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Residual moveout in anisotropic angle-domain common image
gathers

Biondo Biondt

ABSTRACT

To enable the analysis of the Residual Moveout (RMO) in Afiggenain Common Im-
age Gathers (ADCIGs) after anisotropic wavefield-contilmnemigration, | develop the
fundamental concepts for quantitatively relating peratidns in anisotropic parameter
to the corresponding reflector movements in ADCIGs. | thgrhyaihe general methodol-
ogy to the particular case of RMO analysis of reflections fftatreflectors in a Vertical
Transverse Isotropic (VTI) medium. This analysis shows the RMO in migrated AD-
CIGs is a function of both the phase aperture angle and theogiperture angle.
Several numerical examples demonstrate the accuracy &M@ curves predicted by
my kinematic analysis. The synthetic examples also showtligaapproximation of the
group angles by the phase angles may lead to substantied @r@vents reflected at wide
aperture angles.

The results obtained by migrating a 2-D line extracted froBuf of Mexico 3-D data set
confirm the accuracy of the proposed method. The RMO cunedigied by the theory
exactly match the RMO function observed in the ADCIGs coraddtom the real data.

[2)
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INTRODUCTION

The analysis of Residual Moveout (RMO) in Common Image Gath@lGs) after prestack
migration is an essential step for updating migration vigjotVhen the migration velocity is
inaccurate, the inconsistency of the migrated events aahgr the offset axis or the aperture-
angle axis is proportional to the migration velocity errokéeasuring the RMO in ADCIGs
provides the quantitative information necessary to uptleerelocity function in a Migration
Velocity Analysis (MVA) procedure.

Today, MVA is the procedure most commonly employed to edegnisotropic migration
velocity in complex media. The technology for anisotropi¥Mis much less mature than
for isotropic MVA. Recently, important progress has beerdentoward the development of
anisotropic MVA in conjunction with Kirchhoff migration.a&kar and Tsvankin (2003, 2004b)
analyze the effect of velocity errors on offset-domain Cpésduced by Kirchhoff migration.
They demonstrate the effectiveness of their method by sgtdéy applying it to a West Africa
data set (Sarkar and Tsvankin, 2004a). Krebs et al. (2008)Baar et al. (2003) integrate
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borehole-seismic data and nonseismic information in an Mvdcess based on Kirchhoff
migration.

Wavefield-continuation is capable of producing better iesathan Kirchhoff migration
does in the presence of complex overburden that causegathitig of the propagating wave-
field, as often it occurs when imaging below or in proximitysalt bodies. To perform MVA
after wavefield-continuation the RMO function is measuneanf Angle Domain Common
Image Gathers (ADCIGSs) (Biondi and Sava, 1999; Clapp anadjd2000). Since all the
present methods for computing ADCIGs in conjunction withvefeeld migration are limited
to isotropic migration, the quantitative analysis of RMOADCIGs is also limited to the
isotropic case (Biondi and Symes, 2003; Biondi and Tisge@2004). In this paper, | pro-
vide the basic analytical tools necessary to perform arpat migration velocity analysis by
analyzing the RMO function in ADCIGs. This paper builds oa thsults presented in a com-
panion paper (Biondi, 2005) that develops a method for camgWDCIGs after anisotropic
migration and lays the foundations for the kinematic analg$é anisotropic ADCIGs. | ap-
ply the general theory to the specific case of defining the RMi@tion measured from flat
reflectors in VTI media, because in this case the methodakbgynple both to derive and to
apply. However, the same concepts could be applied to morergksituations, though at the
expense of additional complexities that could obfuscatdithdamental concepts.

In (Biondi, 2005) | show that in anisotropic media the ADCl@® approximately func-
tions of the phase aperture angle, and exactly so for flacteftein VTI media. In this paper |
demonstrate that the RMO function depends on both the plmaktha group aperture angles.
This dependency of the RMO function on the group angles aalii® somplexity to the RMO
analysis because the computation of group angles from @images, which are measured from
the ADCIGs, depends on the background anisotropic velesiyuated at the reflector point.
The synthetic-data examples show that neglecting the digmey on the group angles, and
assuming that group angles are equal to phase angles, teadbdtantial inaccuracy in the
predicted RMO function. Fortunately, the additional cotapional cost of computing group
angles is negligible, and thus it should not be an obstacteea@pplication of the proposed
methodology.

