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AMO inversion to a common azimuth dataset: Field data results

Robert G. Clapp

ABSTRACT

I cast 3-D data regularization as a least-squares inversion problem. I form a linear operator
that maps from irregular dataspace 5-D data space to a regular 4-D common azimuth vol-
ume using a cascade of linear interpolation and Azimuth Move-out (AMO) binning. I reg-
ularize the inversion by adding minimizes the difference between various (7,cmp,,cmp,,)
cubes by applying a filter that acts along offset. AMO is used to transform the cubes to
the same hx before applying the filter. Further efficiency is gained by inverting each fre-
quency independently. I apply the methodology on marine dataset and compare the results
with two more conventional approaches.

INTRODUCTION

The irregularity of seismic data, particularly 3-D data, in both the model domain (in terms of
subsurface position and reflection angle) and the data domain (in terms of midpoint, offset,
and time) causes imaging problems. Migration methods desire a greater level of regularity
than is often present in seismic surveys. There are two general approaches to deal with this
problem. One approach is to treat the imaging problem as an inverse problem. The migra-
tion operator can be thought of as a linear transform from the recorded data to image space.
Ronen and Liner (2000); Duquet and Marfurt (1999); Prucha et al. (2000) use the migration
operator in a linear inverse problem to overcome irregular and limited data coverage. A reg-
ularization that encourages consistency over reflection angle is used to stabilize the inverse.
These approaches have shown promise but are generally prohibitively expensive, and rely on
an accurate subsurface velocity model.

Another approach is to try to regularize the data. AMO provides an effective regularization
tool (Biondi et al., 1998) and is generally applied as an adjoint to create a more regularized
volume. These regularized volumes still often contain an ‘acquisition footprint’ or more subtle
amplitude effects. Chemingui (1999) used a log-stretch transform to make the AMO operator
stationary in time. He then cast the regularization problem as a frequency-by-frequency inver-
sion problem using a Kirchoff-style AMO operator. He showed that the acquisition footprint
could be significantly reduced. The downside of this approach is the relatively high cost of
Kirchoff implementation of AMO.

Biondi and Vlad (2001) built on the work of Fomel (2001) and set up an inverse problem
relating the irregular input data to a regular model space. They regularized the problem by
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enforcing consistency between the various (7,cmp,,cmp,) cubes. The consistency took two
forms. In the first, a simple difference between two adjacent in-line offset cubes was mini-
mized. In the second, the difference was taken after transforming the cubes to the same offset
AMO. Clapp (2005b) set up the data regularization with AMO as an inverse problem creating
a full volume (7,cmp,,cmp,, hx,hy). Clapp (2005a) modified this approach to form a Com-
mon Azimuth dataset. The full volume of Clapp (2005b) is mapped into a Common Azimuth
volume using AMO as part of the inversion.

In this paper, I build on the work of Clapp (2005a). I modify the data mapping operator to
allow more mingling between Ax volumes in the model space. In addition, each log-stretched
frequency is done independently, allowing many more iterations to be applied economically.
The methodology is applied on a marine dataset and compared to both a flex-binning and more
standard AMO based approach.

THEORY

Estimating a regularly sampled common-azimuth volume m from our irregular input data d
can be set up as a least squares inversion problem. The data consists of irregular traces in
a 5-D space (7,cmp,,cmp,,hx,hy). 1 want to apply a wave-number domain AMO operator
(Biondi and Vlad, 2001) that works on regular cube, so the first step is to map the data onto
a regular mesh. The operator L performs linear interpolation between the irregular dataspace
and a regular 5-D mesh.

