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Interpolation with pseudo-primaries

William Curry

ABSTRACT
Large gaps exist in marine data, particularly at near offsets. I generate pseudo-primaries
by cross-correlating a multiple model with the original data. These pseudo-primaries are
used as training data for a non-stationary prediction- error filter, which is then used to
interpolate the missing near offsets. This method yields good results, and also provides a
quality control measure to judge the usefulness of the pseudo-primaries.

INTRODUCTION

Interpolation has become of more importance recently, largely due to increased reliance on
algorithms that require dense and regular data sampling, such as wave-equation migration and
3D surface-related multiple elimination (SRME) (Van Dedem and Verschuur, 2005). Exam-
ples of current methods include Fourier (Duijndam and Schonewille, 1999; Liu and Sacchi,
2004; Xu et al., 2005), Radon transform (Trad, 2003), and prediction-error filter (PEF) based
methods (Spitz, 1991). Other methods that rely on the underlying physics (and typically also
a velocity model) include migration/demigration (?), DMO-based methods (Biondi and Vlad,
2001), and the focal transform (?), which requires an input focal operator instead of velocity.

In this paper, I describe a hybrid approach that combines both non-stationary prediction-
error filters (Crawley, 2000) and pseudo-primaries generated from surface-related multiples
(Shan and Guitton, 2004) in order to interpolate missing near offsets. I generate pseudo-
primaries by a surface-consistent cross-correlation of a multiple model with the input data.
Once the pseudo-primaries have been generated, I estimate a non-stationary PEF on the pseudo-
primaries by solving a least-squares problem. I then solve a second least-squares problem
where the newly found PEF is used to interpolate the missing data (Claerbout, 1999).

The data used in this example is from the Sigsbee2B synthetic dataset where the first 2000
feet of offset were removed. Near-offset data is typically missing from marine data, and large
near-offset gaps can exist when undershooting obstacles such as drilling platforms. I estimate
a PEF on the original data (with the missing offsets) and can produce an ideal reconstruction.
Estimating a PEF on the pseudo-primaries, which are generated without the near offset data,
gives promising results, which can be quality-controlled with the output of the convolution of
the pseudo-primary-derived PEF with the recorded data.
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GENERATION OF PSEUDO-PRIMARIES

Pseudo-primaries can be generated by computing (Shan and Guitton, 2004)

W (xp, xm ,ω) =

∑

xs

M(xs , xm ,ω)P̄(xs , xp,ω), (1)

where W is the pseudo-primary data, ω is frequency, xs is the shot location, xp is the surface
location, P̄(xs , xp,ω) is the complex conjugate of the original trace at (xs , xp) and M are the
multiple reflections recorded at xm . In this equation, the cross-correlation of the first-order
multiples in M with the primaries and first-order multiples in P produces primaries and zero-
lag components, respectively. Cross-correlation of the second-order multiples in M with the
primaries, first-order, and second-order multiple reflections in P produces first-order multi-
ples, primaries, and zero-lag components, respectively. With higher orders of multiples this
trend continues.

Pseudo-primaries generated in this fashion contain subsurface information that would not
be recorded with a non-zero minimum offset. One example of this is a first-order multiple that
reflects at the free surface within the recording array, resulting in near offsets being recorded
when that wave returns to the surface. An example of this is shown in Figure 1, where (a) is a
single Sigsbee2B shot (including the negative offsets predicted by reciprocity) but with offsets
less than 2000 feet removed, and (b) is the corresponding pseudo-primaries for the same area,
which is generated in part with (a).

We can see in Figure 1 where the first and second-order multiples in P map to in the zero-
lag at the top of the image. We can also see a lot of near-offset information present in the
pseudo-primaries that is not present in the recorded primaries. However, simply replacing the
missing near offsets of the primaries with the corresponding pseudo-primaries would not yield
a satisfactory result due to the crosstalk and noise in the pseudo-primary shot.

