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Mapping of water-bottom and diffracted 2D multiple reflections
to image space

Gabriel Alvarez

ABSTRACT

Wave-equation migration with the velocity of the primarreaps non-diffracted water-
bottom multiples to an hyperbola in subsurface-offset-dmrtommon-image-gathers.
Furthermore, for positive surface offsets, the multiples mapped to non-positive sub
surface offsets if sediment velocity is faster than watdre Targer the offset in the dats
space, the larger the subsurface offset and the shalloeéméige point. When migrated
with the velocity of the water, the multiples are mapped tmzubsurface offset just
as primaries migrated with the exact velocity. Diffractedltiples, on the other hand
map to positive or negative subsurface offsets dependindp@melative position of the
diffractor with respect to the common-midpoint. | presdm equations of the image
point coordinates in terms of the data space coordinatediffoaicted and non-diffracted
multiples from flat or dipping water-bottom in both subsedeoffset-domain common-
image-gathers and angle-domain common-image-gathéissttate the results with sim-
ple synthetic models.
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INTRODUCTION

Attenuation of multiples in the image space is attractivedose prestack wave-equation mi-
gration accurately handles the complex wave propagatigmminfaries. In subsurface-offset-
domain common-image-gathers (SODCIG) the primaries aag&d at zero subsurface offset
at the depth of the reflector if migrated with the correct e#ipo Correspondingly, in angle-
domain common-image-gathers (ADCIG) the primaries argadavith flat moveout. Atten-
uation of multiples in image space depends on the differenpsesidual moveout between the
primaries and the multiples, either in SODCIGs or ADCIGswband Guitton, 2003; Harg-
reaves et al., 2003; Alvarez et al., 2004). Understanding\Wwave-equation migration maps
the multiples into SODCIGs and ADCIGs is therefore of paramamportance in order to
design a proper strategy to attenuate the multiples in tlag@space.

Non-diffracted water-bottom multiples from a flat or dipgimater-bottom are imaged
as primaries. Thus, if the migration velocity is that of thater, they are mapped to zero
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subsurface-offset in SODCIGs. Consequently, in ADCIGasséhmultiples exhibit flat move-
out just as primaries do (Alvarez, 2005). In the usual casaigfation with velocities faster
than water velocity, these multiples are mapped to subseidéfsets with the opposite sign
with respect to the sign of the surface offsets. | will anabity show the moveout curve of
these multiples in SODCIGs and ADCIGs.

Water-bottom diffracted multiples, on the other hand, eNdrom a flat water-bottom,
do not migrate as primary reflections (Alvarez, 2005). Tisatthey do not focus to zero
subsurface offset even if migrated with the water velodipviously this happens because at
the diffractor the reflection is not specular. | will show thlaese multiples migrate to both
positive and negative subsurface offsets in SODCIGs depgh the relative position of the
diffractor with respect to the receiver (for receiver-sitiifracted multiples).

The next section presents a general formulation for comgukie kinematics of diffracted
and non-diffracted water-bottom multiples for both SOD€I&d ADCIGs. The following
section then looks in detail at the special case of flat wadéiem where the equations simplify
and some insight can be gained as to the analytical repeggenof the residual moveout of
the multiples in both SODCIGs and ADCIGs. The next sectia@sents a similar result for
multiples from a dipping water-bottom. Although the eqoas are more involved and difficult
to encapsulate in one single expression than those for thedtar-bottom, | show that we can
still compute the image space coordinates of both the difichand non-diffracted multiples
in terms of their data space coordinates. The last sectemusses some of the implications
of the results and the possibility that they can be used &mattte the multiples in the image
space. Detailed derivation of all the equations is includate appendices.

KINEMATICS OF WATER-BOTTOM MULTIPLES IN IMAGE SPACE

Figure 1: Water-bottom multiple.
The subscripts refers to the source
and the subscript to the receiver.
gabriel1-mul_sktchi[NR]

The propagation path of a water-bottom multiple, as showriguire 1, consists of four
segments, such that the total travel-time for the multiplgiven by

tm :tsi +t52 +tr2 +tr1, (1)

where the subscrip refers to the source-side rays and the subscrigfers to the receiver-
side rays. The data space coordinates arg,lip,tm) wheremp is the horizontal position
of the CMP gather antip is the half-offset between source and receiver. Wave-emuat
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migration maps the CMP gathers to SODCIGs with coordinatest(, z:) wherem; is the
horizontal position of the image gather, amgdandz: are the half subsurface-offset and the
depth of the image, respectively. As illustrated in the clkedf Figure 2, at any given depth

Figure 2: Imaging of water-bottor
multiple in SODCIG. The sub
script & refers to the image poin
| gabriell-mul_sktchPNR]

(Xrgxzrg)

the image space coordinates of the migrated multiple aengdiy:

Xs = Mp—hp -+ Vi(ts sinas + pfs, sinfs),
X, = Mp+hp—Va(ty, sinar + pfr,sinB),
he = % ;XS% =hp— % [ts, Sinas +t;, Sinar + p(fs, SiNBs+Tr,5iNA)],  (2)
zz = Vi(ts, cosas + pfs, coSBs) = Vi(tr, coswr + ptr, cOSBr), (3)
me = X ZX% =Mp +% (ts, Sinars — tr, siney + p(fs, sins — &, singy)) | 4)

whereV; is the water velocityp = V,/V; with V, the sediment velocity, angs, o, are the
acute takeoff angles of the source and receiver rays witfectso the vertical. The traveltime
of the refracted ray segmeritsandf;, can be computed from two conditions: (1) at the image
point the depth of both rays has to be the same (since we anputmg horizontal subsurface
offset gathers) and (&), + t,, = {5, + fr, which follows immediately from equation 1 since
at the image point the extrapolated time equals the traveldf the multiple. As shown in
Appendix A, the traveltimes of the refracted rays are given b

~ _ tcosy —ts Cosws+ p(ts, +tr,) COSB;

t , 5
% p(cosps + cospr) ©)

£ ts, COSars — tr, Cosarr + p(ts, +1r,) COSBs ©)
2 p(cOSBs + cosp;) '

The refracted angles are related to the takeoff angles bySae: sin(8s+ ¢) = p Sin(es+ @)
and sinf; — ¢) = psin(e, — ¢), from which we get

sinfs = psin(s+¢)cosp —/1— p2sir(as +¢) sing, )
singy = psin(y —(p)COS(p—I—\/l—pZSinz(ar—(p)Sin(p, (8)
Ccosfs = \/1—pZSinz(as+<p)COS<p—I—,OSin(as—I-(D)Sin(p, (9)

cospy = \/1 — p?sinf(or — @) cOSp — p sinfey — @) sing. (20)
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Equations 2—10 are valid for any water-bottom multiple, thiee from a flat or dipping water-
bottom. They even describe the migration of source- or vecaide diffraction multiples,
since no assumption has been made relatingndas or the individual traveltime segments.
In ADCIGs, the mapping of the multiples can be directly rethto the previous equations by

Figure 3: Imaging of water-bottor v,
multiple in ADCIG. The subscripf
refers to the image point. Theline A a
represents the apparent reflector at .z

image point. |gabriell-mul_sktchB —— anB

[NR]

(Xv@ Zvi)

the geometry shown in Figure 3. The half-aperture anglevisrgby
Br + Bs
2 )
which is the same equation used for converted waves (RosateBiondi, 2005). The depth
of the image pointz;, ) is given by (Appendix B)

(11)

Z, = 2 — hg tany. (12)

Equations 2—-12 formally describe the image coordinate=ring of the data coordinates. They
are, however, of little practical use unless we can relaérttlividual traveltime segments(,

ts,, fSQ, tr,, ﬂz, tr,), and the angless anda, (which in turn determingds andp;) to the known
data space parametersd, hp, tm, V1, ¢ and p). This may not be easy or even possible
analytically for all situations, but it is for some simpletbmportant models that | will now
examine.

FLAT WATER-BOTTOM

Non-diffracted multiple

The traveltime of the water-bottom multiple is given by (Atez, 2005)

4 hp 2 2hp 2
ty = — — 72 = [t2(0 — 1, 13
m= (2)+wb \/m()‘f‘(Vl) (13)
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which is simply the traveltime of a primary at twice the depfhthe water-bottonZ,,, =
V1t+(m. From Figure 4 it is clear that due to the symmetry of the moblts =ts, =t;, =

Figure 4: Imaging of water-bottor V>
multiple for a flat water-bottom. No
tice thatmp = m; and that the appai
ent reflector at the image point is flé

. (Xrglzr&) (nglzgﬁ)
gabriel1-mul_sktch{NR] N v

]
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tr, = tm/4 andas = «r, Which in turn meangs = g;. Furthermore, from Equations 5 and 6 it
immediately follows thafs, = ts, andf;, = t,, which says that the traveltimes of the refracted
rays are equal to the corresponding traveltimes of the pleltEquation 2 thus simplifies to

h
he = —>(1-p7), (14)

which indicates that the subsurface offset at the imaget pbia trace with half surface offset
hp depends only on the velocity contrast between the waterfandddiments. In particular,

if the trace is migrated with the water velociiye. p = 1, thenh; = 0 which proves the
claim that the trace is imaged exactly as a primary sincenitapped to zero subsurface offset
irrespective of its surface offset. It should also be noted,tsince usually sediment velocity

is faster than water velocity, therf > 1 and therefore the multiples are mapped to subsurface
offsets with the opposite sign with respect to the sign ofsiinéace offsehp when migrated
with sediment velocity.

From Equation 3, the depth of the image point can be easilypctead as

Ze = Zyb + g\/ h3(1—p?)+4Z2, (15)

which for migration with the water velocity reduceszo= 27,,,, which shows that the muilti-
ple is migrated as a primary at twice the water depth. Finatyn Equation 4, the horizontal
position of the image point reduces to

Mz = Mp. (16)
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This result shows that the multiple is mapped in the imageepathe same horizontal posi-
tion as the corresponding CMP even if migrated with sedimveldcity. This result is obvi-
ously a direct consequence of the symmetry of the raypatkiseafultiple reflection in this
case.

