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Mapping of water-bottom and diffracted 2D multiple reflecti ons
to image space

Gabriel Alvarez1

ABSTRACT

Wave-equation migration with the velocity of the primariesmaps non-diffracted water-
bottom multiples to an hyperbola in subsurface-offset-domain-common-image-gathers.
Furthermore, for positive surface offsets, the multiples are mapped to non-positive sub-
surface offsets if sediment velocity is faster than water. The larger the offset in the data
space, the larger the subsurface offset and the shallower the image point. When migrated
with the velocity of the water, the multiples are mapped to zero subsurface offset just
as primaries migrated with the exact velocity. Diffracted multiples, on the other hand,
map to positive or negative subsurface offsets depending onthe relative position of the
diffractor with respect to the common-midpoint. I present the equations of the image
point coordinates in terms of the data space coordinates fordiffracted and non-diffracted
multiples from flat or dipping water-bottom in both subsurface-offset-domain common-
image-gathers and angle-domain common-image-gathers. I illustrate the results with sim-
ple synthetic models.

INTRODUCTION

Attenuation of multiples in the image space is attractive because prestack wave-equation mi-
gration accurately handles the complex wave propagation ofprimaries. In subsurface-offset-
domain common-image-gathers (SODCIG) the primaries are imaged at zero subsurface offset
at the depth of the reflector if migrated with the correct velocity. Correspondingly, in angle-
domain common-image-gathers (ADCIG) the primaries are imaged with flat moveout. Atten-
uation of multiples in image space depends on the differencein residual moveout between the
primaries and the multiples, either in SODCIGs or ADCIGs (Sava and Guitton, 2003; Harg-
reaves et al., 2003; Alvarez et al., 2004). Understanding how wave-equation migration maps
the multiples into SODCIGs and ADCIGs is therefore of paramount importance in order to
design a proper strategy to attenuate the multiples in the image space.

Non-diffracted water-bottom multiples from a flat or dipping water-bottom are imaged
as primaries. Thus, if the migration velocity is that of the water, they are mapped to zero

1email: gabriel@sep.stanford.edu

129



130 Alvarez SEP–123

subsurface-offset in SODCIGs. Consequently, in ADCIGs, these multiples exhibit flat move-
out just as primaries do (Alvarez, 2005). In the usual case ofmigration with velocities faster
than water velocity, these multiples are mapped to subsurface offsets with the opposite sign
with respect to the sign of the surface offsets. I will analytically show the moveout curve of
these multiples in SODCIGs and ADCIGs.

Water-bottom diffracted multiples, on the other hand, evenif from a flat water-bottom,
do not migrate as primary reflections (Alvarez, 2005). That is, they do not focus to zero
subsurface offset even if migrated with the water velocity.Obviously this happens because at
the diffractor the reflection is not specular. I will show that these multiples migrate to both
positive and negative subsurface offsets in SODCIGs depending on the relative position of the
diffractor with respect to the receiver (for receiver-sidediffracted multiples).

The next section presents a general formulation for computing the kinematics of diffracted
and non-diffracted water-bottom multiples for both SODCIGs and ADCIGs. The following
section then looks in detail at the special case of flat water-bottom where the equations simplify
and some insight can be gained as to the analytical representation of the residual moveout of
the multiples in both SODCIGs and ADCIGs. The next section presents a similar result for
multiples from a dipping water-bottom. Although the equations are more involved and difficult
to encapsulate in one single expression than those for the flat water-bottom, I show that we can
still compute the image space coordinates of both the diffracted and non-diffracted multiples
in terms of their data space coordinates. The last section discusses some of the implications
of the results and the possibility that they can be used to attenuate the multiples in the image
space. Detailed derivation of all the equations is includedin the appendices.

KINEMATICS OF WATER-BOTTOM MULTIPLES IN IMAGE SPACE

Figure 1: Water-bottom multiple.
The subscripts refers to the source
and the subscriptr to the receiver.
gabriel1-mul_sktch1[NR]

The propagation path of a water-bottom multiple, as shown inFigure 1, consists of four
segments, such that the total travel-time for the multiple is given by

tm = ts1 + ts2 + tr2 + tr1, (1)

where the subscripts refers to the source-side rays and the subscriptr refers to the receiver-
side rays. The data space coordinates are (mD,hD, tm) wheremD is the horizontal position
of the CMP gather andhD is the half-offset between source and receiver. Wave-equation
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migration maps the CMP gathers to SODCIGs with coordinates (mξ ,hξ ,zξ ) wheremξ is the
horizontal position of the image gather, andhξ andzξ are the half subsurface-offset and the
depth of the image, respectively. As illustrated in the sketch of Figure 2, at any given depth

Figure 2: Imaging of water-bottom
multiple in SODCIG. The sub-
script ξ refers to the image point.
gabriel1-mul_sktch2[NR]

the image space coordinates of the migrated multiple are given by:

xsξ = mD −hD + V1(ts1 sinαs +ρ t̃s2 sinβs),

xrξ = mD +hD − V1(tr1 sinαr +ρ t̃r2 sinβr ),

hξ =
xrξ − xsξ

2
= hD −

V1

2

[

ts1 sinαs + tr1 sinαr +ρ(t̃s2 sinβs + t̃r2 sinβr )
]