ANGLE-DOMAIN COMMON IMAGE GATHERSAND KINEMATIC
ANISOTROPIC MIGRATION

In (Biondi, 2005) | develop the theory of ADCIGs in anisotromedia from both a “plane-
wave” viewpoint and a “ray” viewpoint. The two methods areigglent and yield the same
results, but the ray-theoretical approach is the natuaaiisg point for analyzing RMO func-
tions in ADCIGs. The kinematic approach is based on the quneégeneralization of inte-
gral (Kirchhoff) migration to the computation of a prestaegiage that include the sub-surface
offset dimension. The image-space of integral migratica @sually restricted to the zero
subsurface-offset section; that is, with the integral epms (either summation surfaces or
spreading surfaces) evaluated when source and receiventagt at the reflection point. The
image space can be expanded to include non-zero subsuffaets dy integrating the data
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Figure 1: Geometry used for eval-
uating the impulse response of Ly z
integral migration generalized to N
produce a prestack image func- RS —
tion of the subsurface offseh;.
biondo2-imp-respNR]

over surfaces evaluated with the end points of the sourcesmaiver rays horizontally shifted
with respect to each other, instead of being coincidentéieimage point. Figure 1 illustrates
this concept and provide the basis for computing the kinexmaf the generalized migration
operator.

Since the transformation to ADCIGs operates in the imageesdaanalyze the spreading
surfaces (impulse responses) of the generalized prestigction operator, which are defined
in the image space. In homogeneous anisotropic medium #peshf the impulse responses
of the generalized integral migration can be easily evaldianalytically as a function of the
subsurface offsefz, in addition to the usual image dep#h and midpointm;. Figure 1
illustrates the geometry used to evaluate this impulseoresn

Assuming an arbitrary homogeneous anisotropic mediunplsitngonometry applied to
Figure 1 allows us to express the impulse response in paranf@im, as a function of the
group dip anglery and the group aperture angte If we migrate an impulse recorded at time
tp, midpointmp and surface offsétp, the migration impulse response can be expressed as
follows:

co ay —Sinzy
- L y ] 1
Z (ex,v) COSi, COSy 1)
Sinay
= - L ’ ’ 2
Mg mMp — L (ax, ¥) cosy 2
siny
he = hp—H =hp—L(ax, , 3
¢ D p— L (ax, ) coso 3)
with the average half-path length(a, y) given by:
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2 (S+S)+(S —S)tanagtany’

whereS; andS are the group slowness along the source and receiver rapgatevely.

In 2-D, The ADCIGs are computed by applying a slant-staclodgmsition on the prestack
image along the subsurface offset axis, at constant mitlpdhe kinematics of the transfor-
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Figure 2: Geometry of the transfor-
mation to the angle domain. The
image point in the subsurface-offset
domain (z,hs) moves to the im-
age point in angle domaifz,, ).

| biondo2-cig-2d-aniso-mva-flat-y1
INR]

mation are defined by the following change of variables:

d
y = arctan 2% , 5)
ahé mg =Mg
ad
2, = m—hio=| ©)
Smszmg

wherez, is the depth of the image point after the transformationhéngeneral case, the angle
y is related to the reflection aperture angle in a non-triviaymwHowever, in (Biondi, 2005)

I demonstrate that for flat reflectors the slope of the impusponse along the subsurface
offset axis, is equal to the tangent of the phase aperture anghat is,

190S
P tany + z5> N
& l(me=m;, ax=0) 1— 57, t@any

Notice that throughout this paper | use the tilde symbol stidguish between phase quantities
(with a tilde) and group quantities (without a tilde). AppenA summarizes the relationships
between group angles and velocities and phase angles amaitiesd. Equation A-4 is directly
used to derive the result in equation 7.

Substituting equation 7 in equations 5 and 6 we obtain

y = arctana—Zé , (8)
é mé—zmg
z, = z:—hgtany. 9)

Figure 2 provides a geometrical interpretation of the ti@msation to angle domain of an
image point with non-zero subsurface offset. The transébion to angle domain moves
the image point in the subsurface-offset dom@g hg) to the image point in angle domain
(z,,,;7). The depth of the image point in angle domain is determinetthéyntersection of the
lines passing through the poin(tzg,mg :Ehg) and tilted byFy with respect to the horizon-
tal. When the migration velocity is correct, and the imaghilly focused at zero subsurface
offset, the transformation to angle domain does not chamgel¢pth of the image point and
the reflections are imaged at the same depth for all apenigies On the contrary, when the
reflections are not focused at zero offset, the transfoondt angle domain maps the events
at different depths for each different angle. The variapihf the depthz, with the aperture
angle is described by the RMO function that we want to measdeguantify as a function of
the perturbations in anisotropic parameters encountéoed ghe propagation paths.
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Figure 3: Linearized perturbations N
of the image-point locations (both JL
in the subsurface-offset domain and
the angle domain) caused by changes
in the ray lengthL, as evaluated

AN

using the first term in equation 11. ALN (@GFAZ feoh )
| biondo2-cig-2d-aniso-deltal-flat-y1 \%/
[NR] (2.0 )

ANISOTROPIC RESIDUAL MOVEOUT FOR FLAT REFLECTORS

The generalization of kinematic anisotropic migration #relanalysis of the kinematics of the
offset-to-angle transformation presented in the preveretion enables a simple analysis of
the residual moveout (RMO) in ADCIGs caused by errors in@nipic velocity parameters.
In this section | derive the RMO function by linearizing tie¢ationship of the imaging depth in
the angle domain with respect to perturbations in the arapat parameters. The linearization
is evaluated around the correct migration velocity functithat is, when the image in the
subsurface-offset domain is well focused at zero offset.

