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AMO inversion to a common azimuth dataset

Robert G. Clapp1

ABSTRACT

I cast 3-D data regularization as a least-squares inversionproblem. The model space is
a four-dimensional (t ,cmpx,cmpy,hx) hypercube. An interpolation operator maps to an
irregular five dimensional space (t ,cmpx,cmpy,hx,hy) which is then mapped back into
a four dimensional space by applying Azimuth Move-Out (AMO). A regularization term
minimizes the difference between various (t ,cmpx,cmpy) cubes by applying a filter that
acts along offset. AMO is used to transform the cubes to the same hx before applying
the filter. The methodology is made efficient by Fourier-domain implementation and pre-
conditioning of the problem. I apply the methodology on a simple synthetic and to a real
marine dataset.

INTRODUCTION

The irregularity of seismic data, particularly 3-D data, inboth the model domain (in terms of
subsurface position and reflection angle) and the data domain (in terms of midpoint, offset, and
time) cause imaging problems. Migration methods desire a greater level of regularity than is
often present in seismic surveys. There are two general approaches to deal with this problem.
One approach is to treat the imaging problem as an inverse problem. The migration operator
can be thought of as a linear transform from the recorded datato image space. Ronen and Liner
(2000); Duquet and Marfurt (1999); Prucha et al. (2000) use the migration operator in a linear
inverse problem to overcome irregular and limited data coverage. A regularized that encour-
ages consistency over reflection angle is used to stabilize the inverse. These approaches have
shown promise but are generally prohibitively expensive, and rely on an accurate subsurface
velocity model.

Another approach is to try to regularize the data. AMO provides an effective regularization
tool (Biondi et al., 1998) and is generally applied as an adjoint to create a more regularized
volume. These regularized volumes still often contain in ‘acquisition footprint’ or more subtle
amplitude effects. Chemingui (1999) used a log-stretch transform to make the AMO operator
stationary in time. He then cast the regularization problemas a frequency-by-frequency inver-
sion problem using a Kirchoff-style AMO operator. He showedthat the acquisition footprint
could be significantly reduced. The downside of this approach is the relatively high cost of
Kirchoff implementation of AMO.

1email: bob@sep.stanford.eda
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Biondi and Vlad (2001) built on the work of Fomel (2001) and set up an inverse problem
relating the irregular input data to a regular model space. They regularized the problem by
enforcing consistency between the various (t ,cmpx,cmpy) cubes. The consistency took two
forms. In the first, a simple difference between two adjacentin-line offset cubes was mini-
mized. In the second, the difference was taken after transforming the cubes to the same offset
AMO. Clapp (2005b) set up the data regularization with AMO asan inverse problem creating
a full volume (t ,cmpx,cmpy,hx,hy).

In this paper, I modify the approach of Clapp (2005b) so that the model space is a com-
mon azimuth volume. I introduce an additional mapping operator that maps from the full
(t ,cmpx,cmpy,hx,hy) to hy = 0 using AMO. In addition, I show that the combination of
limited hy and consistent coverage as a function ofhx in marine surveys can still produce
undesired amplitude variation as a function of cmpy. To solve this problem, I introduce an
additional regularization term that creates consistency as a function of cmpy.

THEORY

Estimating a regularly sampled common-azimuth volumem from our irregular input datad
can be set up as a least squares inversion problem. In this section, I will go over an approach to
create a common azimuth volume by setting up an inverse problem. I will use a small synthetic
to demonstrate the need for the various operators in the inversion process.

The data consists of irregular traces in a 5-D space (t ,cmpx,cmpy,hx,hy). The AMO
operator acts on regularly sampled (t ,cmpx,cmpy) cubes, so we map from the irregular data
space to the regular model space using a simple linear interpolation operatorL. Figure 1
shows two cube views from the five dimensional space the data is mapped into. Notice the
sparseness of the data in these cubes. In standard marine acquisition, a single cross-line offset
is acquired for each midpoint. The standard multi-streameracquisition results in variation of
the cross-line offset that is filled as we scan over cmpy.

Figure 1: The location of the input
traces for a simple synthetic. The left
panel is a constant offset cube (fixed
hx andhy). The right panel is a sin-
gle midpoint (fixed cmpx and cmpy).

bob1-interp [CR,M]
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Figure 2: The result of applyingZ to the data shown in Figure 1. The left panel shows three
slice from constant offset cube. The right panel shows threeslice from a constant cmpy cube.

bob1-zero[CR,M]

For common azimuth migration, we want all of our data to reside athy = 0. As a result,
we need to use AMO to transform from thehy that the data was recorded at tohy = 0. The
operatorZ′ is a sum over the (t ,cmpx,cmpy) cubes that have been transformed tohy = 0.
Figure 2 shows two cube views of the result of applyingZ′ to the small synthetic. In this case
we still have significant holes along cmpy. I will discuss why I created these holes later in the
section.

