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Short Note

Inversion shortcuts by model statistics

Brad Artman

INTRODUCTION

For the purpose of data analysis, various transforms have been proposed in order to provide
a sparse model space with intuitive or quantitative value for interpretation. For the purposes
of velocity analysis or understanding the source components captured passively by an array of
geophones a sparse model space is desired that need not exactly forward model the supplied
data. This is the paramount difference between data analysis and data synthesis. Because
the rate of convergence of an inversion scales with the size of the model and data spaces,
3D problems supplied with large data sets and model domains, are computationally intensive
operations. To assure sparsity in the model space, the situation is often exacerbated by using
expensive inversion algorithms such as linear programming or BFGS.

Lloyd’s algorithm (LA) is an iterative binning operation normally implemented on the
histogram of values within a data space. The algorithm is used to decimate the bandwidth of
signals in an optimally representative manner. It was developed to quantize/downsample the
color values in images for display on graphics systems with limited memory/bandwidth.

The hypothesis of this work is to test whether the algorithm can be used to optimally select
a small number of model space coordinates from an incomplete inversion. To test the hypothe-
sis, [ stop iterative inversion with linear and hyperbolic Radon transforms before convergence.
I then translate the model space into a form usable by LA to select model-space coordinates
that best represent the incomplete inversion. The goal is to minimally represent important
model-space parameters despite the lack of focus of the incomplete inversion.

Data for Lloyd’s algorithm (LA) consist of a set of N-dimensional parameters over which
the algorithm optimally selects a user-supplied number, or fewer, combinations that best rep-
resent the set. The model space of a linear operator however contains a spanning parameter set
differentiated by the amplitude at each location. Consider a model space defined as the Fourier
transform of a trace with two sinusoids with different frequencies. The output of the transform
contains two frequencies with high amplitude and many with zero amplitude. Viewing the
output, an interpreter can select the two frequencies with energy and discount the rest of the
model space. Only two numbers are important to know, while the rest of the transformed space
can be discarded. I introduce LA to make this selection optimally and automatically.

The transforms are cast within the framework of least-squares inversion with time domain
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operators. I test the hypothesis on synthetic volumes, a shot-gather from the Yilmaz data
collection, the passively collected telescopic solar observation data, and the passively collected
hydrophone data from the Valhall oil field in the North Sea.

IMPLEMENTATION

A set of model-space coordinates must be pre-selected for input into LA according to the
amplitude (squared) at all coordinate locations. Only coordinates with an amplitude greater
than a supplied percentage of the maximum amplitude in the model space are kept. The am-
plitude range of model space is then quantized from the minimum threshold to the maximum
(squared) value. Coordinates are repeatedly selected for input into LA according to the number
of quantum levels associated with its amplitude.

Figure 1 shows graphically how the data input into LA is selected from a sampled 1D
function. The continuous signal is assumed to be sampled only at the tick marks on the axis and
therefore has 14 amplitude values. The heavy dark line above the axis represents a threshold
of approximately 25% of the maximum amplitude, shown by the uppermost dashed line. The
data values have been quantized into three levels above the threshold. The dots show how
many times each coordinate is selected for input into LA. The coordinate set formed from the
signal is therefore {4,5,5,6,6,10,11,11,11,12,12,12,13,13}.

Figure 1: Dots represent coordinate
selection as a function of squared sig-
nal amplitude for input into Lloyd’s

Algorithm. | bradl-data | [NR] 1 — 5 — ]'0 —

Assuming that the linear operator chosen for the transform is appropriate, the model space
should be mostly low amplitude or zero. Therefore, the pre-selection of coordinates for LA re-
duces the model space by several orders of magnitude. The selected model-space coordinates
are input into LA whose output is a list of optimal locations that represent the energy in the
model space of the transform. These are written out to a SEP77 file and a ASCII file formatted
for input into Ricksep as a picks file.

SYNTHETIC EXAMPLE

The simple adjoint transform is not sufficient to provide as input to LA. Figure 2 shows results
when supplying LA with model spaces produced by adjoint plane-wave decomposition verses
40 iterations of inversion with a single synthetic planewave used as data. LA, told to choose
at most 10, returned two picks for both models despite only a single planewave existing in the
data. LA will not return one pick if the data supplied is not perfectly single valued. In this
example the data supplied to LA are coordinates with energy in the figure times the duration of
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the wavelet in/out of the plane. This leads to 3449 coordinate triples, some 500 being unique
since the quantization of the amplitudes used 10 levels.

The adjoint model space has a diffuse character and diagonal streaks away from main blob
of energy (due to limited rectangular surface acquisition). The model space was parameterized
so that the energy would not be symmetrically located on the p., py-plane. To balance the
distribution of energy, LA selected two points for the adjoint model space that an interpreter
would recognize as inappropriate. After the inversion has clipped most of the acquisition tails
and moved the edge of the distribution away from the boundary of the domain, the two picks
returned are identical (—0.0005006,0.0001002)&(—0.0004993,9.997¢ —05). !
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Figure 2: Coordinates selected by Lloyd’s Algorithm on the adjoint plane-wave decomposition

model space and on 40 iterations of least-squares inversion. |brad1-adj.inv | [CR]

Six planewaves were modeled in a regular 3D acquisition geometry as data. The data
were inverted with the linear Radon transform. The inversion was stopped after 1, 20, and
80 iterations. These data were then supplied to the modified LA. Figure 3 shows inversion
results after 20 iterations. The two panels show versions clipped for display at 99 and 100%
of the maximum value. Three picks from LA are also plotted. The picks exactly overlay the
maximum amplitude of the energy. LA was initialized to select 10 coordinate triples. Only
six picks were returned. Note, however, that the lower right coordinates are actually two picks
very close together. One planewave from the data space has not been picked. One of the
planewaves had a ray parameter p,, p, = (0.0005,0.0001) s/m, while the range of p, used for
the inversion extended to only py, p, = (0.00045,0.0003) s/m. This plane thus falls outside of
the model space on the 2-axis, and the inversion is not able to focuse the energy. Unfortunately,
LA does not recognize its significance either, and places an extra pick semi-randomly close to
another well established pick.