As in the previous section, | limit my analysis to reflectidren flat interfaces. However,
a generalization of the flat-events analysis to dipping &s/ehould be conceptually straight-
forward, though not necessarily simple from the analyfpoaht of view. Furthermore, | derive
relationships assuming that the velocity perturbatioadiarited to a homogeneous half-space
above the reflector. The same relationships can be easiyetito the case of a homogeneous
layer above the reflector by transforming the depth variatitea relative depth with respect
to the top of the layer under consideration. At the end ofgbigion | present the fundamental
relationship for broadening the application of the thearyéterogeneous media. This rela-
tionship links the traveltime perturbations to the reflectmvements and it can be used in a
ray-based tomographic velocity-update procedure.

A VTI velocity function, either group or phase, is describeg the following vector
of three velocitiesv = (W, VH,Vn), or by the corresponding vector of three slownesses
S=(Sv,S4,Sv) used in equation C-1. | define the perturbations as the guatibn of one
multiplicative factor for each of the velocities and one tiplicative factor for all velocities;
that is, the perturbed velocityV is defined as:

oV = (oW, oVH.pWN) = pv (ovy W, pviy VH, ovy UN) - (10)

The velocity-parameter perturbations is thus defined byah@wving four-components vector
p= (,Ov,/)vv,,OvH ,/OVN)-

Differentiating, the expression for the depth of the imagepin the angle domaim,
(equation 9) with respect to theth component in the perturbation vector, we obtain the fol-
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Figure 4: Linearized perturbations
of the image-point locations (both
in the subsurface-offset domain S\ : :
and the angle domain) caused by g/ P
changes in the aperture angle, = g
as evaluated using the second term
in equation 11. Notice that the
image point in the angle domain
does not move, no matter how large
the corresponding movement in
the subsurface-offset domain is.
| biondo2-cig-2d-aniso-delta2-flat-y1
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In Appendix B | demonstrate that the terms multiplying thetiphderivatives with respect to
the angles are zero, and equation 13 simplifies into:

9z, 9z, 9L 89S

i By 14
api aL aSap (14)
where
ad a ah
8_Zlf = % — a—f tany’ = cosy + siny tany, (15)
and
aL Z
- _ , (16)
IS(y) S(y)cosy
and consequently
3zs  z,(l+tanytany) 9S (17)

pi S(y) api

Figures 3 and 4 graphically illustrate the image pertudvetirelated to the first two terms
in equation 11. Figure 3 shows the movement of the image pdotth in the subsurface-
offset domain and the angle domain) caused by changes iayHengthL. Figure 4 provides
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a geometrical explanation of why the second term in equatibivanishes. It shows that
perturbations in the aperture angleause the subsurface-offset domain image point to move
along the tangent to the wavefront (tilted with the phasdefiy. Since this movement is
constrained along the tangent, the image point in the argieath does not move, no matter
how large the movement in the subsurface-offset domain is.

RM O function with uniform scaling of velocity

In case of uniform scaling of velocity, the derivative of theaging deptte, with respect to
the perturbation componep{ has the following simple form:
0z, ~
— =z (1+tany tany), (18)
dpv
because the derivative of the slowness with respect to ammi$caling of the velocity has the
following simple form:

3S(y) — —S(y), (19)

dpv
that causes the derivativd /0py = —2¢/cosy to be independent from the “local” shape of
the anisotropic slowness function. Intuitively, this siifipation is related to the fact that the
“shape” of the wavefronts is not affected by a uniform saalh the velocity.

The residual moveouk zgrpo is defined as the difference between the reflector movement
at finite aperture anglg and the reflector movement at normal incidence. From equao
the partial derivative of\zrmo With respect tqy is equal to the following expression:

dAZrvo
dpv
When the medium is isotropic, and the phase angles are egtla# group angles, the RMO

expression in equation 20 becomes the RMO expression intsatiby Biondi and Symes
(2003).

= z; tany tany. (20)

The dependency of equation 20 from the group angles incsgéhsecomplexity of its use
because it requires the transformation of phase angless(mezhdirectly from the ADCIGS)
into group angles by applying equation A-2. The computatiaost of evaluating equa-
tion A-2 is negligible, but its use makes the computatiorseaelent on the local values of the
background anisotropic velocity function. On the otherdyahe following numerical exam-
ples show that substantial errors are introduced when gtandiion between the group and
phase angles is neglected, and the phase angle is usediostiea group angle in equation 20.

