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Residual moveout in anisotropic angle-domain common image
gathers

Biondo Biondi1

ABSTRACT

To enable the analysis of the Residual Moveout (RMO) in Angle-Domain Common Im-
age Gathers (ADCIGs) after anisotropic wavefield-continuation migration, I develop the
fundamental concepts for quantitatively relating perturbations in anisotropic parameters
to the corresponding reflector movements in ADCIGs. I then apply the general methodol-
ogy to the particular case of RMO analysis of reflections fromflat reflectors in a Vertical
Transverse Isotropic (VTI) medium. This analysis shows that the RMO in migrated AD-
CIGs is a function of both the phase aperture angle and the group aperture angle.
Several numerical examples demonstrate the accuracy of theRMO curves predicted by
my kinematic analysis. The synthetic examples also show that the approximation of the
group angles by the phase angles may lead to substantial errors for events reflected at wide
aperture angles.
The results obtained by migrating a 2-D line extracted from aGulf of Mexico 3-D data set
confirm the accuracy of the proposed method. The RMO curves predicted by the theory
exactly match the RMO function observed in the ADCIGs computed from the real data.

INTRODUCTION

The analysis of Residual Moveout (RMO) in Common Image Gathers (CIGs) after prestack
migration is an essential step for updating migration velocity. When the migration velocity is
inaccurate, the inconsistency of the migrated events alongeither the offset axis or the aperture-
angle axis is proportional to the migration velocity errors. Measuring the RMO in ADCIGs
provides the quantitative information necessary to updatethe velocity function in a Migration
Velocity Analysis (MVA) procedure.

Today, MVA is the procedure most commonly employed to estimate isotropic migration
velocity in complex media. The technology for anisotropic MVA is much less mature than
for isotropic MVA. Recently, important progress has been made toward the development of
anisotropic MVA in conjunction with Kirchhoff migration. Sarkar and Tsvankin (2003, 2004b)
analyze the effect of velocity errors on offset-domain CIGsproduced by Kirchhoff migration.
They demonstrate the effectiveness of their method by successfully applying it to a West Africa
data set (Sarkar and Tsvankin, 2004a). Krebs et al. (2003) and Bear et al. (2003) integrate
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borehole-seismic data and nonseismic information in an MVAprocess based on Kirchhoff
migration.

Wavefield-continuation is capable of producing better images than Kirchhoff migration
does in the presence of complex overburden that causes multipathing of the propagating wave-
field, as often it occurs when imaging below or in proximity ofsalt bodies. To perform MVA
after wavefield-continuation the RMO function is measured from Angle Domain Common
Image Gathers (ADCIGs) (Biondi and Sava, 1999; Clapp and Biondi, 2000). Since all the
present methods for computing ADCIGs in conjunction with wavefield migration are limited
to isotropic migration, the quantitative analysis of RMO inADCIGs is also limited to the
isotropic case (Biondi and Symes, 2003; Biondi and Tisserant, 2004). In this paper, I pro-
vide the basic analytical tools necessary to perform anisotropic migration velocity analysis by
analyzing the RMO function in ADCIGs. This paper builds on the results presented in a com-
panion paper (Biondi, 2005) that develops a method for computing ADCIGs after anisotropic
migration and lays the foundations for the kinematic analysis of anisotropic ADCIGs. I ap-
ply the general theory to the specific case of defining the RMO function measured from flat
reflectors in VTI media, because in this case the methodologyis simple both to derive and to
apply. However, the same concepts could be applied to more general situations, though at the
expense of additional complexities that could obfuscate the fundamental concepts.

In (Biondi, 2005) I show that in anisotropic media the ADCIGsare approximately func-
tions of the phase aperture angle, and exactly so for flat reflectors in VTI media. In this paper I
demonstrate that the RMO function depends on both the phase and the group aperture angles.
This dependency of the RMO function on the group angles adds some complexity to the RMO
analysis because the computation of group angles from phaseangles, which are measured from
the ADCIGs, depends on the background anisotropic velocityevaluated at the reflector point.
The synthetic-data examples show that neglecting the dependency on the group angles, and
assuming that group angles are equal to phase angles, leads to substantial inaccuracy in the
predicted RMO function. Fortunately, the additional computational cost of computing group
angles is negligible, and thus it should not be an obstacle tothe application of the proposed
methodology.