The approach seems robust for noisy data as well. Figure 4 shows a section of the model

LA returns coordinates representing the center of mass of the energy in the model domain not beholden
to the sampling interval of the domain. This lead me to an as yet unsubstantiated hypothesis that LA could
provide super-resolution.
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Figure 3: Ray parameter model space inverted from six synthetic planewaves. 20 iterations of

least-squares inversion applied. |bradl-rays|[CR]

space where a uniform distribution of noise was added to the data space with the picks selected
from it by LA overlain. The picks are identical to the previous runs when the variance of the
added noise is less than 0.001. The threshold value used was 1% of the maximum value in
the data. By increasing to higher levels (approximately 50%), the algorithm remains stable to
variance values another order higher. When the level of noise is too high so that the thresh-
olding of the data is not robust, the LA picks constantly distribute themselves roughly evenly
along the one-axis and about centered across higher dimensions.

PASSIVE DATA

To understand the sources captured in a passive seismic survey, I hoped planewave decompo-
sition/inversion could help analyze the data. However, unless identifiable events are present,
analysis of passive data before cross-correlation does not produce interpretable results. After
correlation, the unique character of the individual sources is lost. In effect, transforms applied
to the data before correlation simply reshuffle the randomness apparent in the raw traces. The
passively collected solar data (Rickett and Claerbout, 1999) was analyzed to prove this fail-
ure. Figure 5 shows the raw solar data and its autocorrelation. Clearly, there are events to be
found within the raw data that are masked before correlation. Figure 6 shows the linear Radon
domain inversions for data defined by the panels of Figure 5. Because the correlated data is
radially symmetric from the center and only has events in the upper third of the time axis, its
model space is much smaller, though sampling between the two is the same.
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Figure 4: Uniformly distributed noise with variance 0.001 added to model space shown in
Figure 3. Threshold for LA was 1% of the maximum value in the input. Output picks are still

reliable at this level. [CR]
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Figure 5: Passive seismic data from the sun and its autocorrelation. |bradl-sun.dat | [CR]
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Figure 6: Model space produced with 20 iterations of planewave decomposition inversion
from the data shown in Figure 5. |brad1-sun.mod | [CR]

VELOCITY ANALYSIS

Inversion schemes for various Radon transforms (Artman and Guitton, 2005; Artman and
Sacchi, 2003; Guitton, 2004), have been proposed to provide sparse model spaces for data
analysis and noise removal. Figure 7 shows the result of 20 iterations of hyperbolic Radon
transform performed on gather 08 from the Yilmaz data collection. Coordinates selected by
LA are overlain. I purposefully parameterized the model space to include slowness values
twice those necessary. The picks remain stable with or without including this aphysical part
of the model domain. With a threshold of 1% of the maximum value in the model space, the
modified algorithm considered only 500 out of 43,000 coordinates for potential selection. The
algorithm started with 200 evenly distributed coordinate pairs and returned with 14 optimally
representative coordinates.

CONCLUSIONS

I introduce Lloyd’s algorithm as a tool to optimally represent the statistics of the model space
from incomplete inversions. The modified algorithm selects coordinates with high amplitude
surrounded by substantial energy. Thus isolated, powerful outliers are neglected. By opti-
mally parsing potentially large multi-dimensional model spaces, the algorithm can cut short
costly inversion iterations and focus an interpreter’s attention to important locations within
potentially large model domains. The algorithm returns stable solutions even in the presence
of substantial noise.

The algorithm is very simple, easy to modify, has few parameters, and very fast. Using the
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Figure 7: Hyperbolic Radon trans-
form model domain of shot 08 from
the Yilmaz data collection. 20 itera-
tions of least-squares inversion were
performed. 14 coordinates selected
by LA are overlain. Without inclu-
sion of the inappropriate high slow-
ness values on the right side of the
plot, the remaining picks remain sta-

ble. [CR]
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algorithm depends on parameters being correlable. For multidimensional cases, uncorrelated
parameters can simply be concatenated to an existing axis. Thus hypercubes of correlable and
uncorrelable parameters can be evaluated simultaneously.

The next step in evaluating the effectiveness of using the algorithm to select optimal pa-
rameters would be to migrate data with a velocity model derived from RMS velocities selected
by LA. This could potentially dovetail with the velocity uncertainty analysis presented in ?.

Planewave decomposition of passive data to characterize non-obvious sources does not
work. Until traces have been correlated, analysis transforms will simply redistribute the ran-
dom character of the raw data. Unfortunately, correlating the wavefield destroys all the unique
character of individual sources including timing, waveform, location and much of the spectral
content information.
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