, (2)

zξ = V1(ts1 cosαs +ρ t̃s2 cosβs) = V1(tr1 cosαr +ρ t̃r2 cosβr ), (3)

mξ =
xrξ + xsξ

2
= mD +

V1

2

(

ts1 sinαs − tr1 sinαr +ρ(t̃s2 sinβs − t̃r2 sinβr )
)

, (4)

whereV1 is the water velocity,ρ = V2/V1 with V2 the sediment velocity, andαs, αr are the
acute takeoff angles of the source and receiver rays with respect to the vertical. The traveltime
of the refracted ray segmentst̃s2 andt̃r2 can be computed from two conditions: (1) at the image
point the depth of both rays has to be the same (since we are computing horizontal subsurface
offset gathers) and (2)ts2 + tr2 = t̃s2 + t̃r2 which follows immediately from equation 1 since
at the image point the extrapolated time equals the traveltime of the multiple. As shown in
Appendix A, the traveltimes of the refracted rays are given by

t̃s2 =
tr1 cosαr − ts1 cosαs +ρ(ts2 + tr2)cosβr

ρ(cosβs +cosβr )
, (5)

t̃r2 =
ts1 cosαs − tr1 cosαr +ρ(ts2 + tr2)cosβs

ρ(cosβs +cosβr )
. (6)

The refracted angles are related to the takeoff angles by Snell’s law: sin(βs+ϕ) = ρ sin(αs+ϕ)
and sin(βr −ϕ) = ρ sin(αr −ϕ), from which we get

sinβs = ρ sin(αs +ϕ)cosϕ −

√

1−ρ2 sin2(αs +ϕ)sinϕ, (7)

sinβr = ρ sin(αr −ϕ)cosϕ +

√

1−ρ2 sin2(αr −ϕ)sinϕ, (8)

cosβs =

√

1−ρ2 sin2(αs +ϕ)cosϕ +ρ sin(αs +ϕ)sinϕ, (9)

cosβr =

√

1−ρ2 sin2(αr −ϕ)cosϕ −ρ sin(αr −ϕ)sinϕ. (10)
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Equations 2–10 are valid for any water-bottom multiple, whether from a flat or dipping water-
bottom. They even describe the migration of source- or receiver-side diffraction multiples,
since no assumption has been made relatingαr andαs or the individual traveltime segments.
In ADCIGs, the mapping of the multiples can be directly related to the previous equations by

Figure 3: Imaging of water-bottom
multiple in ADCIG. The subscriptξ
refers to the image point. The line AB
represents the apparent reflector at the
image point. gabriel1-mul_sktch3
[NR]

the geometry shown in Figure 3. The half-aperture angle is given by

γ =
βr +βs

2
, (11)

which is the same equation used for converted waves (Rosalesand Biondi, 2005). The depth
of the image point (zξγ ) is given by (Appendix B)

zξγ = zξ −hξ tanγ . (12)

Equations 2–12 formally describe the image coordinates in terms of the data coordinates. They
are, however, of little practical use unless we can relate the individual traveltime segments (ts1,
ts2, t̃s2, tr2, t̃r2, tr1), and the anglesαs andαr (which in turn determineβs andβr ) to the known
data space parameters (mD, hD, tm, V1, ϕ andρ). This may not be easy or even possible
analytically for all situations, but it is for some simple but important models that I will now
examine.

FLAT WATER-BOTTOM

Non-diffracted multiple

The traveltime of the water-bottom multiple is given by (Alvarez, 2005)

tm =
4

V1

√

(

hD

2

)2

+ Z2
wb =

√

t2
m(0)+

(

2hD

V1

)2

, (13)
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which is simply the traveltime of a primary at twice the depthof the water-bottomZwb =
V1tm(0)

4 . From Figure 4 it is clear that due to the symmetry of the problem, ts1 = ts2 = tr1 =

Figure 4: Imaging of water-bottom
multiple for a flat water-bottom. No-
tice thatmD = mξ and that the appar-
ent reflector at the image point is flat.
gabriel1-mul_sktch4[NR]

tr2 = tm/4 andαs = αr , which in turn meansβs = βr . Furthermore, from Equations 5 and 6 it
immediately follows that̃ts2 = ts2 andt̃r2 = tr2 which says that the traveltimes of the refracted
rays are equal to the corresponding traveltimes of the multiple. Equation 2 thus simplifies to

hξ =
hD

2
(1−ρ2), (14)

which indicates that the subsurface offset at the image point of a trace with half surface offset
hD depends only on the velocity contrast between the water and the sediments. In particular,
if the trace is migrated with the water velocity,i.e. ρ = 1, thenhξ = 0 which proves the
claim that the trace is imaged exactly as a primary since it ismapped to zero subsurface offset
irrespective of its surface offset. It should also be noted that, since usually sediment velocity
is faster than water velocity, thenρ2 > 1 and therefore the multiples are mapped to subsurface
offsets with the opposite sign with respect to the sign of thesurface offsethD when migrated
with sediment velocity.

From Equation 3, the depth of the image point can be easily computed as

zξ = Zwb +
ρ

2

√

h2
D(1−ρ2)+4Z2

wb, (15)

which for migration with the water velocity reduces tozξ = 2Zwb, which shows that the multi-
ple is migrated as a primary at twice the water depth. Finally, from Equation 4, the horizontal
position of the image point reduces to

mξ = mD. (16)
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This result shows that the multiple is mapped in the image space to the same horizontal posi-
tion as the corresponding CMP even if migrated with sedimentvelocity. This result is obvi-
ously a direct consequence of the symmetry of the raypaths ofthe multiple reflection in this
case.