ANGLE-DOMAIN COMMON IMAGE GATHERS AND KINEMATIC
ANISOTROPIC MIGRATION

In (Biondi, 2005) I develop the theory of ADCIGs in anisotropic media from both a “plane-
wave” viewpoint and a “ray” viewpoint. The two methods are equivalent and yield the same
results, but the ray-theoretical approach is the natural starting point for analyzing RMO func-
tions in ADCIGs. The kinematic approach is based on the conceptual generalization of inte-
gral (Kirchhoff) migration to the computation of a prestackimage that include the sub-surface
offset dimension. The image-space of integral migration are usually restricted to the zero
subsurface-offset section; that is, with the integral operators (either summation surfaces or
spreading surfaces) evaluated when source and receiver rays meet at the reflection point. The
image space can be expanded to include non-zero subsurface offsets by integrating the data
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Figure 1: Geometry used for eval-
uating the impulse response of
integral migration generalized to
produce a prestack image func-
tion of the subsurface offsethξ .
biondo2-imp-resp[NR]
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over surfaces evaluated with the end points of the source andreceiver rays horizontally shifted
with respect to each other, instead of being coincidental atthe image point. Figure 1 illustrates
this concept and provide the basis for computing the kinematics of the generalized migration
operator.

Since the transformation to ADCIGs operates in the image space, I analyze the spreading
surfaces (impulse responses) of the generalized prestack migration operator, which are defined
in the image space. In homogeneous anisotropic medium the shape of the impulse responses
of the generalized integral migration can be easily evaluated analytically as a function of the
subsurface offsethξ , in addition to the usual image depthzξ and midpointmξ . Figure 1
illustrates the geometry used to evaluate this impulse response.

Assuming an arbitrary homogeneous anisotropic medium, simple trigonometry applied to
Figure 1 allows us to express the impulse response in parametric form, as a function of the
group dip angleαx and the group aperture angleγ . If we migrate an impulse recorded at time
tD, midpointmD and surface offsethD, the migration impulse response can be expressed as
follows:

zξ = L (αx,γ )
cos2αx −sin2γ

cosαx cosγ
, (1)

mξ = mD − L (αx,γ )
sinαx

cosγ
, (2)

hξ = hD − H = hD − L (αx,γ )
sinγ

cosαx
, (3)

with the average half-path lengthL (αx,γ ) given by:

L (αx,γ ) =
Ls + Lr

2
=

tD

(Sr + Ss)+ (Sr − Ss) tanαx tanγ
, (4)

whereSs andSr are the group slowness along the source and receiver rays, respectively.

In 2-D, The ADCIGs are computed by applying a slant-stack decomposition on the prestack
image along the subsurface offset axis, at constant midpoint. The kinematics of the transfor-



28 Biondi SEP–123

Figure 2: Geometry of the transfor-
mation to the angle domain. The
image point in the subsurface-offset
domain

(
zξ ,hξ

)
moves to the im-

age point in angle domain
(
zγ , γ̃

)
.
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mation are defined by the following change of variables:

γ̂ = arctan
∂zξ

∂hξ

∣∣∣∣
mξ=Smξ

, (5)

zγ = zξ −hξ

∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

, (6)

wherezγ is the depth of the image point after the transformation. In the general case, the angle
γ̂ is related to the reflection aperture angle in a non-trivial way. However, in (Biondi, 2005)
I demonstrate that for flat reflectors the slope of the impulseresponse along the subsurface
offset axis, is equal to the tangent of the phase aperture angle γ̃ ; that is,

∂zξ

∂hξ

∣∣∣∣
(mξ =Smξ , αx=0)

=
tanγ + 1

S
∂S
∂γ

1− 1
S

∂S
∂γ

tanγ
= tanγ̃ . (7)

Notice that throughout this paper I use the tilde symbol to distinguish between phase quantities
(with a tilde) and group quantities (without a tilde). Appendix A summarizes the relationships
between group angles and velocities and phase angles and velocities. Equation A-4 is directly
used to derive the result in equation 7.