We want to create a common azimuth volume, specifically the zero azimuth volume, so
we want to create a dataset where hy = 0. AMO provides a way to translate between different
offsets. We can create an operator Z that sums over Ay volumes that have been translated
to hy = 0 using AMO. Unlike Clapp (2005a), we will also sum over a small range of hx.
This additional summation allows for additional mixing of information in the five-dimensional
space. We can define transforming from hxy,hy to hxy, hy, using AMO as Zjx, ny, hixy by, We
can define our ~x sampling interval as dp,,, the number of samples as 7y, , and the first location
as opx. Similarly our sampling Ay is defined by nyy, 04y, and dp,,. Given Ahx samples we wish
to sum over we can write an equation relating our domain m and range d through

ix+Ax ny
mx)=" > Y Zivdytopeivdy+onysivdsy-topn 0 X', i¥)). (1)

ix'=ix—Axiy=0
Where m(ix) and d(ix’,iy) are 3-D cubes (t, cmpx,cmpy).

Finally, we need to add in our regularization term. Generally, after NMO, our data should
be smooth as a function of offset. By applying a derivative operator along the offset axis we
can emphasize this smoothness and help fill in acquisition holes caused by data irregularity.
We can improve this estimate even further by applying a derivative on cubes that have been
transformed to the same offset using AMO'! Dy. We can write our objective function as

O(m) = ||d — LZm||* + €*||Dym| |? )

'In this case AMO simplifies to Dip Move-out because it is being applied simply along the /x axis
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where € controls the importance of consistency along the offset axis. We can speed up the
convergence of this problem by preconditioning the model with the inverse of our regulariza-
tion operator. In this case, we replace taking the derivative of AMO cubes with performing
causal integration of AMO cubes Cy. Our new fitting goals then become

O(p) = ||d —LZCnp||* +€*|p|* 3)

where m = Cyp.

IMPLEMENTATION

A cost-effective implementation of (3) is challenging. The first question is whether to directly
invert the matrix described by (3) by least-squares or use a reference model (Rickett, 2001;
Biondi and Vlad, 2001) to approximate the implied Hessian by a diagonal matrix based on a
reference model. A Hessian-based approach is easily parallelizable. The model can be broken
along the hx axis. Each node is then given all of the data in (hx; — dpx Ax,hx; + dpx Ax),
where hx; is the offset that a given node is creating.

If we do a full inverse then the obvious domain to parallelize the inversion is over fre-
quency. In this case the model and data time axis is log-stretched and transformed into the
frequency domain. The resulting model and data space are approximately three times the size
of their time domain representation due to the oversampling necessitated by the log-stretch
operation. In addition, both these volumes need to be transposed. To apply the log-stretch
FFT operation, the natural ordering is for the time/frequency axis to be the inner axis while
the inversion is more efficient with the time/frequency axis being the outer axis. An out-of-
core transpose grows in cost with the square of the number of elements. For efficiency, I do
a pre- and post-step parallel transpose of the data in conjunction with the transformation to
and from the log-stretched frequency domain. I split the data long the cmp,, axis. Before the
pre-step transpose I log-stretch and FFT the input data, I then do an out-of-core transpose of
this smaller volume. I then collect the transposed data. The post-step operation is simply the
inverse, transpose and then FFT and unstretch.

A second major problem is the number of iterations necessary for convergence. The causal
integration and leaky integration are good preconditioners (fast convergence) but the AMO
portion tends to slow the inversion. As a result many (20-100 iterations) are desirable. The
global inversion approach described in Clapp (2005b) is Input/Output dominated. It also relies
on hardware stability. Both of these factors make a frequency-by-frequency in-core inversion
the non-ideal but better choice. The major drawback to a frequency-by-frequency approach is
that the frequencies might converge at significantly different rates resulting in an image that is
unrealistically dominated by certain frequency ranges (most likely the low). To minimize this
problem, I stopped the inversion after a set reduction in the data residual for each frequency.

The final issue is the size of the problem. The domain of L is four-dimensional and can
be quite large even for a relatively small model space. In addition, for a conjugate gradient
approach we still must keep three copies of our data space (data, data residual, previous step
data residual) and five copies of our model space (gradient, model, previous step, previous
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step model residual, model residual). As a result, we need a machine with significant memory
and/or must break the problem into patches in the (cmp,,cmp,) plane.