Finally, we need to add in our regularization term. Generally, after NMO, our data should
be smooth as a function of offset. We can think of adding a derivative operator along the offset
axis. We can improve this estimate even further by applying aderivative on cubes that have
been transformed to the same offset using AMO2 Dh. We can write our fitting goals as

d ≈ LZm (1)

0 ≈ εDhm,

whereε controls the importance of consistency along the offset axis. We can speed up the
convergence of this problem by preconditioning the model with the inverse of our regulariza-
tion operator. In this case, we replace taking the derivative of AMO cubes with performing
causal integration of AMO cubesCh. Our new fitting goals then become

d ≈ LZChp (2)

0 ≈ εp,

wherem = Chp.

2In this case AMO simplifies to Dip Move-out because it is beingapplied simply along thehx axis
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Large holes

This set of fitting goals can runs into problems when we deal with real marine geometry. To
demonstrate the problem we will look at where data was recorded for a real 3-D marine survey.
We can calculate where we have traces in thehx,cmpx,cmpy plane. If our acquisition lines are
perfectly straight, we are able to acquire data throughout our survey. If our grid is perfectly
oriented with acquisition geometry, we should have consistent fold in this cube. Figure 3
shows that this is far from the case. The figure shows the result of stacking over all offsets.
Note that we have some areas where we don’t have any data (white). If we use fitting goals
(2) to estimate our model we run into a problem. The inversionresult will show a dimming
of amplitudes as we move away from our known data. Figure 5 shows the result of applying

Figure 3: Fold of a real ma-
rine dataset. Note how we have
some regions with zero fold (white).
bob1-fold [CR]

fitting goals (2) to our synthetic. Note how the amplitude declines markedly as we move away
from locations where we have data. Even more problematic than dimming is when we see
significant unrealistic, brightening of amplitudes for certain cmpy. The brightening is caused
by the fold pattern seen in Figure 4. The three panels represent the fold in the (cmpx,cmpy)
plane as we increase in offset from left to right. Note how we have fairly regular coverage at the
near offsets and much more variable coverage as we move to larger offsets. This inconsistency
is mainly caused by cable feathering. For some cmpy we only have near offset traces. The
near offset traces tend to be of higher amplitude and are moreconsistent as function ofh
(the tops of hyperbolas are insensitive to velocity errors). Our model covariance operator puts
these unrealistically large amplitudes at all offsets, resulting in a striping of the amplitudes as
a function of cmpy.

Both of these problems are due to the lack of ‘mixing’ of information along they direction.
By mixing I mean that a column of the matrix implied by fitting goals (2) has very few non-zero
elements at cmpy’s different from the cmpy associated with its corresponding model point.
Our regularization is just DMO, which produces no mixing in the y direction. Our zeroing
operator produces a limited amount of mixing, but the range is limited due to the small offset
in the hy direction inherent in marine surveys. As a result our inversion can have realistic
kinematic but unrealistic amplitude behavior as a functionof cmpy. A simple solution to
this problem is to introduce another operator to our model covariance description that tends to
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Figure 4: The three panels represent the fold in the (cmpx,cmpy) plane as we increase in offset
from left to right. Note how we have fairly regular coverage at the near offsets and much more
variable coverage as we move to larger offsets. For some cmpy we only have near offset traces.

bob1-fold-off [CR]

produce consistency as a function of cmpy. We must be careful to avoid introducing unrealistic
smoothness in the cmpy direction by our choice of preconditioners. I chose leaky integration
along the cmpy planeBy. The leaky integration will encourage the inversion to keepconsistent
amplitudes unless the data says otherwise. Using a relatively small leaky parameter and a very
smallε should force it to have only an amplitude balancing effect rather than an effect on the
kinematics of the solution.

Combining our two model preconditioners we get a new operator S,

S = ChBy, (3)

and a new set of fitting goals

d ≈ LZSp (4)

0 ≈ εp.

Figure 6 shows the result of applying fitting goals (4) to the small synthetic. Note how the
amplitude behavior is much more consistent than the result shown in Figure 5.