Substituting equation 7 in equations 5 and 6 we obtain

γ̃ = arctan
∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

, (8)

zγ = zξ −hξ tanγ̃ . (9)

Figure 2 provides a geometrical interpretation of the transformation to angle domain of an
image point with non-zero subsurface offset. The transformation to angle domain moves
the image point in the subsurface-offset domain

(
zξ ,hξ

)
to the image point in angle domain(

zγ , γ̃
)
. The depth of the image point in angle domain is determined bythe intersection of the

lines passing through the points
(
zξ ,mξ ±hξ

)
and tilted by∓γ̃ with respect to the horizon-

tal. When the migration velocity is correct, and the image isfully focused at zero subsurface
offset, the transformation to angle domain does not change the depth of the image point and
the reflections are imaged at the same depth for all aperture angles. On the contrary, when the
reflections are not focused at zero offset, the transformation to angle domain maps the events
at different depths for each different angle. The variability of the depthzγ with the aperture
angle is described by the RMO function that we want to measureand quantify as a function of
the perturbations in anisotropic parameters encountered along the propagation paths.
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Figure 3: Linearized perturbations
of the image-point locations (both
in the subsurface-offset domain and
the angle domain) caused by changes
in the ray lengthL, as evaluated
using the first term in equation 11.
biondo2-cig-2d-aniso-delta1-flat-v1
[NR]

(        ,  )

(   ,       )

(        ,         )

γ∼

∆
γz+   zγ γ∼

L∆

zξ ξh=0

∆
ξh+  hξ

∆
ξz+   zξ

ξh∆

L

S R

z

x

γ

ANISOTROPIC RESIDUAL MOVEOUT FOR FLAT REFLECTORS

The generalization of kinematic anisotropic migration andthe analysis of the kinematics of the
offset-to-angle transformation presented in the previoussection enables a simple analysis of
the residual moveout (RMO) in ADCIGs caused by errors in anisotropic velocity parameters.
In this section I derive the RMO function by linearizing the relationship of the imaging depth in
the angle domain with respect to perturbations in the anisotropic parameters. The linearization
is evaluated around the correct migration velocity function; that is, when the image in the
subsurface-offset domain is well focused at zero offset.

As in the previous section, I limit my analysis to reflectionsfrom flat interfaces. However,
a generalization of the flat-events analysis to dipping events should be conceptually straight-
forward, though not necessarily simple from the analyticalpoint of view. Furthermore, I derive
relationships assuming that the velocity perturbations are limited to a homogeneous half-space
above the reflector. The same relationships can be easily adapted to the case of a homogeneous
layer above the reflector by transforming the depth variableinto a relative depth with respect
to the top of the layer under consideration. At the end of thissection I present the fundamental
relationship for broadening the application of the theory to heterogeneous media. This rela-
tionship links the traveltime perturbations to the reflector movements and it can be used in a
ray-based tomographic velocity-update procedure.

A VTI velocity function, either group or phase, is describedby the following vector
of three velocitiesV = (VV ,VH ,VN), or by the corresponding vector of three slownesses
S = (SV ,SH ,SN) used in equation C-1. I define the perturbations as the combination of one
multiplicative factor for each of the velocities and one multiplicative factor for all velocities;
that is, the perturbed velocityρV is defined as:

ρV =
(
ρVV ,ρVH ,ρVN

)
= ρV

(
ρVV VV ,ρVH VH ,ρVN VN

)
. (10)

The velocity-parameter perturbations is thus defined by thefollowing four-components vector
ρ=

(
ρV ,ρVV ,ρVH ,ρVN

)
.

