (c). gabriel3-radon2 [CR]
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MULTIPLE ATTENUATION

In this section I examine the difference between the estimate of the multiples and primaries
obtained with the Radon transforms computed with both approximations. I use the same
ADCIGs from the previous section.

Figure 6: Comparison of the multiple model for the synthetic ADCIG of Figure 3. Panel (a)
shows the multiples obtained with the straight-ray approximation and panel (b) the multiples
obtained with the ray-bending approximation. gabriel3-mul_comp1 [CR]

Figure 6 shows the comparison of the multiple model estimated with both transforms for
the synthetic data shown in Figure 3. The better focusing of the multiples in the Radon domain
with the ray-bending approximation translates into a slightly better estimate of the multiples,
especially at the large aperture angles. Some weak residual primary still leaks into the mul-
tiples, although with higher amplitude amplitude with the straight-ray approximation (see the
primary at 200 m). Figure 7 shows the comparison of the primary estimates. Again, a bet-
ter result is obtained with the ray-bending approximation. In particular, less energy from the
multiples leaks into the primaries.

Figure 8 shows the comparison of the multiple model for the real dataset of Figure 5.
Notice that again, the new transform [panel (b)], recovers a little better the multiple energy
on the large aperture angles, especially above 1000 m. This energy will otherwise leak into
the estimate of the primaries. Finally, Figure 9 shows the comparison of the primary estimate
with both transforms. Although the two panels look similar, careful examination of the large
aperture angles specially above 1000 m shows that the new transform [panel (b)] has recovered
the primaries better.
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Figure 7: Comparison of the primary model for the synthetic ADCIG of Figure 3. Panel (a)
shows the primaries obtained with the straight-ray approximation and panel (b) the primaries
obtained with the ray-bending approximation. gabriel3-prim_comp1 [CR]

Figure 8: Comparison of the multiple model for the real ADCIG of Figure 4. Panel (a) shows
the multiples obtained with the straight-ray approximation and panel (b) the multiples obtained
with the ray-bending approximation. gabriel3-mul_comp2 [CR]
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Figure 9: Comparison of the primary model for the real ADCIG of Figure 4. Panel (a) shows
the primaries obtained with the straight-ray approximation and panel (b) the primaries ob-
tained with the ray-bending approximation. gabriel3-prim_comp2 [CR]

DISCUSSION AND CONCLUSIONS

Increasing the focusing power of the Radon transform is critical in real situations in which the
primaries and the multiples may map close together in the Radon domain. Therefore, taking
into account the ray bending of the multiples, at least to first order, is an improvement. The
cost of the new transform is essentially the same and no additional information is required.
Although the new transform explicitly depends on the ratio (ρ) between the multiple velocity
and the migration velocity, in practice this ratio can be fixed to something reasonable like 1.5
and the results are good. The new transform may also be advantageous in the implementation
of the apex-shifted Radon transform for the attenuation of diffracted multiples (Alvarez et al.,
2004).

Taking into account the ray bending of the multiple raypaths at the multiple generating
interface improves the focusing power of the Radon transform when applied to ADCIGs. This
in turn improves our ability to separate the primaries from the multiples and, therefore, allows a
better estimate of the multiple model to be computed. The new transform can be implemented
at essentially no extra cost compared with the tangent-squared approximation designed to treat
the primaries ignoring ray bending.
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