RM O function with arbitrary scaling of velocity

The expressions of the derivative bf with respect to arbitrary perturbations of individual
velocity components (i.e/y, Vy, andVy) are slightly more complex than with respecisp
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because the wavefronts are deformed when the velocity coem® are unevenly perturbed.
These derivatives can be expressed as:

0z, z: dS(y)
_ % 21
Tove S0 v 1)
0z, Z 35(3/)
— 1+tanyt 22
™ S0 v, —— (1+tany tany), (22)
9z, L 9S(y)
o 23
v’ S0 oy (@3)

The partial derivatives of the RMO functiohzryvo are directly derived from the partial
derivatives ofz,, taking into account that for flat reflectors only the vertie@ocity compo-
nentVy influences the image depth of normal incidence. The devieaf Azrpmo can thus
be written as follows:

9 AZrmo _Z 9S(y)
= 1+tany tan 24
™ T30 o, — ytany) —z, (24)
3 AZrmo _Z 9S(y)
= 1+tany tan 25
oS B, WD )
dAZrmMO _ & 0 (V) (26)
apVN S()/) aIOVN

The expressions for the derivatives of the slowness funetith respect to the perturbation
parameters depend on the particular form chosen to appateithe slowness function. Ap-
pendix C presents a particular approximation to the VTI grelewness function and derives
the corresponding partial derivatives to be substitutesjuations 21-23 and in equations 24—
26. | used the same approximation to the VTI group slownesth&®numerical experiments
shown in this paper.

Conversion of depth errorsinto traveltime errorsin heterogeneous media

The RMO functions derived above can be directly used in ar&d#pased vertical updating
of the velocity function after migration. However, in coraplmedia it is often desirable to
invert the depth errors measured from ADCIGs into velopigdyameter perturbations through
a tomographic procedure. To be able to apply a tomographtbodewe must perform an
additional step to convert the depth errors measured fror@ i3 into traveltime errors. This
depth-to-time conversion can be easily accomplished ghthi rewriting the chain of partial
derivatives in equation 14, and obtain the following relaship:

9z, 3z, 9L _ cosy +siny tany

at 9L at S(y) ’ 27)

which can be directly applied to convert depth errors indwettime perturbations to be used
in tomography.
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It is immediate to verify that in the isotropic case, in whigh= y, equation 27 simplifies
into the following relationship:

0z, 1

9t cosyS(y)’ (28)

which is equivalent to the relationship derived for isotocdd VA by Biondi and Symes (2003).

Synthetic-data examples of RM O function in ADCIGs

To verify the accuracy of the RMO functions derived in thistgen | performed several nu-
merical tests using synthetic data modeled and migratew)@si anisotropic source-receiver
migration and modeling program. This program performedtdegtrapolation by numerically
solving the following dispersion relation:

ke = 2 @2~ Vg (29)
W\ @2+ (VN2 —Vu?) k2’

wherew is the temporal frequency, amkg andk; are respectively the horizontal and vertical
wavenumbers. This dispersion relation corresponds toltlengss functions in equation C-1
(Fowler, 2003), which was used to compute the RMO functiaa®eding to the theory devel-
oped above.

To test the theory under realistic and diverse anisotropi@itions, in the numerical ex-
amples | used three sets of anisotropic Thomsen paramefegesenting three different rocks
described by Tsvankin (2001):

e Taylor Sand :e =0.110 6 = —0.035, — n = .155,
e Mesa Clay Shale ¢ =0.189, § = 0.204— n = —.010,
e GreenLight River Shale¢ = 0.0975, 6 = —0.11, — n = .266.

The GreenLight River Shale is derived from the Green Rival&ldescribed by Tsvankin
(2001) by halving the anisotropic parametersi(ids), because the strong anelliptic nature of
the original one § = .74) causes the group-slowness approximation in equatibnddreak
down. Consequently, the kinematic computations based piraging, and thus on group
velocity and angles, become inconsistent with wavefieldratign based on the dispersion
relation in equation 29. Notice that the GreenLight Riveal8hs still the most anelliptic
among the set of rocks | am using.

The first set of numerical experiments tests the RMO equatitim uniform scaling of
velocity expressed in equation 20. In addition to the thrgsaropic cases described above,
this RMO function is tested also for the special case of agotr velocity. The second set
tests the generalized RMO functions expressed in equa2iba6. Only the three anisotropic
cases are tested because there is no meaningful isotraggect@dest the generalized RMO
function. In all the synthetic-data examples | plot the eotiRMO curve computed by apply-
ing either equation 18 or equations 24—26, and the appragiRMO curve computed using
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an “isotropic” approximation and ignoring the distinctibatween the group aperture angle
and the phase aperture angle

Figure 5 shows ADCIGs when an anisotropic velocity was pbed bypy = .99. The four
panels correspond to four rock types: a) Isotropic, b) Tagand, c) Mesa Clay Shale, and
d) GreenLight River Shale. Superimposed onto the imagetharBMO functions computed
using equation 20. The solid line was computed by computimg tfrom tany by apply-
ing equation A-2, whereas the dashed line was computed byspmating tary as equal to
tany. The RMO curves computed using the correct group angle @érfmatch the residual
moveout of the images. On the contrary, when the phase aagiased instead of the group
angles, significant errors are introduced even for such d gpedurbation in the parameters
(pv = .99). It is interesting to notice that the errors are largerthe rock types exhibiting
strong anelliptic anisotropy (Taylors Sand and GreenLijker Shale) than for the strongly
anisotropic but quasi-elliptical rock (Mesa Clay Shale).

