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AMO inversion to a common azimuth dataset

Robert G. Clapp

ABSTRACT

| cast 3-D data regularization as a least-squares invesioiolem. The model space i
a four-dimensionalt(cmp,, cmp,, hx) hypercube. An interpolation operator maps to an
irregular five dimensional space ¢mp,, cmp,, hy, hy) which is then mapped back intg
a four dimensional space by applying Azimuth Move-Out (AM@Yegularization term
minimizes the difference between variotiscinp,, cmp,) cubes by applying a filter that
acts along offset. AMO is used to transform the cubes to theedg before applying
the filter. The methodology is made efficient by Fourier-domiaplementation and pre-
conditioning of the problem. I apply the methodology on aersynthetic and to a rea
marine dataset.

\"2)

INTRODUCTION

The irregularity of seismic data, particularly 3-D datapwth the model domain (in terms of
subsurface position and reflection angle) and the data daofmetierms of midpoint, offset, and
time) cause imaging problems. Migration methods desirezatgr level of regularity than is
often present in seismic surveys. There are two generabappes to deal with this problem.
One approach is to treat the imaging problem as an inverd#ggmo The migration operator
can be thought of as a linear transform from the recordedtidataage space. Ronen and Liner
(2000); Duquet and Marfurt (1999); Prucha et al. (2000) bsentigration operator in a linear
inverse problem to overcome irregular and limited data caye. A regularized that encour-
ages consistency over reflection angle is used to stabileeverse. These approaches have
shown promise but are generally prohibitively expensive gely on an accurate subsurface
velocity model.

Another approach is to try to regularize the data. AMO presidn effective regularization
tool (Biondi et al., 1998) and is generally applied as an iadjm create a more regularized
volume. These regularized volumes still often contain aglasition footprint’ or more subtle
amplitude effects. Chemingui (1999) used a log-stretaisfiiam to make the AMO operator
stationary in time. He then cast the regularization proldsm frequency-by-frequency inver-
sion problem using a Kirchoff-style AMO operator. He shoviledt the acquisition footprint
could be significantly reduced. The downside of this apgnaadhe relatively high cost of
Kirchoff implementation of AMO.
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Biondi and Vlad (2001) built on the work of Fomel (2001) and e an inverse problem
relating the irregular input data to a regular model spadeeyTregularized the problem by
enforcing consistency between the varioti€ifip,,cmp,) cubes. The consistency took two
forms. In the first, a simple difference between two adjadedine offset cubes was mini-
mized. In the second, the difference was taken after traméfg the cubes to the same offset
AMO. Clapp (2005b) set up the data regularization with AMGaasnverse problem creating
a full volume ¢, cmp, cmp,, hy, hy).

In this paper, | modify the approach of Clapp (2005b) so thatrhodel space is a com-
mon azimuth volume. | introduce an additional mapping ofgerthat maps from the full
(t,cmp,,cmp,, hy, hy) to hy = 0 using AMO. In addition, | show that the combination of
limited hy and consistent coverage as a functiorhgfin marine surveys can still produce
undesired amplitude variation as a function of gmfo solve this problem, | introduce an
additional regularization term that creates consistesa fnction of cmp.

THEORY

Estimating a regularly sampled common-azimuth volum&om our irregular input datd
can be set up as a least squares inversion problem. In thisrsdavill go over an approach to
create a common azimuth volume by setting up an inversegmblwill use a small synthetic
to demonstrate the need for the various operators in thesioreprocess.

The data consists of irregular traces in a 5-D spacen{p,cmp,,hy,hy). The AMO
operator acts on regularly sampledofmp,,cmp,) cubes, so we map from the irregular data
space to the regular model space using a simple linear oitgrpn operatoL. Figure 1
shows two cube views from the five dimensional space the dataapped into. Notice the
sparseness of the data in these cubes. In standard marinsificn, a single cross-line offset
is acquired for each midpoint. The standard multi-streaaeguisition results in variation of
the cross-line offset that is filled as we scan over gmp
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Figure 1: The location of the inptt B
traces for a simple synthetic. The leff
panel is a constant offset cube (fixee
hyx andhy). The right panel is a sin-
gle midpoint (fixed cmp and cmp).
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Figure 2: The result of applying to the data shown in Figure 1. The left panel shows three
slice from constant offset cube. The right panel shows thliee from a constant cnyube.
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For common azimuth migration, we want all of our data to resithy = 0. As a result,
we need to use AMO to transform from theg that the data was recorded atitp= 0. The
operatorZ’ is a sum over thet(cmp,,cmp,) cubes that have been transformechto= 0.
Figure 2 shows two cube views of the result of applyztigo the small synthetic. In this case
we still have significant holes along cing will discuss why | created these holes later in the
section.