INTERPOLATION WITH NON-STATIONARY PEFS

Interpolation can be cast as a series of two inverse problems where a prediction-error filter
is estimated on known data and is then used to interpolate missing data. A prediction-error
filter (PEF) can be estimated by minimizing the output of convolution of known data with an
unknown filter (except for the leading 1), which can be written in matrix form as
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where fi are unknown filter values and di are known data values.



SEP–124 Pseudo-primary interpolation 3

Figure 1: (a) Original shot record and (b) pseudo-primaries for the same area from the Sigs-
bee2B dataset. bill1-shot [CR]

The filters used in this paper are all multidimensional, which are computed with the helical
coordinate. In the case of a stationary multidimensional PEF, this is an over-determined least-
squares problem with a unique solution.

Seismic data is non-stationary in nature, so a single stationary PEF is not adequate for the
many changing dips present. We estimate a single spatially-variable nonstationary PEF and
solve a global optimization problem (Guitton, 2003). In that case the problem is now under-
determined, and a regularization operator is introduced to the least-squares problem (in matrix
notation) so that,

W(DKf+d) ≈ 0
εAf ≈ 0, (3)

where D represents non-stationary convolution with the data, f is now a non-stationary PEF,
K (a selector matrix) and d (a copy of the data) both constrain the value of the first filter
coefficient to 1, A is a regularization operator (a Laplacian operating over space) and ε is a
trade-off parameter for the regularization. Solving this system will create a smoothly non-
stationary PEF.

Once the PEF has been estimated, it can be used in a second least squares problem that
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Figure 2: (a) Original data with near offsets (<2000 feet) missing. (b) Original complete data.
(c) Interpolation with PEF based upon complete data. (d) Interpolation with PEF based upon
pseudo-primaries. bill1-interped [CR]

matches the output model to the known data while simultaneously regularizing the model with
the newly found PEF,

S(m−d) ≈ 0
εFm ≈ 0, (4)

where S is a selector matrix which is 1 where data is present and 0 where it is not, F represents
convolution with the non-stationary PEF, ε is now a trade-off parameter and m is the desired
model.

RESULTS

To increase the sampling by an integer factor, a PEF is typically estimated on the input data. In
this example with a large gap, this will not suffice. Instead, we estimate the PEF on the pseudo-
primaries generated by equation 1 using equation 3 and then use that PEF to interpolate the
recorded data with equation 4. The results of this experiment are shown in Figure 2.

The near offset gap is 4000 feet or 53 traces, as shown in Figure 2(a). The complete data
in Figure 2(b) is used as input to equation 3 with Figure 2(a) as input to equation 4, which
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Figure 3: (a) PEF estimated on pseudo-primaries convolved with pseudo-primaries. (b) PEF
after convolution with input data. bill1-resid [CR]

produces Figure 2(c), which illustrates that if we estimate the PEF on the answer we can
perfectly recreate the data. Figure 2(d) shows the main result of this paper, which is when the
pseudo-primaries are used as input to equation 3.

The results in Figure 2(d) are promising, but not ideal. Most of the events are successfully
continued through the data, but some interference is present. One method to quality control
the PEF estimation is to examine the residual of the estimation of equation 3. If this result is
uncorrelated and low in amplitude, the PEF has captured all of the useful information in the
pseudo-primaries. Similarly, the PEF can then be convolved with the recorded data, with the
output shown in Figure 3.

Figure 3(b) shows that while the PEF estimated on the pseudo-primaries does a good job
of whitening the recorded data, the result is not ideal, unlike Figure 3(a) where the PEF is
convolved with the pseudo-primaries. Differences in spectral content of the data are the most
obvious cause, and any adjustments to this algorithm can be quality controlled by looking at
this intermediate result.
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CONCLUSIONS AND FUTURE WORK

Incorporating pseudo-primary data into a non-stationary prediction-error filter based interpola-
tion method gives promising results for large gaps in the near offset. While most interpolation
algorithms suffer from an objective measure of the quality of interpolation in practical appli-
cations, the usefulness of the pseudo-primaries can be judged in a relatively objective manner
by looking at the convolution of the pseudo-primary based PEF with the recorded data. Future
work includes reducing this difference and examining the final results after SRME compared
to a high-resolution parabolic radon transform.
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