Equations 14-16 give the image space coordinates in terthe afata space coordinates.
An important issue is the functional relationship betwedss subsurface offset and the im-
age depth, since it determines the moveout of the multipiébe subsurface-offset-domain
common-image-gathers (SODCIGS). Repladirg= 2h; /(1 — p?) andZ,p = z:(0)/(1+ p)
in Equation 15 we get

_ z(0) AONLL:
—m+p\/(l+p> tr LAY (17)

which shows that the moveout is an hyperbola (actually Haehchyperbola since we already
established that: < 0 if hp > 0). Figure 5 shows an SODCIG for a non-diffracted water-

Subsurface offset (m)
—-400 =300 =200 =100 O 100 200 300 400

0001

Figure 5. Subsurface offset domain
common image gather of a water-
bottom multiple from a flat water-
bottom. Water velocity is 1500 m/s,
water depth 500 m, sediment veloc- =
ity 2500 m/s and surface offsets from 2
0 to 2000 m. Overlaid is the residual
moveout curve computed with Equa-
tion 17.|gabriel1-odcig1[CR]
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bottom multiple from a flat water-bottom 500 m deep. The data migrated with a two-layer
velocity model: the water layer of 1500 m/s and a sedimermrlayvelocity 2500 m/s. Larger
subsurface offsets (which according to Equation 14 coordpo larger surface offsets) map
to shallower depths (for the normal situationm#f 1), as we should expect since the rays are
refracted to increasingly larger angles until the critiedlection angle is reached. Also notice
that the hyperbola is shifted down by a factor{}) with respect to the image point when
migrated with water velocity.

In angle-domain common-image-gathers (ADCIGs), the ap#rture angle reduces to
y = Bs = Br, which in terms of the data space coordinates is given by

. 2,0hD
1
= ) 18
y =sin |:V1tmi| (18)

The depth of the image can be easily computed from Equatioririparticular, if the data
are migrated with the velocity of the water= 1, and therefore:, = 2Z,,, which means a
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horizontal line in the%; ,y) plane. Equivalently, we can say that the residual movewotite
(zz,,v) plane is zero, once again corroborating that the wateéobomultiple is migrated as
a primary ifp = 1. Equation 12 can be expressed in terms of the data spaadiraies using
Equations 14 and 15 and noting that

0 Sinag B 2php php

tany =tanfs = _ =
Vi-p?sifas  vaz —4p2h? \/4z o +h3(1—p?)

(19)

If p =1 this expression simplifies to tan= 2 , Which is the aperture angle of a primary
at twice the water-bottom depth. As we did W|th the SODCIGsitmportant to find the

Aperture angle (deg)
0 ) 10 15 20 25 30 35 40

Figure 6: Angle domain common im- %
age gather corresponding to the SOD-
CIG shown in Figure 5. Overlaid is
the residual moveout curve computed
with equation 20. gabriell-adcigj.
[CR]
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functional relationship betweem, andy since it dictates the residual moveout of the multiple
in the ADCIG. Plugging Equations 14 and 15 into equation sH)giEquations 13, and 18 to
eliminatehp and simplifying we get

cosy (p* —tarfy(1—p%) | _ 2,0 | N cosy (p® —tarf y (1— p?))

Jp2—siry - L4 \/ P2 —sify

Once again, when the multiple is migrated with the watereigldpo = 1) we get the expected
resultz:, =z (0), that is, flat moveout (no angular dependence). Figute@'s the ADCIG
corresponding to the SODCIG shown in Figure 5. Notice thatrthgrated depth at zero
aperture angle is the same as that for zero sub-surface wffegure 5. For larger aperture
angles, however, the migrated depth increases as indicatgflation 20 and as seen in the
schematic of Figure 4.

Z&,:: Zyp | 1+

(20)

Diffracted multiple

Consider now a diffractor sitting at the water-bottom assilfated in the sketch in Figure 7.
The source- and receiver-side multiples are described bgtems 2—4 as did the water-bottom



136 Alvarez SEP-123

multiple. In this case, however, the take-off angles fromrse and receiver are different even

if the surface offset is the same as that in Figure 4. In fatesthe reflection is non-specular

at the location of the diffractorXqiss needs to be known in order for the receiver take-off
angle to be computed. The traveltime of the diffracted rpldtis given by

1 Xqitf — (Mp —hp)1?
tn =2 3\/Zib+[ it (3D D)} +\/[(mD+hD)—Xdiff]z+Zib . (21)

whereZ,,» = Z4it+ can be computed from the traveltime of the multiple for thzeibsurface
offset trace {»(0)) by solving the quadratic equation &f,, that results from settingp = 0
in equation 21:

6422 —20V7t2(0)Z22, + (Vith(0) — 4V72t2(0)(Mp — Xaiff)?) =0 (22)

The coordinates of the image point, according to equatiedsa?e given by

N
4 \ diff

~.
-
e [N e

Figure 7: Imaging of receiver
side diffracted water-bottom multipl
from a diffractor sitting on top of & (x.z:)
flat water-bottom. At the diffracto

the reflection is non-specular. Notit
thatmp # m;. | gabriel1-mul_sktch

INR]

02,

V . . . . . .
he = hp— ?l [ts, Sinas + tr, Sinar + p%(Es, Sinas + &, sinar )], (23)
ze = Zuyb+pVal,cosp, (24)
V . . . . .
m: = mp+ ?1('[51 Sinas —tr, Sinoy + ,02( ts, Sinas — tr, Sinay ). (25)