Equations 14–16 give the image space coordinates in terms ofthe data space coordinates.
An important issue is the functional relationship between the subsurface offset and the im-
age depth, since it determines the moveout of the multiples in the subsurface-offset-domain
common-image-gathers (SODCIGs). ReplacinghD = 2hξ/(1−ρ2) andZwb = zξ (0)/(1+ρ)
in Equation 15 we get

zξ =
zξ (0)

1+ρ
+ρ

√

(

zξ (0)

1+ρ

)2

+
h2

ξ

1−ρ2
(ρ 6= 1) (17)

which shows that the moveout is an hyperbola (actually half of an hyperbola since we already
established thathξ ≤ 0 if hD ≥ 0). Figure 5 shows an SODCIG for a non-diffracted water-

Figure 5: Subsurface offset domain
common image gather of a water-
bottom multiple from a flat water-
bottom. Water velocity is 1500 m/s,
water depth 500 m, sediment veloc-
ity 2500 m/s and surface offsets from
0 to 2000 m. Overlaid is the residual
moveout curve computed with Equa-
tion 17. gabriel1-odcig1[CR]

bottom multiple from a flat water-bottom 500 m deep. The data was migrated with a two-layer
velocity model: the water layer of 1500 m/s and a sediment layer of velocity 2500 m/s. Larger
subsurface offsets (which according to Equation 14 correspond to larger surface offsets) map
to shallower depths (for the normal situation ofρ > 1), as we should expect since the rays are
refracted to increasingly larger angles until the criticalreflection angle is reached. Also notice
that the hyperbola is shifted down by a factor (1+ ρ) with respect to the image point when
migrated with water velocity.

In angle-domain common-image-gathers (ADCIGs), the half-aperture angle reduces to
γ = βs = βr , which in terms of the data space coordinates is given by

γ = sin−1
[

2ρhD

V1tm

]

. (18)

The depth of the image can be easily computed from Equation 12. In particular, if the data
are migrated with the velocity of the water,ρ = 1, and thereforezξγ = 2Zwb which means a
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horizontal line in the (zξγ ,γ ) plane. Equivalently, we can say that the residual moveout in the
(zξγ ,γ ) plane is zero, once again corroborating that the water-bottom multiple is migrated as
a primary ifρ = 1. Equation 12 can be expressed in terms of the data space coordinates using
Equations 14 and 15 and noting that

tanγ = tanβs =
ρ sinαs

√

1−ρ2 sin2αs

=
2ρhD

√

V2
1 t2

m −4ρ2h2
D

=
ρhD

√

4Z2
wb +h2

D(1−ρ2)
(19)

If ρ = 1 this expression simplifies to tanγ =
hD

2Zwb
, which is the aperture angle of a primary

at twice the water-bottom depth. As we did with the SODCIG, itis important to find the

Figure 6: Angle domain common im-
age gather corresponding to the SOD-
CIG shown in Figure 5. Overlaid is
the residual moveout curve computed
with equation 20. gabriel1-adcig1
[CR]

functional relationship betweenzξγ andγ since it dictates the residual moveout of the multiple
in the ADCIG. Plugging Equations 14 and 15 into equation 12, using Equations 13, and 18 to
eliminatehD and simplifying we get

zξγ = Zwb



1+
cosγ (ρ2 − tan2γ (1−ρ2))

√

ρ2 −sin2γ



=
zξγ (0)

1+ρ



1+
cosγ (ρ2 − tan2γ (1−ρ2))

√

ρ2 −sin2γ



 .

(20)

Once again, when the multiple is migrated with the water velocity (ρ = 1) we get the expected
resultzξγ = zξγ (0), that is, flat moveout (no angular dependence). Figure 6 shows the ADCIG
corresponding to the SODCIG shown in Figure 5. Notice that the migrated depth at zero
aperture angle is the same as that for zero sub-surface offset in Figure 5. For larger aperture
angles, however, the migrated depth increases as indicatedin equation 20 and as seen in the
schematic of Figure 4.

Diffracted multiple

Consider now a diffractor sitting at the water-bottom as illustrated in the sketch in Figure 7.
The source- and receiver-side multiples are described by equations 2–4 as did the water-bottom
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multiple. In this case, however, the take-off angles from source and receiver are different even
if the surface offset is the same as that in Figure 4. In fact, since the reflection is non-specular
at the location of the diffractor,Xdi f f needs to be known in order for the receiver take-off
angle to be computed. The traveltime of the diffracted multiple is given by

tm =
1

V1



3

√

Z2
wb +

[

Xdi f f − (mD −hD)

3

]2

+

√

[

(mD +hD)− Xdi f f
]2

+ Z2
wb



 , (21)

whereZwb = Zdi f f can be computed from the traveltime of the multiple for the zero subsurface
offset trace (tm(0)) by solving the quadratic equation inZ2

wb that results from settinghD = 0
in equation 21:

64Z4
wb −20V2

1 t2
m(0)Z2

wb + (V4
1 t4

m(0)−4V2
1 t2

m(0)(mD − Xdi f f )
2) = 0 (22)

The coordinates of the image point, according to equations 2–4 are given by

Figure 7: Imaging of receiver-
side diffracted water-bottom multiple
from a diffractor sitting on top of a
flat water-bottom. At the diffractor
the reflection is non-specular. Notice
thatmD 6= mξ . gabriel1-mul_sktch5
[NR]

hξ = hD −
V1

2

[

ts1 sinαs + tr1 sinαr +ρ2(t̃s2 sinαs + t̃r2 sinαr )
]