Differentiating, the expression for the depth of the image point in the angle domainzγ

(equation 9) with respect to thei -th component in the perturbation vector, we obtain the fol-
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Figure 4: Linearized perturbations
of the image-point locations (both
in the subsurface-offset domain
and the angle domain) caused by
changes in the aperture angleγ ,
as evaluated using the second term
in equation 11. Notice that the
image point in the angle domain
does not move, no matter how large
the corresponding movement in
the subsurface-offset domain is.
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lowing:

∂zγ

∂ρi
=

∂zγ

∂L

∂L

∂ρi
+

∂zγ

∂γ

∂γ

∂ρi
+

∂zγ

∂γ̃

∂γ̃

∂ρi
(11)

=
∂zγ

∂L

∂L

∂S

(
∂S

∂ρi
+

∂S

∂γ

∂γ

∂ρi

)
+

∂zγ

∂γ

∂γ

∂ρi
+

∂zγ

∂γ̃

∂γ̃

∂ρi
(12)

=
∂zγ

∂L

∂L

∂S

∂S

∂ρi
+

(
∂zγ

∂L

∂L

∂S

∂S

∂γ
+

∂zγ

∂γ

)
∂γ

∂ρi
+

∂zγ

∂γ̃

∂γ̃

∂ρi
. (13)

In Appendix B I demonstrate that the terms multiplying the partial derivatives with respect to
the angles are zero, and equation 13 simplifies into:

∂zγ

∂ρi
=

∂zγ

∂L

∂L

∂S

∂S

∂ρi
, (14)

where

∂zγ

∂L
=

∂zξ

∂L
−

∂hξ

∂L
tanγ̃ = cosγ +sinγ tanγ̃ , (15)

and

∂L

∂S(γ )
= −

zξ

S(γ )cosγ
, (16)

and consequently

∂zξ

∂ρi
= −

zγ (1+ tanγ tanγ̃ )

S(γ )

∂S

∂ρi
. (17)

Figures 3 and 4 graphically illustrate the image perturbations related to the first two terms
in equation 11. Figure 3 shows the movement of the image points (both in the subsurface-
offset domain and the angle domain) caused by changes in the ray lengthL. Figure 4 provides
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a geometrical explanation of why the second term in equation11 vanishes. It shows that
perturbations in the aperture angleγ cause the subsurface-offset domain image point to move
along the tangent to the wavefront (tilted with the phase angle γ̃ ). Since this movement is
constrained along the tangent, the image point in the angle domain does not move, no matter
how large the movement in the subsurface-offset domain is.

RMO function with uniform scaling of velocity

In case of uniform scaling of velocity, the derivative of theimaging depthzγ with respect to
the perturbation componentρV has the following simple form:

∂zγ

∂ρV
= zξ (1+ tanγ tanγ̃ ) , (18)

because the derivative of the slowness with respect to a uniform scaling of the velocity has the
following simple form:

∂S(γ )

∂ρV
= −S(γ ) , (19)

that causes the derivative∂L/∂ρV = −zξ/cosγ to be independent from the “local” shape of
the anisotropic slowness function. Intuitively, this simplification is related to the fact that the
“shape” of the wavefronts is not affected by a uniform scaling of the velocity.

The residual moveout1zRMO is defined as the difference between the reflector movement
at finite aperture anglẽγ and the reflector movement at normal incidence. From equation 18
the partial derivative of1zRMO with respect toρV is equal to the following expression:

∂1zRMO

∂ρV
= zξ tanγ tanγ̃ . (20)

When the medium is isotropic, and the phase angles are equal to the group angles, the RMO
expression in equation 20 becomes the RMO expression introduced by Biondi and Symes
(2003).

The dependency of equation 20 from the group angles increases the complexity of its use
because it requires the transformation of phase angles (measured directly from the ADCIGs)
into group angles by applying equation A-2. The computational cost of evaluating equa-
tion A-2 is negligible, but its use makes the computations dependent on the local values of the
background anisotropic velocity function. On the other hand, the following numerical exam-
ples show that substantial errors are introduced when the distinction between the group and
phase angles is neglected, and the phase angle is used instead of the group angle in equation 20.