The traveltimes of the individual ray segments are given by

Xdiff —(Mp —hp) mp +hp — Xgiff

. , and t, = g 26
3V sinas 1 Vi sina (26)

te, =ts, =tr, =
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whereas the traveltimes of the refracted rays can be comhfnater equation 5:

B ts, (20 COSB; — COSws) +tr, COSwyy . ts, (20 COSBs + COSus) — tr, COSxy

fs, = , and f, =
> p(COS; + COSps) 2 p(COSB: + COSBs)

(27)

where, according to equations 9 and 10:

cosBs =+/1—p2sirfas and coP, =/ 1— p2sirfa;. (28)

In order to expreshg, zz andm; entirely in terms of the data space coordinates, all we need
to do is compute the sines and cosinesgéndo, which can be easily done from the sketch
of Figure 7:

: Xgitt —(Mp —hp) Zub
SINos = COoSug =
3/ (Xaits — (Mo —ho))/3P + 22, J/((Kaits = (mo —ho))/3P + 22,
hp) — Xgi Zw
sina, — (mp +hp) — Xaift cosur — b
\/((mD‘l‘hD)_Xdiff)z‘FZE)b \/((mD+hD)—Xdiff)2+Zﬁ,b

Notice that the diffraction multiple does not migrate asiangry even if migrated with water
velocity. In other words, even jf =1, h: # 0. The only exception is wheKqitf = mp +
hp/2 since then the diffractor is in the right place to make a sla@geflection and therefore
is indistinguishable from a non-diffracted water-bottomltiple. In that casey, = as (which

in turn impliespg; = Bs) and from equations 5 and , = {s, = t5, and therefore equations 23—
25 reduce to equations 14-16, respectively. Figure 8 shawsstibsurface-offset sections

Horizontal position (m) Horizontal position (m)

000 2200 2400 2600 2800 000 2200 2400 2600 2800

008,

00

ooot
000T

(ur) yydeq
0021
(ur) yadaq
0021

00¥%1
00¥%1

(a) (b)

Figure 8: image sections at 0 and -400 m subsurface offsed fiiffracted multiple from

a flat water-bottom. The depth of the water-bottom is 500 m taeddiffractor is located
at 2500 m. The solid line represents image reflector compwithd equations 24 and 25.
gabriel1-imagep[CR]

of a migrated diffracted multiple from a diffractor sittiran top of a flat reflector as in the
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schematic of Figure 7. The diffractor positionXgitf = 2,500 m, the CMP range is from
2,000 m to 3,000 m, the offsets range from 0 to 2,000 m and therwapth is 500 m. The
data were migrated with the same two-layer model descrikéat®. Panel (a) corresponds to
zero subsurface offselti{ = 0) whereas panel (b) corresponds to subsurface offset 6fi0
Overlaid are the residual moveout curves computed withtems24 and 25. Obviously, the
zero subsurface offset section is not a good image of therssateom or the diffractor.

Figure 9 shows three SODCIGs taken at locations 2,300 mp2yband 2,700 m. Unlike
the non-diffracted multiple, this time energy maps to pesibr negative subsurface offset
depending on the relative position of the CMP with respec¢héodiffractor. In ADCIGs the
aperture angle is given by equation 11 which, given the gégmoéFigure 7, reduces to

1 1
y = Esin‘l[ﬁs+ﬁr] = Esin‘l [,osinar,/1—,ozsin2as+psinas,/ 1—p23in2ar] . (29)

The depth of the image is given by equation 12,

1
Ze, =27 — he tan<§ sint |:,osina”/ 1—,ozsin2as—|—,osinasw/ 1—p25in2ar]> . (30)

Again, this equation shows that the diffracted multiple @ migrated as a primary even if

Subsurface offset (m) Subsurface offset (m) Subsurface offset (m)
400 —300 —200 —100 O 100 200 300 400 —300 —200 —100 O 100 200 300 400 —300 —200 —100 0 100 200 300
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Figure 9: SODCIGs from a diffracted multiple from a flat wabsttom at locations 2,300 m,
2,500 m and 2,700 m. The diffractor is at 2,500 m. The overkstiual moveout curves were
computed with equations 23 and 2gabriel1-odcig2[CR]

p =1 (except in the trivial cas&gisf = mp + hp/2 discussed before for which, sinege =
as, ¥ = Bs = Br in agreement with equation 19 and so equation 30 reducesugtieq 20).
Figure 10 shows the angle gathers corresponding to the SG®@fIFigure 9. Notice the shift
in the apex of the moveout curves.
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Figure 10: ADCIGs corresponding to the SODCIGs in Figure Be ©verlaid curves are the
residual moveout curves computed with equations 24 anbgﬁbriell-adcig?[CR]

DIPPING WATER-BOTTOM

Water-bottom multiple

The water-bottom multiple from a dipping reflector has elyattte same kinematics as a pri-
mary from a reflector with twice the dip (Alvarez, 2005), tigt

~ 2
275 ( 2hp )2 / ( 2hp )2
tm = — ) +[ = = [t2(0)+ | = , 31
m ( V1 ) VMo n(0) VNMO (1)

whereg is the dip of the reflectorZp is the perpendicular depth to the equivalent reflector
with twice the dip (at the CMP location) andyvo is the NMO velocity of the equivalent
primary Vymo = Vi/CoS(2p).