, (23)

zξ = Zwb +ρV1t̃r2 cosβr , (24)

mξ = mD +
V1

2
(ts1 sinαs − tr1 sinαr +ρ2( t̃s2 sinαs − t̃r2 sinαr )). (25)

The traveltimes of the individual ray segments are given by

ts1 = ts2 = tr2 =
Xdi f f − (mD −hD)

3V1sinαs
, and tr1 =

mD +hD − Xdi f f

V1sinαr
, (26)
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whereas the traveltimes of the refracted rays can be computed from equation 5:

t̃s2 =
ts2(2ρ cosβr −cosαs)+ tr1 cosαr

ρ(cosβr +cosβs)
, and t̃r2 =

ts2(2ρ cosβs +cosαs)− tr1 cosαr

ρ(cosβr +cosβs)
.

(27)

where, according to equations 9 and 10:

cosβs =

√

1−ρ2 sin2αs and cosβr =

√

1−ρ2 sin2αr . (28)

In order to expresshξ , zξ andmξ entirely in terms of the data space coordinates, all we need
to do is compute the sines and cosines ofαs andαr which can be easily done from the sketch
of Figure 7:

sinαs =
Xdi f f − (mD −hD)

3
√

((Xdi f f − (mD −hD))/3)2 + Z2
wb

cosαs =
Zwb

√

((Xdi f f − (mD −hD))/3)2 + Z2
wb

sinαr =
(mD +hD)− Xdi f f

√

((mD +hD)− Xdi f f )2 + Z2
wb

cosαr =
Zwb

√

((mD +hD)− Xdi f f )2 + Z2
wb

Notice that the diffraction multiple does not migrate as a primary even if migrated with water
velocity. In other words, even ifρ = 1, hξ 6= 0. The only exception is whenXdi f f = mD +

hD/2 since then the diffractor is in the right place to make a specular reflection and therefore
is indistinguishable from a non-diffracted water-bottom multiple. In that case,αr = αs (which
in turn impliesβr = βs) and from equations 5 and 6,t̃r2 = t̃s2 = ts2 and therefore equations 23–
25 reduce to equations 14–16, respectively. Figure 8 shows two subsurface-offset sections

Figure 8: image sections at 0 and -400 m subsurface offset fora diffracted multiple from
a flat water-bottom. The depth of the water-bottom is 500 m andthe diffractor is located
at 2500 m. The solid line represents image reflector computedwith equations 24 and 25.
gabriel1-image2[CR]

of a migrated diffracted multiple from a diffractor sittingon top of a flat reflector as in the
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schematic of Figure 7. The diffractor position isXdi f f = 2,500 m, the CMP range is from
2,000 m to 3,000 m, the offsets range from 0 to 2,000 m and the water depth is 500 m. The
data were migrated with the same two-layer model described before. Panel (a) corresponds to
zero subsurface offset (hξ = 0) whereas panel (b) corresponds to subsurface offset of -400 m.
Overlaid are the residual moveout curves computed with equations 24 and 25. Obviously, the
zero subsurface offset section is not a good image of the water-bottom or the diffractor.

Figure 9 shows three SODCIGs taken at locations 2,300 m, 2,500 m and 2,700 m. Unlike
the non-diffracted multiple, this time energy maps to positive or negative subsurface offset
depending on the relative position of the CMP with respect tothe diffractor. In ADCIGs the
aperture angle is given by equation 11 which, given the geometry of Figure 7, reduces to

γ =
1

2
sin−1 [βs +βr ] =

1

2
sin−1

[

ρ sinαr

√

1−ρ2 sin2αs +ρ sinαs

√

1−ρ2 sin2αr

]

. (29)

The depth of the image is given by equation 12,

zξγ = zξ −hξ tan

(

1

2
sin−1

[

ρ sinαr

√

1−ρ2 sin2αs +ρ sinαs

√

1−ρ2 sin2αr

])

. (30)

Again, this equation shows that the diffracted multiple is not migrated as a primary even if

Figure 9: SODCIGs from a diffracted multiple from a flat water-bottom at locations 2,300 m,
2,500 m and 2,700 m. The diffractor is at 2,500 m. The overlaidresidual moveout curves were
computed with equations 23 and 24.gabriel1-odcig2[CR]

ρ = 1 (except in the trivial caseXdi f f = mD + hD/2 discussed before for which, sinceαr =

αs, γ = βs = βr in agreement with equation 19 and so equation 30 reduces to equation 20).
Figure 10 shows the angle gathers corresponding to the SODCIGs of Figure 9. Notice the shift
in the apex of the moveout curves.
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Figure 10: ADCIGs corresponding to the SODCIGs in Figure 9. The overlaid curves are the
residual moveout curves computed with equations 24 and 30.gabriel1-adcig2[CR]

DIPPING WATER-BOTTOM

Water-bottom multiple

The water-bottom multiple from a dipping reflector has exactly the same kinematics as a pri-
mary from a reflector with twice the dip (Alvarez, 2005), thatis,

tm =

√

√

√

√

(

2ẐD

V1

)2

+

(

2hD

V̂N M O

)2

=

√

t2
m(0)+

(

2hD

V̂N M O

)2

, (31)

whereϕ is the dip of the reflector,̂ZD is the perpendicular depth to the equivalent reflector
with twice the dip (at the CMP location) and̂VN M O is the NMO velocity of the equivalent
primary V̂N M O = V1/cos(2ϕ).