The expression for the RMO function derived in equation 20ased on a linearization,
and thus when the perturbations in velocity parametersagge lit is not as accurate as it is
when the perturbations are small (e@; = .99). Figure 6 illustrates this fact by showing a
similar experiment as the one shown in Figure 5, but with &upleation 10 times larger; that
is, with py =.9. As in Figure 5, the four panels correspond to four roclesypa) Isotropic,
b) Taylor Sand, c) Mesa Clay Shale, and d) GreenLight Rived&land the lines superim-
posed onto the images are the RMO functions computed by tisengorrect values for tan
(solid lines), and by using tghin place of tary (dashed lines). With large perturbations,
the predicted RMO functions differ from the actual RMO fuoos at wide aperture angles
even when the correct values of the group angles are useduatieq 20. However, even
with such large perturbations the predicted RMO functiamssaill useful approximations of
the actual RMO functions. In particular, it can be obsenret the predicted RMO function
correctly approximates the differences in shape of thesh®MO function among the rock
types. These shape variations are related to the variaticstgpe of the wavefronts, which
are reflected in the predicted RMO function through the Vi in the mapping from phase
angles to group angles. Figures 7 and 8 show examples of gheatpn of the generalized
RMO functions expressed in equations 24-26. As in Figuré& bshow the ADCIGs for
three different anisotropic rock types, but, differentlgrh the previous figures, not for the
isotropic case. The order of the rock types is the same asgguwrés 5-6; that is: panels a)
correspond to Taylor Sand, panels b) to Mesa Clay Shale, anelpc) to GreenLight River
Shale. Furthermore, as in Figures 5-6, one figure (Figurb@ys the ADCIG obtained with
a smaller perturbation than the ADCIGs shown in the otheréd&igure 7). The ADCIGs
shown in Figure 7 were obtained by performiagtropicmigration on the synthetic data mod-
eled assumingnisotropicvelocity. The ADCIGs shown in Figure 8 were computed by scali
by .25 the parameter perturbations used to compute Figureerlines superimposed onto the
images are the RMO functions computed by using the corrdaesdor tary (solid lines),
and by using taii in place of tary (dashed lines).

The predicted RMO functions accurately track the actual Rivi@tions when the param-
eter perturbations are sufficiently small to be within thege of accuracy of the linearization
at the basis of the derivation of equation 20 (Figure 8). Benewnhen the perturbations are
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Figure 5: ADCIGs obtained when a constant anisotropic legas perturbed byy = .99
for four rock types: a) Isotropic, b) Taylor Sand, c) MesayC&hale, and d) GreenLight
River Shale. Superimposed onto the images are the RMO émsctiomputed using equa-
tion 20. The solid line was computed when fawas derived from tap by applying equa-
tion A-2, whereas the dashed line was computed by approxignédny as equal to taj.

| biondo2-Quad_Aniso-rho.99_oveiiCR]
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Figure 6: ADCIGs obtained when a constant anisotropic vglacas perturbed byy = .9
for four rock types: a) Isotropic, b) Taylor Sand, c) MesayC&hale, and d) GreenLight
River Shale. Superimposed onto the images are the RMO émsctiomputed using equa-
tion 20. The solid line was computed when fawas derived from tap by applying equa-
tion A-2, whereas the dashed line was computed by approxignédny as equal to taj.
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large (Figure 7) and cause a substantial RMO (up to 30% ofetthector depth) the predicted
RMO functions are excellent approximations of the actual®inctions.

The RMO functions associated with the two strongly anedlipbcks (Taylor Sand and
GreenLight River Shale) exhibit a characteristic osaltgtbehavior; the events at narrow-
aperture angles are imaged deeper than the normal incidemed, whereas the events at
wide-aperture angles are imaged shallower. This osailldiehavior is well predicted by the
analytical RMO function introduced in equations 24—26.

In contrast, the approximation of the group angles with thase angles (dashed lines in
the figures) seriously deteriorates the accuracy of theiggeiRMO functions. Notice that,
in contrast with the uniform-perturbation case illustchie Figures 5— 6, the dashed lines are
different among the panels, because the derivatives oflthiensss function with respect to
the perturbation parameters depend on the anisotropiogtess of the background medium.