RMO function with arbitrary scaling of velocity

The expressions of the derivative ofzγ with respect to arbitrary perturbations of individual
velocity components (i.e.VV , VH , andVN) are slightly more complex than with respect toρV
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because the wavefronts are deformed when the velocity components are unevenly perturbed.
These derivatives can be expressed as:

∂zγ

∂ρVV

= −
zξ

S(γ )

∂S(γ )

∂ρVV

(1+ tanγ tanγ̃ ) , (21)

∂zγ

∂ρVH

= −
zξ

S(γ )

∂S(γ )

∂ρVH

(1+ tanγ tanγ̃ ) , (22)

∂zγ

∂ρVN

, = −
zξ

S(γ )

∂S(γ )

∂ρVN

(1+ tanγ tanγ̃ ) . (23)

The partial derivatives of the RMO function1zRMO are directly derived from the partial
derivatives ofzγ , taking into account that for flat reflectors only the vertical velocity compo-
nentVV influences the image depth of normal incidence. The derivatives of1zRMO can thus
be written as follows:

∂1zRMO

∂ρVV

= −
zξ

S(γ )

∂S(γ )

∂ρVV

(1+ tanγ tanγ̃ )− zξ , (24)

∂1zRMO

∂ρVH

= −
zξ

S(γ )

∂S(γ )

∂ρVH

(1+ tanγ tanγ̃ ) , (25)

∂1zRMO

∂ρVN

= −
zξ

S(γ )

∂S(γ )

∂ρVN

(1+ tanγ tanγ̃ ) . (26)

The expressions for the derivatives of the slowness function with respect to the perturbation
parameters depend on the particular form chosen to approximate the slowness function. Ap-
pendix C presents a particular approximation to the VTI group slowness function and derives
the corresponding partial derivatives to be substituted inequations 21–23 and in equations 24–
26. I used the same approximation to the VTI group slowness for the numerical experiments
shown in this paper.

Conversion of depth errors into traveltime errors in heterogeneous media

The RMO functions derived above can be directly used in a layered-based vertical updating
of the velocity function after migration. However, in complex media it is often desirable to
invert the depth errors measured from ADCIGs into velocity-parameter perturbations through
a tomographic procedure. To be able to apply a tomographic method, we must perform an
additional step to convert the depth errors measured from ADCIGs into traveltime errors. This
depth-to-time conversion can be easily accomplished by slightly rewriting the chain of partial
derivatives in equation 14, and obtain the following relationship:

∂zγ

∂t
=

∂zγ

∂L

∂L

∂t
=

cosγ +sinγ tanγ̃

S(γ )
, (27)

which can be directly applied to convert depth errors into traveltime perturbations to be used
in tomography.
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It is immediate to verify that in the isotropic case, in whichγ̃ = γ , equation 27 simplifies
into the following relationship:

∂zγ

∂t
=

1

cosγ S(γ )
, (28)

which is equivalent to the relationship derived for isotropic MVA by Biondi and Symes (2003).

Synthetic-data examples of RMO function in ADCIGs

To verify the accuracy of the RMO functions derived in this section I performed several nu-
merical tests using synthetic data modeled and migrated using an anisotropic source-receiver
migration and modeling program. This program performed depth extrapolation by numerically
solving the following dispersion relation:

kz =
ω

VV

√
ω2 − VH

2k2
x

ω2 +
(
VN

2 − VH
2
)
k2

x

, (29)

whereω is the temporal frequency, andkx andkz are respectively the horizontal and vertical
wavenumbers. This dispersion relation corresponds to the slowness functions in equation C-1
(Fowler, 2003), which was used to compute the RMO functions according to the theory devel-
oped above.

To test the theory under realistic and diverse anisotropic conditions, in the numerical ex-
amples I used three sets of anisotropic Thomsen parameters representing three different rocks
described by Tsvankin (2001):

• Taylor Sand :ε = 0.110 δ = −0.035, → η = .155,
• Mesa Clay Shale :ε = 0.189, δ = 0.204→ η = −.010,
• GreenLight River Shale :ε = 0.0975, δ = −0.11, → η = .266.