Following the same procedure as for the flat water-bottom, wecompute the coordinates of
the image point using equations 2–4 and noting that in this caseαr = αs +4ϕ,

hξ = hD −
V1

2

[

ts1 sinαs + tr1 sin(αs +4ϕ)+ρ
(

t̃s2 sinβs + t̃r2 sinβr
)]

, (32)

zξ = V1

(

tr1 cosαs +ρ t̃s2

[
√

1−ρ2 sin2(αs +ϕ)cosϕ +ρ sin(αs +ϕ)sinϕ

])

, (33)

mξ = mD +
V1

2
(ts1 sinαs − tr1 sin(αs +4ϕ)+ρ(t̃s2 sinβs − t̃r2 sinβr )). (34)

where, according to equations 7–10,

sinβs = ρ sin(αs +ϕ)cosϕ −

√

1−ρ2 sin2(αs +ϕ)sinϕ, (35)

sinβr = ρ sin(αs +3ϕ)cosϕ +

√

1−ρ2 sin2(αs +3ϕ)sinϕ, (36)

cosβs =

√

1−ρ2 sin2(αs +ϕ)cosϕ +ρ sin(αs +ϕ)sinϕ, (37)

cosβr =

√

1−ρ2 sin2(αs +3ϕ)cosϕ −ρ sin(αs +3ϕ)sinϕ. (38)
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The traveltimes of the individual ray segments are computedby repeated application of the
law of sines as shown in Appendix C:

ts1 =
Z̃s

V1cos(αs +ϕ)
=

Z̃D −hD sinϕ

V1cos(αs +ϕ)
, (39)

ts2 =
ts1 cosαs

cos(αs +2ϕ)
=

(Z̃D −hD sinϕ)cosαs

V1cos(αs +ϕ)cos(αs +2ϕ)
, (40)

tr2 =
ts2 cos(αs +ϕ)

cos(αs +3ϕ)
=

(Z̃D −hD sinϕ)cosαs

V1cos(αs +2ϕ)cos(αs +3ϕ)
, (41)

tr1 =
tr2 cos(αs +2ϕ)

cos(αs +4ϕ)
=

(Z̃D −hD sinϕ)cosαs

V1cos(αs +3ϕ)cos(αs +4ϕ)
, (42)

where Z̃D is the perpendicular depth to the reflector at the CMP location and is given by
(Appendix C):

Z̃D =
V1tm(0)cosϕ

2[1+cos(2ϕ)]
. (43)

Notice that this is not the same asẐD in equation 31, which corresponds to the perpendicular
depth to the equivalent reflector whose primary has the same kinematics as the water-bottom
multiple.

The traveltime of the refracted ray segments are given by equations 5 and 6 with

cosαr =

√

1−sin2(αs +4ϕ), and cosαs =

√

1−sin2αs. (44)

In order for equation 32–34 to be useful in practice, we need to express them entirely in terms
of the known data coordinates, which means that we need to findan expression forαs in terms
of (tm,hD,mD,ϕ). In Appendix C it is shown that

αs = sin−1
[

2hD cos(2ϕ)

V1tm

]

−2ϕ. (45)

We now have all the pieces to compute the image space coordinates, sincẽts2 and t̃r2 can be
computed from equations 5 and 6 using equations 35–45.

Appendix D shows that equations 32–34 reduce to the corresponding equations for the
non-diffracted multiple from a flat water bottom whenϕ = 0, as they should.

Figure 11 shows the zero subsurface offset section from a migrated non-diffracted multiple
from a dipping water-bottom. The overlaid curve was computed with equations 32–34. The
dip of the water-bottom is 15 degrees and intercepts the surface at CMP location zero. The
CMP range of the data is from 2000 to 3000 m and the surface offsets from 0 to 2000 m.
The multiple was migrated with the same two-layer model described before. Notice how the
multiple was migrated as a primary. Since the migration velocity is faster than water-velocity,
the multiple is over-migrated and appears much steeper and shallower than it should (recall
that it would be migrated as a reflector with twice the dip is the migration velocity were that
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Figure 11: image section at zero
subsurface offset for a non-diffracted
multiple from a dipping water-
bottom. The overlaid curve was
computed with equation 34 and 33.
gabriel1-image3[CR]

Figure 12: SODCIG from a non-
diffracted multiple from a dipping
water-bottom. The overlaid residual
moveout curve was computed with
equation 32 and 33.gabriel1-odcig3
[CR]
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of the water.) Figure 12 shows the SODCIG at CMP 1500 m in i Figure 11. Just as for the flat
water-bottom, the multiple energy is mapped to negative subsurface offsets sinceρ > 1. The
overlaid curve is the moveout computed with equations 32–34. The aperture angle is given by
equation 11 with

βr = sin−1(ρ sin(αs +3ϕ))−ϕ and βs = sin−1(ρ sin(αs +ϕ))−ϕ (46)

andαs given by equation 45. The image depth in the ADCIG is given by equation 12 withβs

andβr given by equation 46 andhξ andzξ given by equations 32 and 33. Figure 13 shows the
ADCIG corresponding to the SODCIG in Figure 12. Notice that the apex is at zero aperture
angle.