Fitting goals (4) should be avoided when possible. They introduce a smoothing along the
cmpy axis that is often unrealistic. Unfortunately when encountering large acquisition holes,
some additional regularization is needed.
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Figure 5: Two views of the result of applying fitting goals (2). The left panel is a three
dimensional view at a fixedhx. The right panel is a three dimensional view at a fixed cmpx.
Note the inconsistent, unrealistic amplitude behavior as afunction of cmpy. bob1-bad-syn
[CR,M]

IMPLEMENTATION

A cost-effective implementation of fitting goals (2) or (4) is challenging. The obvious domain
to parallelize the inversion is over frequency. In this casethe model and data’s time axis is
log-stretched nd transformed into the frequency domain. The resulting model and data space
are approximately three times their time domain representation due to the oversampling ne-
cessitated by the log-stretch operation. In addition, boththese volumes need to be transposed.
To apply the log-stretch FFT operation, the natural ordering is for the time/frequency axis to
be the inner axis while the inversion is more efficient with the time/frequency axis being the
outer axis. An out-of-core transpose grows in cost with the square of the number of elements.
For efficiency, I do a pre and post-step parallel transpose ofthe data in conjunction with the
transformation to and from the log-stretched frequency domain. I split the data long the cmpy

axis. For the pre-step I log-stretch and FFT the input data, Ithen do an out-of-core transpose
of this smaller volume. I then collect the transposed data. The post-step operation is simply
the inverse, transpose and then FFT and unstretch.

A second major problem is the number of iterations necessaryfor convergence. The causal



SEP–123 Regularization 97

Figure 6: Two views of the result of applying fitting goals (4). The left panel is a three
dimensional view at a fixedhx. The right panel is a three dimensional view at a fixed cmpx.
Both views are identical the ones shown in Figure 5. Note how the unrealistic amplitude
behavior seen in Figure 5 has been corrected.bob1-inv-syn [CR,M]

integration and leaky integration are good preconditioners (fast convergence) but the AMO
portion tends to slow the inversion. As a result many (20-100iterations) are desirable. The
global inversion approach described in Clapp (2005b) is IO dominated. It also relies on hard-
ware stability. Both of these factors make a frequency-by-frequency in-core inversion non-
ideal but better choice. The major drawback to a frequency byfrequency approach is that
the frequencies might converge at significantly different rates resulting in an image that is un-
realistically dominated by certain frequency ranges (mostlikely the low). To minimize this
problem, I stopped the inversion after a set reduction in thedata residual.

The final issue is the size of the problem. The domain ofL is four-dimensional and can
be quite large even for a relatively small model space. In addition, for a conjugate gradient
approach we still must keep three copies of our data space (data, data residual, previous step
data residual) and five copies of our model space (gradient, model, previous step, previous
step model residual, model residual). As a result, we need a machine with significant memory
and/or break the problem into patches in the (cmpx,cmpy) plane.
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Figure 7: A constant offset section from a real 3-D marine dataset obtained by applying fitting
goals (4). Note the absence of an acquisition footprint.bob1-const-off[CR]

REAL DATA EXAMPLE

I tested the methodology on a real 3-D marine dataset from theNorth Sea. Figures 3 and 4
are from this dataset. Previous uses of AMO and common azimuth migration have resulted
in noticeable acquisition footprint in the first 1000 meters(Biondi, 1999; Vaillant and Sava,
1999). For the test I used a maximum of 40 iterations, with a maximum reduction in residual
of 35%. A large reduction would be preferable but many frequencies did not reduce by even
20% after 40 iterations. Figure 7 shows a constant offset section after regularization with
fitting goals (4). Note the absence of an acquisition footprint. Further, note how we have
successfully filled even the large hole visible in the fold map of Figure 3.

I then applied common azimuth migration to the data. Figure 8show three slices from
the zero-offset migration cube. Pay particular attention to the depth slice. Note how the
acquisition footprint has disappeared.
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Figure 8: The result of migrating the data show in Figure 7. Note that virtually no acquisition
footprint is visible in the data.bob1-mig [CR]

FUTURE WORK

The decay in the residual varies significantly as a function of frequency. At most frequencies
the residual decreases only 40% between the first and 40th iteration. It appears that the large
values in the residual are dominated by events at the cusp of the mute zone. Clapp (2005a)
faced similar problems when inverting for an image using migration as her linear operator. In-
troducing a weight function in the frequency domain has the potential to speed up the inversion
of both problems.

CONCLUSION

An inversion method to produce a dataset appropriate for common azimuth migration is intro-
duce. The inversion problem uses AMO to both map the data to a constanthy = 0 and as part
of regularization operator to assure consistency between (cmpx,cmpy,hx) cubes.
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