Finally, we need to add in our regularization term. Gengralter NMO, our data should
be smooth as a function of offset. We can think of adding avdévie operator along the offset
axis. We can improve this estimate even further by applyidgrvative on cubes that have
been transformed to the same offset using AMIR. We can write our fitting goals as

d ~ LZm (2)
0 ~ eDpm,

wheree controls the importance of consistency along the offsed.a¥ile can speed up the
convergence of this problem by preconditioning the mod#hwhe inverse of our regulariza-
tion operator. In this case, we replace taking the derigeativAMO cubes with performing
causal integration of AMO cubé&3;,. Our new fitting goals then become

d ~ LZCnp 2)
0 =~ ep,

wherem = Cyp.

2In this case AMO simplifies to Dip Move-out because it is beapglied simply along thay axis
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Largeholes

This set of fitting goals can runs into problems when we detl vdal marine geometry. To
demonstrate the problem we will look at where data was resztbfal a real 3-D marine survey.
We can calculate where we have traces infthemp,, cmp, plane. If our acquisition lines are
perfectly straight, we are able to acquire data throughautsarvey. If our grid is perfectly
oriented with acquisition geometry, we should have coeststold in this cube. Figure 3
shows that this is far from the case. The figure shows thetrefstacking over all offsets.
Note that we have some areas where we don’t have any dataejwtHitve use fitting goals
(2) to estimate our model we run into a problem. The inversesult will show a dimming

of amplitudes as we move away from our known data. Figure @shbe result of applying

cmp_y
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Figure 3: Fold of a real ma-
rine dataset. Note how we haveo
some regions with zero fold (white).
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fitting goals (2) to our synthetic. Note how the amplitudeloies markedly as we move away
from locations where we have data. Even more problematit tiiaming is when we see
significant unrealistic, brightening of amplitudes forteém cmp,. The brightening is caused
by the fold pattern seen in Figure 4. The three panels repréise fold in the (cmp,cmp,))
plane as we increase in offset from left to right. Note how @edTairly regular coverage at the
near offsets and much more variable coverage as we movayty laffsets. This inconsistency
is mainly caused by cable feathering. For some ¢mp only have near offset traces. The
near offset traces tend to be of higher amplitude and are iwamsistent as function di
(the tops of hyperbolas are insensitive to velocity erta@)r model covariance operator puts
these unrealistically large amplitudes at all offsetsyiteyy in a striping of the amplitudes as
a function of cmp.

Both of these problems are due to the lack of ‘mixing’ of im@tion along they direction.

By mixing | mean that a column of the matrix implied by fittingas (2) has very few non-zero
elements at cmys different from the cmp associated with its corresponding model point.
Our regularization is just DMO, which produces no mixing e t/ direction. Our zeroing
operator produces a limited amount of mixing, but the rasdariited due to the small offset
in the hy direction inherent in marine surveys. As a result our inggrgan have realistic
kinematic but unrealistic amplitude behavior as a funcbértmp,. A simple solution to
this problem is to introduce another operator to our modehdance description that tends to



SEP-123 Regularization 95

Figure 4: The three panels represent the fold in the (¢comp,) plane as we increase in offset
from left to right. Note how we have fairly regular coveragée near offsets and much more
variable coverage as we move to larger offsets. For somg wrapnly have near offset traces.

bob1-fold-off| [CR]

produce consistency as a function of gm@w/e must be careful to avoid introducing unrealistic
smoothness in the crpmlirection by our choice of preconditioners. | chose leakggnation
along the cmpplaneBy. The leaky integration will encourage the inversion to keepsistent
amplitudes unless the data says otherwise. Using a rdlasinell leaky parameter and a very
smalle should force it to have only an amplitude balancing effettieathan an effect on the
kinematics of the solution.

Combining our two model preconditioners we get a new opegto

S=CnBy, 3
and a new set of fitting goals
d ~ LZSp 4
0 = ep.

Figure 6 shows the result of applying fitting goals (4) to theaB synthetic. Note how the
amplitude behavior is much more consistent than the rekalts in Figure 5.