The GreenLight River Shale is derived from the Green River Shale described by Tsvankin
(2001) by halving the anisotropic parameters (ε andδ), because the strong anelliptic nature of
the original one (η = .74) causes the group-slowness approximation in equation C-1 to break
down. Consequently, the kinematic computations based on ray tracing, and thus on group
velocity and angles, become inconsistent with wavefield migration based on the dispersion
relation in equation 29. Notice that the GreenLight River Shale is still the most anelliptic
among the set of rocks I am using.

The first set of numerical experiments tests the RMO equationwith uniform scaling of
velocity expressed in equation 20. In addition to the three anisotropic cases described above,
this RMO function is tested also for the special case of isotropic velocity. The second set
tests the generalized RMO functions expressed in equations24–26. Only the three anisotropic
cases are tested because there is no meaningful isotropic case to test the generalized RMO
function. In all the synthetic-data examples I plot the correct RMO curve computed by apply-
ing either equation 18 or equations 24–26, and the approximate RMO curve computed using
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an “isotropic” approximation and ignoring the distinctionbetween the group aperture angleγ

and the phase aperture angleγ̃ .

Figure 5 shows ADCIGs when an anisotropic velocity was perturbed byρV = .99. The four
panels correspond to four rock types: a) Isotropic, b) Taylor Sand, c) Mesa Clay Shale, and
d) GreenLight River Shale. Superimposed onto the images arethe RMO functions computed
using equation 20. The solid line was computed by computing tanγ from tañγ by apply-
ing equation A-2, whereas the dashed line was computed by approximating tanγ as equal to
tanγ̃ . The RMO curves computed using the correct group angle perfectly match the residual
moveout of the images. On the contrary, when the phase anglesare used instead of the group
angles, significant errors are introduced even for such a small perturbation in the parameters
(ρV = .99). It is interesting to notice that the errors are larger for the rock types exhibiting
strong anelliptic anisotropy (Taylors Sand and GreenLightRiver Shale) than for the strongly
anisotropic but quasi-elliptical rock (Mesa Clay Shale).

The expression for the RMO function derived in equation 20 isbased on a linearization,
and thus when the perturbations in velocity parameters are large it is not as accurate as it is
when the perturbations are small (e.g.ρV = .99). Figure 6 illustrates this fact by showing a
similar experiment as the one shown in Figure 5, but with a perturbation 10 times larger; that
is, with ρV = .9. As in Figure 5, the four panels correspond to four rock types: a) Isotropic,
b) Taylor Sand, c) Mesa Clay Shale, and d) GreenLight River Shale, and the lines superim-
posed onto the images are the RMO functions computed by usingthe correct values for tanγ
(solid lines), and by using tañγ in place of tanγ (dashed lines). With large perturbations,
the predicted RMO functions differ from the actual RMO functions at wide aperture angles
even when the correct values of the group angles are used in equation 20. However, even
with such large perturbations the predicted RMO functions are still useful approximations of
the actual RMO functions. In particular, it can be observed that the predicted RMO function
correctly approximates the differences in shape of the actual RMO function among the rock
types. These shape variations are related to the variationsin shape of the wavefronts, which
are reflected in the predicted RMO function through the variations in the mapping from phase
angles to group angles. Figures 7 and 8 show examples of the application of the generalized
RMO functions expressed in equations 24–26. As in Figures 5–6, I show the ADCIGs for
three different anisotropic rock types, but, differently from the previous figures, not for the
isotropic case. The order of the rock types is the same as in Figures 5–6; that is: panels a)
correspond to Taylor Sand, panels b) to Mesa Clay Shale, and panels c) to GreenLight River
Shale. Furthermore, as in Figures 5–6, one figure (Figure 8) shows the ADCIG obtained with
a smaller perturbation than the ADCIGs shown in the other figure (Figure 7). The ADCIGs
shown in Figure 7 were obtained by performingisotropicmigration on the synthetic data mod-
eled assuminganisotropicvelocity. The ADCIGs shown in Figure 8 were computed by scaling
by .25 the parameter perturbations used to compute Figure 7.The lines superimposed onto the
images are the RMO functions computed by using the correct values for tanγ (solid lines),
and by using tañγ in place of tanγ (dashed lines).