Following the same procedure as for the flat water-bottomgavepute the coordinates of
the image point using equations 2—4 and noting that in tres@a= as+ 4¢,

V- ) . ~ . ~ .
he = hD—?l[t315|nas+trls|n(ocs+4<p)+p(t525|n/3s+trzsln/3r)], (32)

zz =V, (tIr1 cosus + pts, |:\/1—,02 Sir?(as + ¢) COSp + p Sin(as + ¢) Sin<pi|> , (33)
V . . ~ . ~ .
m: = mp+ ?1('[31 Sinas — ty, sin(es +4¢) + p(ts, SinBs — tr, Sinfby)). (34)

where, according to equations 7-10,

sinBs = ,OSin(aS—I—go)COSq)—\/1—,02$in2(a5—|—<p)sin<p, (35)
sinf = psin(es-+3¢)cosp+y/1— p2sir(as +3¢) sing, (36)
COSBs = \/1—,o23in2(as+<p)co&p+,osin(as+<p)sin<p, (37)

cospy = \/1— 02 sin(as + 3¢) cosp — p sin(as + 3p) sing. (38)
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The traveltimes of the individual ray segments are compbtecepeated application of the
law of sines as shown in Appendix C:

t81 _ Zs _ ZD—hDSin(p, (39)
Vicos@s+¢)  Vicosgs+¢)
L = to COSs (Zp — hp sing) cosus | (40)
COS@rs+2¢)  ViCOSfs+ ¢)COoSErs+ 2¢)
. s, COS@rs +¢) _ (Zp —hp sing) cosas 41)
2 cos@s+3¢p)  V1COS@s+ 2¢)Ccosfs+3p)’
b = tr,CoS@s+29)  (Zp—hpsing)cosas 42)

cosfis+4¢)  Vicosfs+ 3¢p)cos@s + 4g)’

where Zp is the perpendicular depth to the reflector at the CMP lonagiod is given by
(Appendix C):

5 V1tm(0) cosp
0= 51+ cos(@)] )

Notice that this is not the same @ in equation 31, which corresponds to the perpendicular
depth to the equivalent reflector whose primary has the saneenlatics as the water-bottom
multiple.

The traveltime of the refracted ray segments are given bgtemns 5 and 6 with

cosy; = \/1 —sirf(as+4¢), and cosis=4/1—sinfas. (44)

In order for equation 32—34 to be useful in practice, we neexkpress them entirely in terms
of the known data coordinates, which means that we need tafimkpression faxs in terms
of (tm,hp,mp,¢). In Appendix C it is shown that

os = sin ! [M} — 2. (45)

V]_tm

We now have all the pieces to compute the image space cotedjrsances, andf;, can be
computed from equations 5 and 6 using equations 35-45.

Appendix D shows that equations 32—34 reduce to the comelspg equations for the
non-diffracted multiple from a flat water bottom when= 0, as they should.

Figure 11 shows the zero subsurface offset section from eateidy non-diffracted multiple
from a dipping water-bottom. The overlaid curve was comgpuwteh equations 32-34. The
dip of the water-bottom is 15 degrees and intercepts thasaiit CMP location zero. The
CMP range of the data is from 2000 to 3000 m and the surfacetsffsom 0 to 2000 m.
The multiple was migrated with the same two-layer model desd before. Notice how the
multiple was migrated as a primary. Since the migration eigjas faster than water-velocity,
the multiple is over-migrated and appears much steeper ladtbwer than it should (recall
that it would be migrated as a reflector with twice the dip s thigration velocity were that
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Figure 11: image section at zero
subsurface offset for a non-diffracted
multiple from a dipping water-
bottom. The overlaid curve was
computed with equation 34 and 33.
gabriell-imageBCR]
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Figure 12: SODCIG from a non- &
diffracted multiple from a dipping  *
water-bottom. The overlaid residual 3 _
moveout curve was computed with 5 3
equation 32 and 3$gabriel1-odcig$ a
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of the water.) Figure 12 shows the SODCIG at CMP 1500 m in i fédu.. Just as for the flat
water-bottom, the multiple energy is mapped to negativestdace offsets since > 1. The
overlaid curve is the moveout computed with equations 32F84 aperture angle is given by
equation 11 with

Br =sinY(psins+3¢))—¢ and Bs=sin"Y(psinls+¢))—¢ (46)

andas given by equation 45. The image depth in the ADCIG is givendpyagion 12 withBs
andg; given by equation 46 arlak andz;: given by equations 32 and 33. Figure 13 shows the
ADCIG corresponding to the SODCIG in Figure 12. Notice thegt apex is at zero aperture
angle.
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Figure 13: ADCIG corresponding to
the SODCIG shown in Figure 12.
The overlaid residual moveout curve
was computed with equation 33, 11, —
12, and 46/ gabriel1-adcig[CR] =
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Diffracted multiple