Fitting goals (4) should be avoided when possible. Theydhice a smoothing along the
cmp, axis that is often unrealistic. Unfortunately when enceung large acquisition holes,
some additional regularization is needed.
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Figure 5: Two views of the result of applying fitting goals.(2Jhe left panel is a three
dimensional view at a fixey. The right panel is a three dimensional view at a fixed gmp

Note the inconsistent, unrealistic amplitude behavior amation of cmp. |bobl-bad-sy

[CRM]

IMPLEMENTATION

A cost-effective implementation of fitting goals (2) or (4)dhallenging. The obvious domain
to parallelize the inversion is over frequency. In this cisemodel and data’s time axis is
log-stretched nd transformed into the frequency domaire rEsulting model and data space
are approximately three times their time domain representaue to the oversampling ne-
cessitated by the log-stretch operation. In addition, lthéise volumes need to be transposed.
To apply the log-stretch FFT operation, the natural ordgiénfor the time/frequency axis to
be the inner axis while the inversion is more efficient with thme/frequency axis being the
outer axis. An out-of-core transpose grows in cost with thease of the number of elements.
For efficiency, | do a pre and post-step parallel transpogheotiata in conjunction with the
transformation to and from the log-stretched frequencyaiani split the data long the crgp
axis. For the pre-step | log-stretch and FFT the input datsen do an out-of-core transpose
of this smaller volume. | then collect the transposed datee gost-step operation is simply
the inverse, transpose and then FFT and unstretch.

A second major problem is the number of iterations necedeappnvergence. The causal
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Figure 6: Two views of the result of applying fitting goals.(4JThe left panel is a three
dimensional view at a fixey. The right panel is a three dimensional view at a fixed gmp
Both views are identical the ones shown in Figure 5. Note hwsvunrealistic amplitude

behavior seen in Figure 5 has been corredteab1-inv-syr [CR,M]

integration and leaky integration are good preconditisr{@ast convergence) but the AMO
portion tends to slow the inversion. As a result many (20-it€@tions) are desirable. The
global inversion approach described in Clapp (2005b) isd@®idated. It also relies on hard-
ware stability. Both of these factors make a frequencysgiiency in-core inversion non-
ideal but better choice. The major drawback to a frequencjrégyuency approach is that
the frequencies might converge at significantly differexés resulting in an image that is un-
realistically dominated by certain frequency ranges (nfiksty the low). To minimize this
problem, | stopped the inversion after a set reduction irdttea residual.

The final issue is the size of the problem. The domaih @ four-dimensional and can
be quite large even for a relatively small model space. Intenaig for a conjugate gradient
approach we still must keep three copies of our data spate, (@=ta residual, previous step
data residual) and five copies of our model space (gradiemdlein previous step, previous
step model residual, model residual). As a result, we needchime with significant memory
and/or break the problem into patches in the (¢ropp,) plane.
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Figure 7: A constant offset section from a real 3-D marinaset obtained by applying fitting
goals (4). Note the absence of an acquisition footprbub1-const-off[CR]

REAL DATA EXAMPLE

| tested the methodology on a real 3-D marine dataset fronNtirtth Sea. Figures 3 and 4
are from this dataset. Previous uses of AMO and common ahimigration have resulted
in noticeable acquisition footprint in the first 1000 met@gondi, 1999; Vaillant and Sava,
1999). For the test | used a maximum of 40 iterations, with &imam reduction in residual

of 35%. A large reduction would be preferable but many fregies did not reduce by even
20% after 40 iterations. Figure 7 shows a constant offseicseafter regularization with

fitting goals (4). Note the absence of an acquisition foatpriFurther, note how we have
successfully filled even the large hole visible in the foldne& Figure 3.

| then applied common azimuth migration to the data. Figush®w three slices from
the zero-offset migration cube. Pay particular attentiorthie depth slice. Note how the
acquisition footprint has disappeared.
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Figure 8: The result of migrating the data show in Figure 7teNbat virtually no acquisition

footprint is visible in the datdbob1-mig [CR]

FUTURE WORK

The decay in the residual varies significantly as a functidineguency. At most frequencies
the residual decreases only 40% between the first and 40tiaie. It appears that the large
values in the residual are dominated by events at the cudpeahtite zone. Clapp (2005a)
faced similar problems when inverting for an image usingratign as her linear operator. In-
troducing a weight function in the frequency domain has thtemtial to speed up the inversion
of both problems.

CONCLUSION

An inversion method to produce a dataset appropriate fonommeazimuth migration is intro-
duce. The inversion problem uses AMO to both map the data tmstant, = 0 and as part
of regularization operator to assure consistency betwaep(cmp,, hx) cubes.
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