GULF OF MEXICO DATA EXAMPLE

To test the accuracy of the RMO functions derived in this pdpeigrated a 2-D line extracted
from a 3-D data set that was kindly provided to SEP by ExxoniMdlo minimize 3-D effects,

the location of the 2-D line was chosen in an area where thengedis are mostly flat in the
cross-line direction and where the salt flanks are mostlggraticular to the in-line direction.

The data set was acquired in the Gulf of Mexico over an exjsteservoir. Therefore
several borehole seismic data sets were available in adddithe surface data to constraint the
estimation of the anisotropic parameters. ExxonMobil pted SEP with three anisotropic-
parameter cubes resulting from a joint inversion of theagfdata and the borehole data
(Krebs et al., 2003). Figure 9 shows the vertical slicestmaitgh these cubes at the cross-line
location corresponding to the 2-D line that | migrated. Panelisplays the vertical velocity,
panel b) displays the values 6f and panel c) displays the valuespf To avoid artifacts
caused by sharp parameter contrasts, for migration | rediibnvesalt body from the functions
displayed in Figure 9. | “infilled” the salt body with sedintdike values by interpolating the
functions inward starting from the sediment values at thtessgliment interface.

Figure 10 compares the result of anisotropic prestack dapghation (panel a) with the
results of isotropic depth migration obtained using as atign velocity the vertical veloc-
ity function (panel b). The anisotropic-migration imageclearly superior to the isotropic-
migration image that shows clear sign of undermigratiorhefgalt-flanks reflections as well
of the sediments terminating against the salt body. All #fkectors are nicely imaged by the
anisotropic migration, except for the shallow tract of ta& #ank on the left-hand side of the
body because it has large cross-line dip components.

Figure 11 shows two examples of ADCIGs computed from bothattieotropic and the
isotropic migration results. The CIGs shown in panel a) andrb taken at surface location
of 3,725 meters (left vertical black line in Figure 10) and tIGs shown in panel c) and d)
are taken at surface location of 11,625 meters (right \@rbtack line in Figure 10). The
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Figure 7: ADCIGs obtained when data modeled withaaisotropicvelocity have been mi-
grated using afisotropic velocity. The anisotropic data were modeled assuming troele
types: a) Taylor Sand, b) Mesa Clay Shale, and c¢) GreenLiglgrRShale. Superimposed
onto the images are the RMO functions computed using equa@oThe solid line was com-
puted when tap was derived from tafi by applying equation A-2, whereas the dashed line
was computed by approximating taras equal to tapi. \biondoZ-Trio_Aniso-iso_overjn
[CR]
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Figure 8: ADCIGs obtained when data modeled withaamsotropicvelocity have been mi-
grated using &ss anisotropiwelocity; that is, with anisotropic parameters obtainedbsl-
ing by .25 the parameter perturbations used to compute &iguil he anisotropic data were
modeled assuming three rock types: a) Taylor Sand, b) Mema &hale, and c) GreenLight
River Shale. Superimposed onto the images are the RMO ansttomputed using equa-
tion 20. The solid line was computed when fawas derived from tap by applying equa-
tion A-2, whereas the dashed line was computed by approkiq&iny as equal to tapi.

| biondo2-Trio_Aniso-scaled_ovelfCR]
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Figure 9: Vertical slices cut through the anisotropic véioparameters cubes. Panel a) shows
the vertical velocity field, panel b) shows théeld, and panel c) shows thgefield. | removed
the salt body from the parameters functions used for mignatio avoid artifacts caused by
sharp parameter discontinuitiesbiondo2-Par-Sections-oveliCR]
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Figure 10: Images obtained by anisotropic prestack migmapanel a) and isotropic prestack

migration (panel b). The two vertical lines superimposetbdhe image identify the surface
location of the ADCIGs displayed in Figure 1ibiondo2-Sections-oveffiCR]
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Figure 11: ADCIGs computed by anisotropic migration (pamgland c)) and isotropic migra-
tion (panels b) and d)). The ADCIG shown in panels a) and bjaken at the surface location
of 3,725 meters. The ADCIG shown in panel c) and d) are takeheasurface location of

11,625 meters| biondo2-Quad-aniso-iso-oveliCR]

ADCIGs obtained by anisotropic migration (panels a and e) wiformly flatter than the

ADCIGs obtained by isotropic migration (panels b and d). ADECIGs obtained by isotropic

migration display the typical hockey-stick behavior conmiyoseen in CIGs computed by
isotropic Kirchoff migration in anisotropic media. Althgh the isotropic migration image
is evidently not well focused, this result does not precltle possibility that an isotropic

migration velocity could be defined to focus the data sattsfdly. However, an isotropic

migration with a different velocity model would also positithe reflectors at substantially
different locations. These location would not equally rhatice depth measured from the
wells (Bear et al., 2003).