The predicted RMO functions accurately track the actual RMOfunctions when the param-
eter perturbations are sufficiently small to be within the range of accuracy of the linearization
at the basis of the derivation of equation 20 (Figure 8). But even when the perturbations are
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Figure 5: ADCIGs obtained when a constant anisotropic velocity was perturbed byρV = .99
for four rock types: a) Isotropic, b) Taylor Sand, c) Mesa Clay Shale, and d) GreenLight
River Shale. Superimposed onto the images are the RMO functions computed using equa-
tion 20. The solid line was computed when tanγ was derived from tañγ by applying equa-
tion A-2, whereas the dashed line was computed by approximating tanγ as equal to tañγ .
biondo2-Quad_Aniso-rho.99_overn[CR]
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Figure 6: ADCIGs obtained when a constant anisotropic velocity was perturbed byρV = .9
for four rock types: a) Isotropic, b) Taylor Sand, c) Mesa Clay Shale, and d) GreenLight
River Shale. Superimposed onto the images are the RMO functions computed using equa-
tion 20. The solid line was computed when tanγ was derived from tañγ by applying equa-
tion A-2, whereas the dashed line was computed by approximating tanγ as equal to tañγ .
biondo2-Quad_Aniso-rho.9_overn[CR]
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large (Figure 7) and cause a substantial RMO (up to 30% of the reflector depth) the predicted
RMO functions are excellent approximations of the actual RMO functions.

The RMO functions associated with the two strongly anelliptic rocks (Taylor Sand and
GreenLight River Shale) exhibit a characteristic oscillatory behavior; the events at narrow-
aperture angles are imaged deeper than the normal incidenceevent, whereas the events at
wide-aperture angles are imaged shallower. This oscillatory behavior is well predicted by the
analytical RMO function introduced in equations 24–26.

In contrast, the approximation of the group angles with the phase angles (dashed lines in
the figures) seriously deteriorates the accuracy of the predicted RMO functions. Notice that,
in contrast with the uniform-perturbation case illustrated in Figures 5– 6, the dashed lines are
different among the panels, because the derivatives of the slowness function with respect to
the perturbation parameters depend on the anisotropic parameters of the background medium.

GULF OF MEXICO DATA EXAMPLE

To test the accuracy of the RMO functions derived in this paper, I migrated a 2-D line extracted
from a 3-D data set that was kindly provided to SEP by ExxonMobil. To minimize 3-D effects,
the location of the 2-D line was chosen in an area where the sediments are mostly flat in the
cross-line direction and where the salt flanks are mostly perpendicular to the in-line direction.

The data set was acquired in the Gulf of Mexico over an existing reservoir. Therefore
several borehole seismic data sets were available in addition to the surface data to constraint the
estimation of the anisotropic parameters. ExxonMobil provided SEP with three anisotropic-
parameter cubes resulting from a joint inversion of the surface data and the borehole data
(Krebs et al., 2003). Figure 9 shows the vertical slices cut through these cubes at the cross-line
location corresponding to the 2-D line that I migrated. Panel a) displays the vertical velocity,
panel b) displays the values ofδ, and panel c) displays the values ofη. To avoid artifacts
caused by sharp parameter contrasts, for migration I removed the salt body from the functions
displayed in Figure 9. I “infilled” the salt body with sediment-like values by interpolating the
functions inward starting from the sediment values at the salt-sediment interface.

Figure 10 compares the result of anisotropic prestack depthmigration (panel a) with the
results of isotropic depth migration obtained using as migration velocity the vertical veloc-
ity function (panel b). The anisotropic-migration image isclearly superior to the isotropic-
migration image that shows clear sign of undermigration of the salt-flanks reflections as well
of the sediments terminating against the salt body. All the reflectors are nicely imaged by the
anisotropic migration, except for the shallow tract of the salt flank on the left-hand side of the
body because it has large cross-line dip components.