Figure 14 shows the raypath of a diffracted multiple from@pehg reflector. The image-space
coordinates of the diffracted multiple are given by the sageations as the water-bottom
multiple, i.e. equations 32-34. The main difference is that ngw# as + 4¢. In fact, o,
depends exclusively oh the position of the diffractor witspect to the receiver and is given
by (Appendix E)

h — Xdi
o :tan‘l[ D + Mo d'ff]. (47)
Zgit
The depth of the diffractoZqi¢s can be computed as (Appendix E):
Zgitr = Zp Cosp + (Xaitf —Mp)tang, (48)

whereZp, as before, is the perpendicular distance between the CiEharreflector. It can
be computed from the traveltime of the diffracted multipferee zero surface-offset trace as
shown in Appendix E. The traveltime segments from the sota¢ke diffractor are the same
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—— X~ (Mhp)— e——n (Mp+hp) - Xy ———s

Figure 14: Diffracted multiple frorrA
a dipping water-bottom. Not
that the receiver ray does not si %@
isfy Snell's law at the diffractor

| gabriell-mul_sktchBNR]

"
(e Ze)

as before and given by equations 39—-41, while the traveftiome the diffractor to the receiver
is simply

1
trl=Vl\/(ho-l-(mD—Xdiff))2+Z§iff- (49)

In order to have the image coordinates entirely in terms efddita space coordinates all that
is left is to computexs (Appendix E):

1 27 sing + (hp + Xgitf —Mp)

os = Sin~
Vltm_\/(hD +MmMp — Xdiff)2+Z§iff

—2¢. (50)

Figure 15 shows three image sections at subsurface off6€s-200 and 200 m. These
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Figure 15: image sections at 0, -200 and 200 m subsurfacet édisa diffracted multiple from
a dipping water-bottom gabriel1-image#[CR]

sections are a poor representation of either the reflecttreodiffractor since the diffracted
multiple is not imaged as a primary. Figure 16 shows three SI&3 at CMP locations 1800,
2200 and 2600 m. Again, we see that the SODCIGs are very eliffetepending on their
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Subsurface offset (m)
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Subsurface offset (m)
00
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Figure 16: SODCIGs at three different CMP locations: 1,89@00 and 2,200 m for a
diffracted multiple from a dipping Water-bottoﬁrgabriel1-odcig41[CR]
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Figure 17: ADCIGs corresponding to the three SODCIGs of Fidi6.| gabriel1-adcig#{CR]

relative position to the diffractor, unlike the situatiorntivthe non-diffracted multiple which
maps to negative subsurface offsets (figr > 0) for all SODCIGs. The aperture angle and
the image depth of the diffracted multiple in ADCIGs can dsacomputed with equations 11
and 12 withg; andgs given by equation 46. Figure 17 shows the ADCIG correspanttn
the same ODCIG in Figure 16. Again, notice that the apex iseshaway from zero aperture
angle.

DISCUSSION

The results of the previous sections illustrate that ndimadited water-bottom multiples (whe-
ther from flat or dipping water-bottom) map to negative sufase offsets (sincép > 0 in
this case), whereas primaries migrated with slower vakxitvould map to positive subsur-
face offsets. This suggests an easy strategy to attenweese thultiples. Migrate the data with
a constant velocity that is faster than water velocity bowvelr than sediment velocity. Keep
only the positive subsurface offsets and demigrate witlséimee velocity. In principle, the pri-
maries would be restored (at least kinematically) whereasultiples would be attenuated.
Although not shown here, the same conclusion can be reaohédyher-order non-diffracted
water-bottom multiples. This strategy, however, wouldwotk for diffracted multiples since
they may map to positive subsurface offsets even when reignatth a velocity faster than
water velocity as illustrated schematically in Figure 18e ¥én still separate these multiples
from the primaries, but that requires the application of pprapriate Radon transform. An
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apex-shifted tangent-squared Radon transform was apipjiedlvarez et. al. (2004) to a

real 2D section with good results, but the basic assumphieretwas that of no ray-bending
at the water-bottom interface. It is expected that the moprii@te equations derived here
will allow the design of a better Radon transform and thexrefobetter degree of separation
between primaries and diffracted multiples. This is thejesttbof continuing research. For

" Mo
V'I
Figure 18: Sketch illustrating
that diffracted multiples may map
to positive subsurface offsets. \\\ AN
gabriel1-mul_sktchfNR] v, \,

the non-diffracted multiple from a flat water-bottom the mig between the image-space
coordinates and the data-space coordinates is essefiayncemp = mé&, which allowed
the computation of closed-form expressions for the resicheveout of the multiples in both
SODCIGs and ADCIGs. For diffracted multiples in particulais not easy to compute equiv-
alent closed-form expressions, but we can compute nuntigriba residual moveout curves
given the expression foh{, z:, m;) in terms of the data-space coordinatgslip, mp), ¢ and
Xditf. In principle, the dip of the water-bottom can be estimatetifthe data and the position
of the diffractor corresponds to the lateral position of éipex of the multiple diffraction in a
shot gather as illustrated in the sketch of Figure 19.