REAL DATA EXAMPLE

I tested the methodology on a real 3-D marine dataset from the North Sea. Previous uses of
AMO and common azimuth migration have resulted in noticeable acquisition footprint in the
first 1300 meters (Biondi, 1999; Vaillant and Sava, 1999). I regularized, and then migrated,
the volume using three different approaches. In the first approach I ignored the azimuth in-
formation to form my 4-D volume, I will refer to this methodology as the ‘stack’ approach.
In the second approach I approximated the Hessian matrix by a diagonal based on a reference
model, the ‘reference’ approach. And finally applied up to 120 conjugate iterations, ‘inverse’
approach. Figure 1 shows all three result. The top panel is the ‘stack’ approach, the center is
the ‘reference’ approach, and the bottom panel is the ‘inverse’ approach. All the remaining
figures will be of the same form.

Figure 2 compares a depth slice at 900 m. Note at ‘A’ what looks like noise on the ‘stack’
and ‘reference’ result, turns into a fault on the ‘inverse’ result At ‘B’ we see a steeply dipping
reflector come into focus when we apply the ‘reference’ approach. The acquisition footprint
visible at ‘C’ diminishes with the ‘reference’ approach, and is almost completely absent in the
‘inverse’ result. At a depth of 1360 m (Figure 3) we can see similar improvements. At ‘A’
we see fault reflection that is not visible on the ‘stack’ result, barely visible on the ’reference’
result become very evident on the ‘inverse’ result. At ‘B’ we see significant acquisition foot-
print in the ‘stack’ result, it is reduced significant in the ‘reference’ result, and in the ‘inverse’
result we begin to see additional fine featured geology appear. At ‘C’ we a portion of fault in
the ‘stack’ result, continuous segment in the ‘reference’ result, and the entire fault reflection
in the ‘inverse’ result. Figure 4 shows a cross-line located at 7200m. Note the fault reflection
at ‘A’ that is barely visible in the ‘stack’ result appear in the 'reference’ result, and become
coherent in the ‘inverse’ result. Note the small faults at ‘B’ that are not visible in the ‘stack’
or ‘reference’ result become evident in the ‘inverse’ result. Figure 5 shows a cross-line at
8200m. Note the small faults become much more evident as we progress from the ‘stack’ to
the ‘inverse’ result. At ‘B’ we see the migration artifacts dramatically decrease as we move
from the ‘reference’ to the ‘inverse’ result.

Figure 6 shows an inline section at 3100m. Note the steeply dipping reflectors that are not
visible at ‘A’ in the ‘stack’ result come into focus in the inverse result. At ‘B’ we see a peak that
isn’t visible in either the ‘stack’ or ‘reference’ result appear in the inverse result. At ‘C’ we see
a package of reflectors that are incoherent in the ‘stack’ result become clearer as we move to
the ‘reference’ and ‘inverse’ result. Figure 7 shows an inline section location at 3960m. At ‘A’
the complex folding above the salt intrusion come into focus in the ‘inversion’ result. The set
of reflectors above the salt come into focus as we advance to more sophisticated techniques
at ‘B’. At ‘C’ we see the salt reflection come into focus as we move to the ‘reference’ and
‘inverse’ approach.
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Figure 3: The top panel is the ‘stack’
approach, the center is the ‘reference’
approach, and the bottom panel is the
‘inverse’ approach. At ‘A’ we see
fault reflection that is not visible on
the ‘stack’ result, barely visible on
the ‘reference’ result become very ev-
ident on the ‘inverse’ result. At ‘B’
we see significant acquisition foot-
print in the ‘stack’ result, it is reduced
significant in the ‘reference’ result,
and in the ‘inverse’ result we begin to
see additional fine featured geology
appear. At ‘C’ we a portion of fault
in the ‘stack’ result, continuous seg-
ment in the ‘reference’ result, and the
entire fault reflection in the ‘inverse’
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Figure 5: The top panel is the ‘stack’
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‘inverse’ approach. All three figures
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CONCLUSION

I introduced an inversion method to produce a dataset appropriate for common azimuth mi-
gration. The inversion problem uses AMO to both map the data to a constant 2y = 0 and as
part of regularization operator to assure consistency between (cmp,,cmp,, x) cubes.
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