Figure 13: ADCIG corresponding to
the SODCIG shown in Figure 12.
The overlaid residual moveout curve
was computed with equation 33, 11,
12, and 46.gabriel1-adcig3[CR]

Diffracted multiple

Figure 14 shows the raypath of a diffracted multiple from a dipping reflector. The image-space
coordinates of the diffracted multiple are given by the sameequations as the water-bottom
multiple, i.e. equations 32–34. The main difference is that nowαr 6= αs + 4ϕ. In fact, αr

depends exclusively oh the position of the diffractor with respect to the receiver and is given
by (Appendix E)

αr = tan−1
[

hD +mD − Xdi f f

Zdi f f

]

. (47)

The depth of the diffractorZdi f f can be computed as (Appendix E):

Zdi f f = Z̃D cosϕ + (Xdi f f −mD) tanϕ, (48)

whereZ̃D, as before, is the perpendicular distance between the CMP and the reflector. It can
be computed from the traveltime of the diffracted multiple of the zero surface-offset trace as
shown in Appendix E. The traveltime segments from the sourceto the diffractor are the same
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Figure 14: Diffracted multiple from
a dipping water-bottom. Note
that the receiver ray does not sat-
isfy Snell’s law at the diffractor.
gabriel1-mul_sktch6[NR]

as before and given by equations 39–41, while the traveltimefrom the diffractor to the receiver
is simply

tr1 =
1

V1

√

(hD + (mD − Xdi f f ))2 + Z2
di f f . (49)

In order to have the image coordinates entirely in terms of the data space coordinates all that
is left is to computeαs (Appendix E):

αs = sin−1





2Z̃D sinϕ + (hD + Xdi f f −mD)

V1tm −

√

(hD +mD − Xdi f f )2 + Z2
di f f



−2ϕ. (50)

Figure 15 shows three image sections at subsurface offsets of 0, -200 and 200 m. These

Figure 15: image sections at 0, -200 and 200 m subsurface offset for a diffracted multiple from
a dipping water-bottom.gabriel1-image4[CR]

sections are a poor representation of either the reflector orthe diffractor since the diffracted
multiple is not imaged as a primary. Figure 16 shows three SODCIGs at CMP locations 1800,
2200 and 2600 m. Again, we see that the SODCIGs are very different depending on their
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Figure 16: SODCIGs at three different CMP locations: 1,800,2,000 and 2,200 m for a
diffracted multiple from a dipping water-bottom.gabriel1-odcig4[CR]

Figure 17: ADCIGs corresponding to the three SODCIGs of Figure 16. gabriel1-adcig4[CR]

relative position to the diffractor, unlike the situation with the non-diffracted multiple which
maps to negative subsurface offsets (forhD ≥ 0) for all SODCIGs. The aperture angle and
the image depth of the diffracted multiple in ADCIGs can alsobe computed with equations 11
and 12 withβr andβs given by equation 46. Figure 17 shows the ADCIG corresponding to
the same ODCIG in Figure 16. Again, notice that the apex is shifted away from zero aperture
angle.

DISCUSSION

The results of the previous sections illustrate that non-diffracted water-bottom multiples (whe-
ther from flat or dipping water-bottom) map to negative subsurface offsets (sincehD ≥ 0 in
this case), whereas primaries migrated with slower velocities would map to positive subsur-
face offsets. This suggests an easy strategy to attenuate these multiples. Migrate the data with
a constant velocity that is faster than water velocity but slower than sediment velocity. Keep
only the positive subsurface offsets and demigrate with thesame velocity. In principle, the pri-
maries would be restored (at least kinematically) whereas the multiples would be attenuated.
Although not shown here, the same conclusion can be reached for higher-order non-diffracted
water-bottom multiples. This strategy, however, would notwork for diffracted multiples since
they may map to positive subsurface offsets even when migrated with a velocity faster than
water velocity as illustrated schematically in Figure 18. We can still separate these multiples
from the primaries, but that requires the application of an appropriate Radon transform. An
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apex-shifted tangent-squared Radon transform was appliedby Alvarez et. al. (2004) to a
real 2D section with good results, but the basic assumption there was that of no ray-bending
at the water-bottom interface. It is expected that the more accurate equations derived here
will allow the design of a better Radon transform and therefore a better degree of separation
between primaries and diffracted multiples. This is the subject of continuing research. For

Figure 18: Sketch illustrating
that diffracted multiples may map
to positive subsurface offsets.
gabriel1-mul_sktch7[NR]

the non-diffracted multiple from a flat water-bottom the mapping between the image-space
coordinates and the data-space coordinates is essentially2D sincemD = mξ , which allowed
the computation of closed-form expressions for the residual moveout of the multiples in both
SODCIGs and ADCIGs. For diffracted multiples in particular, it is not easy to compute equiv-
alent closed-form expressions, but we can compute numerically the residual moveout curves
given the expression for (hξ ,zξ ,mξ ) in terms of the data-space coordinates (tm,hD,mD), ϕ and
Xdi f f . In principle, the dip of the water-bottom can be estimated from the data and the position
of the diffractor corresponds to the lateral position of theapex of the multiple diffraction in a
shot gather as illustrated in the sketch of Figure 19.