Figure 19: Sketch illustrating the
raypaths of a diffracted multiple in
a shot gather. The lateral posi-
tion of the diffractor corresponds
to the apex of the moveout curve.
gabriel1-mul_sktchgNR]

Vi

CONCLUSIONS

Non-diffracted water-bottom multiples, whether from a fhatdipping water-bottom, map to
zero or negative subsurface offsets when migrated with éhecity of the sedimentp > 1
for hp > 0. On the other hand, primaries migrated with slower veilegitnap to positive
subsurface offsets. It may be possible to exploit this faetttenuate these multiples.
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Diffracted water-bottom multiples, in contrast, map tolbpositive and negative subsur-
face offsets depending on the relative position of the CMiPtha diffractor. To attenuate these
multiples we need an accurate representation of theiruabidoveouts in either SODCIGs or
ADCIGs as presented here to design a suitable Radon tramsifiat focuses these multiples
to predictable locations in the Radon domain. This is thgesiilof ongoing research.
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APPENDIX A
COMPUTATION OF TRAVELTIME FOR REFRACTED RAYS

In this Appendix | derive equations 5 and 6. From equation Jhaxee:
ts, COSus + pls, COSBs = tr, oSy + pir, COSHr, (A-1)

and, from the condition that the sum of the traveltime of thzapolated rays at the image
point has to be equal to the traveltime of the multiple we have

tSz + tr2 - fsg + f;*z. (A‘Z)
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Solving those two equations féy, andf;, we get

N tr, COSoy — ts, COSws + p(ts, +1r,) COSpy

s, = , A-3
> p(COSBs + cosp;) (A-3)
~ ts, COSus — tr, cosay + p(ts, +tr,) COSBs
b, = : (A-4)
p(cosps +cospy)

It is interesting to check these equations in two particalses. For a non-diffracted flat
water-bottom multiple, we haves = o, s = fr, ts;, = ts, = tr, = t;; and therefore we get
fs, = ts, andf;, =t, as the geometry of the problem requires. Notice that thisiesfor anyp.

The second case is for a non-diffracted water-bottom nlaltipigrated with water velocity.

In that casefs = as and By = «,. Furthermore, since the multiple behaves as a primary,
(ts, +1s,) cOSs = (tr, +tr,) cosy, and we again gdt, =ts, andt;, =t,..

APPENDIX B

COMPUTATION OF IMAGE DEPTH IN ADCIGS

Be

G
B
2y
E {
. (Xr§:Zr§ mi |:“7 Xsi’zsi)
Figure B-1: Sketch to show the com- A Bl
putation of the image depth in an AD- < an; i ' F
CIG. |gabriel1-mul_sktch1NR] S
N2-B)
6\‘\‘ ;.'Ie )
f“\::‘*—l:.‘\\ . -~
5 ! N \ BS

X2, D

Figure B-1 shows the basic construction to compute the intiegeh in ADCIGs based
on the image depth is SOCIGs. Triangles ABD and CBD are camjrsince they have one
side common and the other equal because |AB|=|BC[Fhereforef = /2 — g, 4 6. Also,
triangles AED and FCD are congruent because |AD|=|CD| asul|AE|=|CF| (Biondi and
Symes, 2004). Therefore, the andlan triangle DCF is the same as in triangle AED. We can
computes from the condition

O+5+pBs =

Njlan R

4
E—,Br+8+8+,35 =

=
|

=
(%]

5 =

N
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The depth of the image point in the ADCIG, from triangle ABEtherefore
" . T
Ze, = Z: + 2" = Z: + (sign())he cot(E—ﬂr +3). (B-1)

Replacing the expression féiwe get, after some simplification (and taking sig)(= —1)

‘3”2”33) — 7. —hetan@). (B-2)

2, =2 +72" = zg—hgtan(
APPENDIX C
TRAVELTIME COMPUTATIONS FOR DIPPING WATER-BOTTOM MULTIPL E

In this Appendix | derive equations 39-45. From triangle ABEigure C-1 we immediately

Figure C-1: Sketch to show the com-
putation ofts, andts, for a non-
diffracted multiple from a dipping
water-bottom. gabriell-mul_sktchp
INR]

get
Zs
t, =——— C-1
= Costes +¢) (D
and applying the law of sines to triangle ACD we get
ts, COSUs 7<COSus ©2)

s, = = .
%27 cosfs+2¢)  V1COSfrs + @) COSErs + 2¢)

Similarly, repeated application of the law of sines to tgkas CDE and DEF in Figure C-2
gives

¢ tSQ COS(Xs + (ﬂ) _ ZS COsus (C-3)
2 cosfrs+3¢)  ViCOoSfrs+ 2¢) coSrs + 3¢)
t;, COSfrs + 2 Z5COS
y, = 100t s COs (C-4)

cos@s+4¢)  Vicosgs+ 3¢)cosfs+4¢)
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Figure C-2: Sketch to show
the computation oft, and t,
for a non-diffracted multiple
from a dipping water-bottom.
gabriel1-mul_sktch1{INR]

Figure C-3: Sketch to show the
computation ofZs in equation C-5.
gabriel1-mul_sktch1f[NR]

These equations are in terms 4§, which is not known. However, from Figure C-3 we see
that

Zs= Zp —hpsing, (C-5)

andZp can be computed from the traveltime of the zero surfacesbfface, since, according
to Figure C-4

