Next: About this document ...
Up: Berryman: Geomechanical analysis with
Previous: CONCLUSIONS
-
Backus, G. E., 1962, Long-wave elastic anisotropy produced by horizontal
layering: J. Geophys.Res., 67, 4427-4440.
-
Berryman, J. G., 1998, Transversely isotropic poroelasticity arising
from thin isotropic layers:
Mathematics of Multiscale Materials, edited by K. M. Golden,
G. R. Grimmett, R. D. James, G. W. Milton, and P. N. Sen,
Springer-Verlag, NY, 1998, pp.37-50.
-
Berryman, J. G., 2002, Extension of poroelastic analysis to double-porosity
materials: New technique in microgeomechanics:
ASCE J. Engng.Mech., 128, 840-847.
-
Berryman, J. G., 2004a, Poroelastic shear modulus dependence on
pore-fluid properties arising in a model of thin isotropic layers:
Geophys.J. Int., 127, 415-425.
-
Berryman, J. G., 2004b, Bounds on elastic constants for random polycrystals of
laminates: J. Appl.Phys., 96, 4281-4287.
-
Berryman, J. G., 2005, Bounds and self-consistent estimates for elastic
constants of random polycrystals with hexagonal, trigonal, and
tetragonal symmetries: J. Mech.Phys.Solids, 53,
2141-2173.
-
Berryman, J. G., and G. W. Milton, 1991, Exact results for generalized
Gassmann's equations in composite porous media with two constituents:
Geophysics, 56, 1950-1960.
-
Berryman, J. G., and S. R. Pride, 2002, Models for computing
geomechanical constants of
double-porosity materials from the constituents' properties:
J. Geophys.Res., 107, 10.1029/2000JB000108.
-
Berryman, J. G., and H. F. Wang, 1995, The elastic coefficients of
double-porosity models for fluid transport in jointed rock:
J. Geophys.Res., 100, 24611-24627.
-
Biot, M. A., and D. G. Willis, 1957, The elastic coefficients of the
theory of consolidation: J. Appl.Mech., 24, 594-601.
-
Coyner, K. B., 1984, Effects of Stress, Pore Pressure, and Pore
Fluids on Bulk Strain, Velocity, and Permeability in Rocks,
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge,
Massachusetts.
-
Cribb, J. L., 1968, Shrinkage and thermal expansion of a two phase material:
Nature, 220, 576-577.
-
Dvorak, G. J., and Y. Benveniste, 1997, On micromechanics of inelastic and
piezoelectric composites: Theoretical and Applied Mechanics
1996, edited by T. Tatsumi, E. Watanabe, and T. Kambe, Elsevier Science,
Amsterdam, 1997, pp. 65-81.
-
Gassmann, F., 1951, Über die Elastizität poröser Medien:
Vierteljahrsschrift der Naturforschenden Gesellschaft in
Zürich, 96, 1-23.
-
Hashin, Z., 1966, Viscoelastic fiber reinforced materials:
Am.Inst.Aeronautics Astronautics J., 4, 1411-1417.
-
Hashin, Z., 1983, Analysis of composite materials - A survey:
Appl.Mech.Rev., 50: 481-505.
-
Hashin, Z., and S. Shtrikman, 1962, A variational approach to the theory
of the elastic behaviour of polycrystals: J. Mech.Phys.Solids,
10, 343-352.
-
Hill, R., 1952, Elastic properties of reinforced solids: Some
theoretical principles: Proc.Phys.Soc.London A,
65, 349-354.
-
Levin, V. M., 1967, Thermal expansion coefficients of heterogeneous materials:
Mech.Solids, 2, 58-61.
-
Lewallen, K.T., and H. F. Wang, 1998, Consolidation of a
double-porosity medium: Int.J. Solids Structures,
35, 4845-4867.
-
Milton, G. W., 2002, The Theory of Composites, Cambridge University
Press, Cambridge, UK, pp.77-78, 163, 457-498.
-
Peselnick, L., and R. Meister, 1965,Variational method of determining
effective moduli of polycrystals: (A) Hexagonal symmetry,
(B) trigonal symmetry: J. Appl.Phys., 36, 2879-2884.
-
Postma, G. W., 1955, Wave propagation in a stratified medium:
Geophysics, 20, 780-806.
-
Pride, S. R., J. G. Berryman, and J. M. Harris, 2004, Seismic
attenuation due to wave induced flow: J. Geophys.Res.,
109, B01201.
-
Reuss, A., 1929, Berechung der Fließgrenze von Mischkristallen
auf Grund der Plastizitätsbedingung für Einkristalle:
Z. Angew.Math.Mech., 9, 49-58.
-
Skempton, A. W., 1954, The pore-pressure coefficients A and B:
Geotechnique, 4, 143-147.
-
Torquato, S., 2002, Random Heterogeneous Materials: Microstructure and
Macroscopic Properties, Springer, NY.
-
Vinogradov, V., and G. W. Milton, 2005, The total creep of
viscoelastic composites under hydrostatic or antiplane loading:
J. Mech.Phys.Solids, 53, 1248-1279.
-
Voigt, W., 1928, Lehrbuch der Kristallphysik, Teubner, Leipzig.
-
Watt, J. P., and L. Peselnick, 1980, Clarification of the
Hashin-Shtrikman bounds on the effective elastic moduli of
polycrystals with hexagonal, trigonal, and tetragonal symmetries:
J. Appl.Phys., 51, 1525-1531.
Next: About this document ...
Up: Berryman: Geomechanical analysis with
Previous: CONCLUSIONS
Stanford Exploration Project
10/31/2005