Figure 19: Sketch illustrating the
raypaths of a diffracted multiple in
a shot gather. The lateral posi-
tion of the diffractor corresponds
to the apex of the moveout curve.
gabriel1-mul_sktch8[NR]

CONCLUSIONS

Non-diffracted water-bottom multiples, whether from a flator dipping water-bottom, map to
zero or negative subsurface offsets when migrated with the velocity of the sedimentsρ > 1
for hD ≥ 0. On the other hand, primaries migrated with slower velocities map to positive
subsurface offsets. It may be possible to exploit this fact to attenuate these multiples.
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Diffracted water-bottom multiples, in contrast, map to both positive and negative subsur-
face offsets depending on the relative position of the CMP and the diffractor. To attenuate these
multiples we need an accurate representation of their residual moveouts in either SODCIGs or
ADCIGs as presented here to design a suitable Radon transform that focuses these multiples
to predictable locations in the Radon domain. This is the subject of ongoing research.
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APPENDIX A

COMPUTATION OF TRAVELTIME FOR REFRACTED RAYS

In this Appendix I derive equations 5 and 6. From equation 3 wehave:

ts1 cosαs +ρ t̃s2 cosβs = tr1 cosαr +ρ t̃r2 cosβr , (A-1)

and, from the condition that the sum of the traveltime of the extrapolated rays at the image
point has to be equal to the traveltime of the multiple we have

ts2 + tr2 = t̃s2 + t̃r2. (A-2)
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Solving those two equations fort̃s2 andt̃r2 we get

t̃s2 =
tr1 cosαr − ts1 cosαs +ρ(ts2 + tr2)cosβr

ρ(cosβs +cosβr )
, (A-3)

t̃r2 =
ts1 cosαs − tr1 cosαr +ρ(ts2 + tr2)cosβs

ρ(cosβs +cosβr )
. (A-4)

It is interesting to check these equations in two particularcases. For a non-diffracted flat
water-bottom multiple, we haveαs = αr , βs = βr , ts1 = ts2 = tr2 = tr1 and therefore we get
t̃s2 = ts2 andt̃r2 = tr2 as the geometry of the problem requires. Notice that this is true for anyρ.
The second case is for a non-diffracted water-bottom multiple migrated with water velocity.
In that case,βs = αs andβr = αr . Furthermore, since the multiple behaves as a primary,
(ts1 + ts2)cosαs = (tr1 + tr2)cosαr and we again get̃ts2 = ts2 andt̃r2 = tr2.

APPENDIX B

COMPUTATION OF IMAGE DEPTH IN ADCIGS

Figure B-1: Sketch to show the com-
putation of the image depth in an AD-
CIG. gabriel1-mul_sktch17[NR]

Figure B-1 shows the basic construction to compute the imagedepth in ADCIGs based
on the image depth is SOCIGs. Triangles ABD and CBD are congruent since they have one
side common and the other equal because |AB|=|BC|=hξ . Therefore,θ = π/2−βr + δ. Also,
triangles AED and FCD are congruent because |AD|=|CD| and also |AE|=|CF| (Biondi and
Symes, 2004). Therefore, the angleδ in triangle DCF is the same as in triangle AED. We can
computeδ from the condition

θ + δ +βs =
π

2
,

π

2
−βr + δ + δ +βs =

π

2
,

δ =
βr −βs

2
.
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The depth of the image point in the ADCIG, from triangle ABC, is therefore

zξγ = zξ + z∗ = zξ + (sign(hξ ))hξ cot
(π

2
−βr + δ

)

. (B-1)

Replacing the expression forδ we get, after some simplification (and taking sign(hξ ) = −1)

zξγ = zξ + z∗ = zξ −hξ tan

(

βr +βs

2

)

= zξ −hξ tan(γ ). (B-2)

APPENDIX C

TRAVELTIME COMPUTATIONS FOR DIPPING WATER-BOTTOM MULTIPL E

In this Appendix I derive equations 39–45. From triangle ABCin Figure C-1 we immediately

Figure C-1: Sketch to show the com-
putation of ts1 and ts2 for a non-
diffracted multiple from a dipping
water-bottom. gabriel1-mul_sktch9
[NR]

get

ts1 =
Z̃s

cos(αs +ϕ)
(C-1)

and applying the law of sines to triangle ACD we get

ts2 =
ts1 cosαs

cos(αs +2ϕ)
=

Z̃scosαs

V1cos(αs +ϕ)cos(αs +2ϕ)
. (C-2)

Similarly, repeated application of the law of sines to triangles CDE and DEF in Figure C-2
gives

tr2 =
ts2 cos(αs +ϕ)

cos(αs +3ϕ)
=

Z̃scosαs

V1cos(αs +2ϕ)cos(αs +3ϕ)
(C-3)

tr1 =
tr2 cos(αs +2ϕ)

cos(αs +4ϕ)
=

Z̃scosαs

V1cos(αs +3ϕ)cos(αs +4ϕ)
. (C-4)



SEP–123 Multiples in image space 149

Figure C-2: Sketch to show
the computation of tr2 and tr1

for a non-diffracted multiple
from a dipping water-bottom.
gabriel1-mul_sktch10[NR]

Figure C-3: Sketch to show the
computation ofZ̃s in equation C-5.
gabriel1-mul_sktch11[NR]

These equations are in terms ofZ̃s, which is not known. However, from Figure C-3 we see
that

Z̃s = Z̃D −hD sinϕ, (C-5)

and Z̃D can be computed from the traveltime of the zero surface-offset trace, since, according
to Figure C-4

tm(0) =
2Z̃D

V1cosϕ
+

2Z̃D cos(2ϕ)

V1cosϕ
=

2Z̃D(1+cos(2ϕ))