The RMO function derived in this paper assumes a homogerageisabove the reflector
to be analyzed. To test the accuracy of the expressionsédRiO function | therefore esti-
mated the average anisotropic parameters between the gearftbtwo reflectors, one shallow
and the other deep, easily identifiable in the ADCIG locat&J &5 meters (Figure 11a). Fig-
ures 12 and 13 show the result of my analysis.

Figure 12c shows the ADCIG obtained after anisotropic ntigrausing the following
average parameters below the sea flaGr= 1,750 nys, e = 0.11,5 = 0.04, andy = .065.
Figure 12d shows the ADCIG obtained after isotropic migmatisingVy = 1,750 nys. The
shallow reflection of interest is flat in Figure 12c, wherdas smiling upward in Figure 12d.
For comparison, Figures 12a and 12b show a zoom of Figuresaiddd1lb into the same
window of the ADCIGs as the one displayed in Figures 12c amtd The curve superimposed
onto both Figures 12b and 12d was computed using the gezestdMO functions expressed
in equations 24-26. The computed RMO function perfectlylaps the event in the ADCIG



SEP-123 RMO in anisotropic ADCIGs 43

Aperture Ang. (deg) Aperture Ang. (deg) Aperture Ang. (deg) Aperture Ang. (deg)
-60 —40 -—-20 0 -60 —40 -20 0 -60 —40 -20 0 -60 —40 -20 0

0.35

Figure 12: ADCIGs taken at the surface location of 3,725 nsetand with the layer be-
low the sea floor being: a) anisotropic and heterogeneousobppic and heterogeneous,
c) anisotropic and homogeneowg,(= 1,750 nys, ¢ = 0.11,5 = 0.04, andy = .065), d)
isotropic and homogeneou$\{ = 1,750 nys). The RMO curve that is superimposed onto
panels b) and d) is computed using equations 24—Ftﬂond02-Quad-Aniso-shallow-ove\rn
[CR]

in Figure 12d. In contrast, the computed RMO function ovémestes the moveout in the
ADCIG obtained by migrating the data using the originaliiepic model (Figure 12b). The
cause of this discrepancy is the ray bending induced by thecakgradient in the original
heterogeneous model. Because of ray bending the eventsgaigpmore vertically, and thus
more slowly, in the heterogeneous medium than in the homemgenone. In cases when
explicit raytracing though the background velocity is resagy to compute the RMO function,
equation 27 provides the necessary link between the traesperturbations accumulated
along the rays and the depth perturbations measured in ti&@ @&

The ADCIGs shown in Figure 13 display a behavior similar ®dhes shown in Figure 12.
Since the reflection of interest is now deep, the half-spat@bthe sea floor is characterized
by higher average parameters than for the shallow reflectiat is: Vi\, = 2,000 nys, € =
0.143,5 = 0.045, and; = .09. As before, the reflection of interest in ADCIG migrateshg
these parameters (Figure 13c) is flat, whereas the sameti@iléc the ADCIG migrated
with isotropic migration with the same vertical velocity\( = 2,000 nys) is smiling upward
(Figure 13d). As before, the RMO curve computed using eqonat?4—26 perfectly overlaps
the event in the ADCIG shown in Figure 13d, whereas it overeges the moveout in the
ADCIG obtained by migrating the data using the originalisptic model (Figure 13b).



44 Biondi SEP-123

Aperture Ang. (deg) Aperture Ang. (deg) Aperture Ang. (deg) Aperture Ang. (deg)
-60 —40 -—-20 0 -60 —40 -20 0 -60 —40 -20 0 -60 —40 -20 0

0.35

Figure 13: ADCIGs taken at the surface location of 3,725 nsetand with the layer be-
low the sea floor being: a) anisotropic and heterogeneousobppic and heterogeneous,
c) anisotropic and homogeneoug,(= 2,000 nys, ¢ = 0.143,5 = 0.045, andy = .09), d)
isotropic and homogeneou$\{ = 2,000 nys). The RMO curve that is superimposed onto
panels b) and d) is computed using equations 24—2}63iond02-Quad-Aniso-deep-ove*rn
[CR]

CONCLUSIONS

The methodology presented in this paper enables the use GI@Hto iteratively estimate
anisotropic velocity parameters in conjunction with atrigpic wavefield-continuation migra-
tion. This advancement should enable the performance of M\&eas where the overburden
is both anisotropic and complex to require anisotropic iialet continuation migration.

The linearized analysis of depth perturbations in ADCIGsbted by anisotropic migra-
tion shows that the RMO function observed when the migratelocity is inaccurate is a
function of both the phase aperture angle and the groupuaperhgle. The synthetic-data ex-
amples show that the linearized expression of the RMO fan@tcurately predicts the actual
RMO function measured after wavefield migration.