7o N 2Zpcos(p)  2Zp(1+cos(2))

2
tm(0) = = , C-6
m(0) V1 cosp V1 cosp V1 Cosp (C-6)
from which it follows immediately that
> V1tm(0) cosp
Ip=——""———. C-7
= 21+ cos(@) (©7)

Finally, we need to computes. Applying the law of sines to triangle ABC in Figure C-5 we
get

2hp cos(2p)

: C-8
Vit (C-8)

from which we get

os = sin~t [W} _ 2. (C-9)
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Figure C-4: Sketch to show the
computation ofZp in equation C-7.
gabriel1-mul_sktch1dNR]

Figure C-5: Sketch to compute
the takeoff angle of the source
ray from a non-diffracted multi-
ple from a dipping water-bottom.
gabriel1-mul_sktch14NR]

APPENDIX D

FROM DIP TO NO DIP FOR NON-DIFFRACTED MULTIPLE

In this Appendix, | show that the equations for the non-didted multiple from a dipping
water-bottom reduce to the equations for a flat water-bottdmen ¢ = 0 as they should.
Settingy = 0 in equations 39 through 42 we obtain

Zs
COSw's

tSQ == tr2 - trl - tsl - (D'l)

and from equations 5 and 6 we get (as discussed at the end @ndppA) f, = t;, and
fs, = ts,. Therefore,

he = 2hp —Vi[ts sinas +tr, Sinay + /)(fsz sinBs+ ﬂ2 singr)) (D-2)
= 2hp — V4[2ts, Sinas + p?(ts, Sinas + ts, Sinas)] (D-3)
= 2(hp — Vits, Sinas(1+ p?) (D-4)

= 2hp—hp(1+p?) =hp(1-p?) (D-5)
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Similarly,

ze = Vi(ty, +pls,/1— p?sirfas (D-6)
= Vit [cOsas + py/1— p2sirfas (D-7)

,OV]_tm 2hD 2
= Z, 1—p2( —— D-
b+ 2 \/ P (Vltm> (D-8)
_ P 2_ 2 2
= Zyp+ Z\/(Vltm) — p%(2hp) (D-9)

= Zup+ 2422+ 43— ) = Zun+ 2\[Z3, + 31— p2)  (D-10)
Finally,
\ . : . ~
me = mD+?(tslsmas—trlslnas)+p(t525|nﬂs—tr23|nﬂr)) (D-11)

\% . . . :
= mp+ 31('(51 Sinas — ts; Sinas) + ,02(t52 Sinas —ts, Sinas) =mp ~ (D-12)

APPENDIX E
COMPUTATION OF TAKEOFF ANGLES FOR DIFFRACTED MULTIPLE

From Figure 14 we can immediately compute the takeoff anfjtbeodiffracted receiver ray
as

_1[hD+mD—Xdiff]_ (E-1)

o =tan
' Zgitt
In this equation the depth of the diffractor is not known, liutan be calculated from the

D Xt

Figure E-1: Sketch showing the
geometry of the zero surface
half-offset diffracted multiple
from a dipping water-bottom.
gabriel1-mul_sktch1gNR]

m
i
(p: ~
! Z/cosg
1
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]

Xyt~ Mp

{9

geometry of Figure E-1:

~

Z
Zgitf = ﬁ + (Xqiff —mp)tang (E-2)
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As we did for the diffracted multiple from the flat water-bmwtt, we can use the traveltime of
the multiple at the zero surface-offset trace to comiie except that this time the compu-
tation is much more involved. Figure E-2 shows the basic gggmFrom triangle ABC we
have

[Va(tm(0) — tr, (O))]? = (2Zp cosp + Zaif)? + (2Zp Sing + (Xaitf — Mp))>?, (E-3)

weret;, is the traveltime of the diffracted segment that, accordirgiangle DEF in Figure E-
2 is given by

[Vatr, (0)1? = Z2,¢¢ + (Xditr —mp)>. (E-4)

Replacing equations E-2 and E-4 into equation E-3 gives giqeeguation forZ 5 which can

B 27_sing Kt~ Mp

Figure E-2: Sketch to computép
in equations A-1, E-3 and E-4.
gabriel1-mul_sktch14NR]

be solved numerically. OncféD is known, we can easily compui#yiss with equation E-2
and thereforey, with equation E-1 in terms of the known quantitles, mp, Xgifs andtn(0).
In order to computess, we apply the law of sines to triangle ABC in Figure E-3 to get

27Zssing + (Xgitf —Mp + hp)
Vl(tm _tl’l) ’

sin(es + 2¢) = (E-5)

whereZs = ZD — hp sing andVit;, is the length of the diffracted receiver ray and is given by

V1tr1:\/(hD+mD—Xdiff)2+Z§iff (E-6)

Therefore, plugging equation E-6 into equation E-5 we getéqn 50:

L 2Zpsing + (hp + Xdift —Mp)

os = Sin~
Vltm_\/(hD +MmMp — Xdiff)2+zgiff

—2¢. (E-7)
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XgrrMpthy,

Figure E-3: Sketch to compute
the takeoff angle of the source
ray from a diffracted multiple.
gabriell-mul_sktch1gNR]