V1cosϕ
, (C-6)

from which it follows immediately that

Z̃D =
V1tm(0)cosϕ

2[1+cos(2ϕ)]
. (C-7)

Finally, we need to computeαs. Applying the law of sines to triangle ABC in Figure C-5 we
get

sin(αs +2ϕ) =
2hD cos(2ϕ)

V1tm
, (C-8)

from which we get

αs = sin−1
[

2hD cos(2ϕ)

V1tm

]

−2ϕ. (C-9)
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Figure C-4: Sketch to show the
computation ofZ̃D in equation C-7.
gabriel1-mul_sktch12[NR]

Figure C-5: Sketch to compute
the takeoff angle of the source
ray from a non-diffracted multi-
ple from a dipping water-bottom.
gabriel1-mul_sktch16[NR]

APPENDIX D

FROM DIP TO NO DIP FOR NON-DIFFRACTED MULTIPLE

In this Appendix, I show that the equations for the non-diffracted multiple from a dipping
water-bottom reduce to the equations for a flat water-bottomwhen ϕ = 0 as they should.
Settingϕ = 0 in equations 39 through 42 we obtain

ts2 = tr2 = tr1 = ts1 =
Z̃s

cosαs
(D-1)

and from equations 5 and 6 we get (as discussed at the end of Appendix A) t̃r2 = tr2 and
t̃s2 = ts2. Therefore,

hξ = 2hD − V1[ts1 sinαs + tr1 sinαr +ρ(t̃s2 sinβs + t̃r2 sinβr )) (D-2)

= 2hD − V1[2ts1 sinαs +ρ2(ts2 sinαs + ts2 sinαs)] (D-3)

= 2(hD − V1ts1 sinαs(1+ρ2) (D-4)

= 2hD −hD(1+ρ2) = hD(1−ρ2) (D-5)
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Similarly,

zξ = V1(tr1 +ρ t̃s2

√

1−ρ2 sin2αs (D-6)

= V1ts1[cosαs +ρ

√

1−ρ2 sin2αs (D-7)

= Zwb +
ρV1tm

4

√

1−ρ2

(

2hD

V1tm

)2

(D-8)

= Zwb +
ρ

4

√

(V1tm)2 −ρ2(2hD)2 (D-9)

= Zwb +
ρ

4

√

4Z2
wb +4h2

D(1−ρ2) = Zwb +
ρ

2

√

Z2
wb +h2

D(1−ρ2) (D-10)

Finally,

mξ = mD +
V1

2
(ts1 sinαs − tr1 sinαs)+ρ(t̃s2 sinβs − t̃r2 sinβr )) (D-11)

= mD +
V1

2
(ts1 sinαs − ts1 sinαs)+ρ2(ts2 sinαs − ts2 sinαs) = mD (D-12)

APPENDIX E

COMPUTATION OF TAKEOFF ANGLES FOR DIFFRACTED MULTIPLE

From Figure 14 we can immediately compute the takeoff angle of the diffracted receiver ray
as

αr = tan−1
[

hD +mD − Xdi f f

Zdi f f

]

. (E-1)

In this equation the depth of the diffractor is not known, butit can be calculated from the

Figure E-1: Sketch showing the
geometry of the zero surface
half-offset diffracted multiple
from a dipping water-bottom.
gabriel1-mul_sktch13[NR]

geometry of Figure E-1:

Zdi f f =
Z̃D

cosϕ
+ (Xdi f f −mD) tanϕ (E-2)
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As we did for the diffracted multiple from the flat water-bottom, we can use the traveltime of
the multiple at the zero surface-offset trace to computeZ̃D, except that this time the compu-
tation is much more involved. Figure E-2 shows the basic geometry. From triangle ABC we
have

[V1(tm(0)− tr1(0))]2 = (2Z̃D cosϕ + Zdi f f )
2 + (2Z̃D sinϕ + (Xdi f f −mD))2, (E-3)

weretr1 is the traveltime of the diffracted segment that, accordingto triangle DEF in Figure E-
2 is given by

[V1tr1(0)]2 = Z2
di f f + (Xdi f f −mD)2. (E-4)

Replacing equations E-2 and E-4 into equation E-3 gives a quartic equation forZ̃D which can

Figure E-2: Sketch to computẽZD

in equations A-1, E-3 and E-4.
gabriel1-mul_sktch14[NR]

be solved numerically. OncẽZD is known, we can easily computeZdi f f with equation E-2
and thereforeαr with equation E-1 in terms of the known quantitieshD, mD, Xdi f f andtm(0).
In order to computeαs, we apply the law of sines to triangle ABC in Figure E-3 to get

sin(αs +2ϕ) =
2Z̃ssinϕ + (Xdi f f −mD +hD)

V1(tm − tr1)
, (E-5)

whereZ̃s = Z̃D −hD sinϕ andV1tr1 is the length of the diffracted receiver ray and is given by

V1tr1 =

√

(hD +mD − Xdi f f )2 + Z2
di f f (E-6)

Therefore, plugging equation E-6 into equation E-5 we get equation 50:

αs = sin−1





2Z̃D sinϕ + (hD + Xdi f f −mD)

V1tm −

√

(hD +mD − Xdi f f )2 + Z2
di f f



−2ϕ. (E-7)
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Figure E-3: Sketch to compute
the takeoff angle of the source
ray from a diffracted multiple.
gabriel1-mul_sktch15[NR]