The real data results confirm the accuracy of the theory dpeel in this paper. The
RMO curves predicted by the theory match extremely well tNECRunctions observed in the
ADCIG migrated according to the assumptions underlyinghleery. We observe fairly large
differences in RMO functions observed between the ADCIGsmated assuming an isotropic
homogeneous half-space hanging from the sea floor and thd @®€mputed assuming an
isotropic heterogeneous model. These discrepancies dratmthe sensitivity of the RMO
analysis to the accuracy with which the background velgmigdicts the actual ray bending.
This sensitivity is higher for anisotropic media becausehef velocity dependence on the
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propagation angle, suggesting that a tomographic MVA migheven more necessary for
anisotropic media than for isotropic ones.

Tomographic updating of the anisotropic parameters fronCAKEs can be based on the
same fundamental concepts used to derive the RMO functicesepted and tested in this
paper. | therefore derive the linearized relationship leetwdepth errors measured in AD-
CIGs and traveltime errors accumulated along the wavepatiis relationship should lead to
the development of anisotropic MVA methods based on tonpigecavelocity-updating pro-
cedures.
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APPENDIX A
PHASE AND GROUP ANGLESAND VELOCITIES

In anisotropic wave propagation the phase angles and Wel®aire different from the group
angles and velocities. In this appendix | briefly review tbaaepts of phase and group angles
and velocities and the relationships between these phygieatities.

The transformation from phase velocﬁyto group velocityV is conventionally defined
as the following (Tsvankin, 2001):

V= [V24 <d—\i> (A-1)

whered is the phase propagation angle. The associated transfomfedm phase angles to
group angle® is defined as:

tand + _\;71\5/,
tand = T~ (A-2)
1- ey tang

Dellinger and Muir (1985) propose, and heuristically mate; the following symmetric
relations for the inverse transforms:

~ ds
S= [+ —), A-3
“(3) (A3)
whereSandSare respectively the phase slowness and the group slovaress,
~  tand+19°
tand = TSdG (A'4)
1-ggtang

| use the heuristic relation in equation A-4 to derive somt#hefanalytical results presented in
this paper. Furthermore, | use all the above relationshig®mpute the kinematic numerical
results presented in this paper.
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APPENDIX B

INDEPENDENCE OF DEPTH PERTURBATIONS FROM ANGLE
PERTURBATIONS

In this appendix | demonstrate that the terms in equation Ai&iptying the partial derivatives
with respect to the angles; that &y /9p; anddy/dp;, are zero when evaluated at the point
when the events are correctly migrated at zero subsurfésetofVe are interested in estimat-
ing the RMO function measured for an incorrect velocity. fTRMO function can be seen as
a perturbation around the image obtained with the corrdotitg.

After simple evaluation of partial derivatives the term tiplying dy /dp; in equation 13
can be written as the following:

<azy oL 88(y)+azy) _ Z(cosy +siny tany) 9S(y)

— L (siny — cosy tany
oL aS(y) oy oy S(y)cosy ay (siny v tany)

~ 0S ~
= —Z [(1+tany tany) % +tany —tany} , (B-1)
14
that can be easily demonstrated to be equal to zero aftetitstios of the relationship be-
tween phase angles and group angles presented in equation A-

The term multiplyingdy /dp; is equal to
0z 1

2 e he——, B-2
oy Sco§)’7 (B-2)

which is obviously equal to zero when the subsurface offseero, the point around which
we are interested in expanding the RMO function.

APPENDIX C

DERIVATIVESOF VTI SLOWNESS FUNCTION WITH RESPECT TO THE
PERTURBATION PARAMETERS

In this Appendix | present the analytical expressions ferdhrivatives of the group slowness
function with respect to the velocity-perturbation parm(pvv,va,pVN). These deriva-
tives depend on the particular form chosen to approximatsltwness function. In this paper
| use following approximation of the VTI slowness functidfo(vler, 2003):

< 6) Sv2cog6 + Sy 2sirtd +\/(S\/2co§9 + Sstin29)2+ S/2 (2 — S?) sirt 26
TI =
2
S (9)"‘\/%u (6) + Sv? (S — Su?) sirf 29

_ . , (C-1)
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where
S, (0) = Sy?cog 0 + Sy?sirfd (C-2)

is the elliptical component.

The derivatives are then written as:

Sm®)|  _ S 1), 2o, 0O SHS - SHsry
Iow |y 2Sm©) dow 45, (9)\/ S (0) + /% (SV2 — S4?) sire 20

S @) | S 1@, TR, RO+
vy | p=1 25m () ve 45,4 (0) \/ S (0)+ Sv? (SN2 — Sa?)sir? 20

9SmO)| —S/2Sysin’ 26 (C-5)

W1 asm (6) /S (6) + SvE (S — SuP) sirP 26
where the derivatives of the elliptical component with edgo o, andpy,, are:

vy |, SEn(6) (0)
3 Sen (9) _ —Sy%sinfo _
vy lpmr SN0 (€D