Figure 11 shows two examples of ADCIGs computed from both theanisotropic and the
isotropic migration results. The CIGs shown in panel a) and b) are taken at surface location
of 3,725 meters (left vertical black line in Figure 10) and the CIGs shown in panel c) and d)
are taken at surface location of 11,625 meters (right vertical black line in Figure 10). The
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Figure 7: ADCIGs obtained when data modeled with ananisotropicvelocity have been mi-
grated using anisotropic velocity. The anisotropic data were modeled assuming threerock
types: a) Taylor Sand, b) Mesa Clay Shale, and c) GreenLight River Shale. Superimposed
onto the images are the RMO functions computed using equation 20. The solid line was com-
puted when tanγ was derived from tañγ by applying equation A-2, whereas the dashed line
was computed by approximating tanγ as equal to tañγ . biondo2-Trio_Aniso-iso_overn
[CR]
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Figure 8: ADCIGs obtained when data modeled with ananisotropicvelocity have been mi-
grated using aless anisotropicvelocity; that is, with anisotropic parameters obtained byscal-
ing by .25 the parameter perturbations used to compute Figure 7. The anisotropic data were
modeled assuming three rock types: a) Taylor Sand, b) Mesa Clay Shale, and c) GreenLight
River Shale. Superimposed onto the images are the RMO functions computed using equa-
tion 20. The solid line was computed when tanγ was derived from tañγ by applying equa-
tion A-2, whereas the dashed line was computed by approximating tanγ as equal to tañγ .
biondo2-Trio_Aniso-scaled_overn[CR]
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Figure 9: Vertical slices cut through the anisotropic velocity parameters cubes. Panel a) shows
the vertical velocity field, panel b) shows theδ field, and panel c) shows theη field. I removed
the salt body from the parameters functions used for migration, to avoid artifacts caused by
sharp parameter discontinuities.biondo2-Par-Sections-overn[CR]
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Figure 10: Images obtained by anisotropic prestack migration (panel a) and isotropic prestack
migration (panel b). The two vertical lines superimposed onto the image identify the surface
location of the ADCIGs displayed in Figure 11.biondo2-Sections-overn[CR]
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Figure 11: ADCIGs computed by anisotropic migration (panels a) and c)) and isotropic migra-
tion (panels b) and d)). The ADCIG shown in panels a) and b) aretaken at the surface location
of 3,725 meters. The ADCIG shown in panel c) and d) are taken atthe surface location of
11,625 meters. biondo2-Quad-aniso-iso-overn[CR]

ADCIGs obtained by anisotropic migration (panels a and c) are uniformly flatter than the
ADCIGs obtained by isotropic migration (panels b and d). TheADCIGs obtained by isotropic
migration display the typical hockey-stick behavior commonly seen in CIGs computed by
isotropic Kirchoff migration in anisotropic media. Although the isotropic migration image
is evidently not well focused, this result does not precludethe possibility that an isotropic
migration velocity could be defined to focus the data satisfactorily. However, an isotropic
migration with a different velocity model would also position the reflectors at substantially
different locations. These location would not equally match the depth measured from the
wells (Bear et al., 2003).

The RMO function derived in this paper assumes a homogeneouslayer above the reflector
to be analyzed. To test the accuracy of the expressions for the RMO function I therefore esti-
mated the average anisotropic parameters between the sea floor and two reflectors, one shallow
and the other deep, easily identifiable in the ADCIG located at 3,725 meters (Figure 11a). Fig-
ures 12 and 13 show the result of my analysis.

Figure 12c shows the ADCIG obtained after anisotropic migration using the following
average parameters below the sea floor:VV = 1,750 m/s, ε = 0.11, δ = 0.04, andη = .065.
Figure 12d shows the ADCIG obtained after isotropic migration usingVV = 1,750 m/s. The
shallow reflection of interest is flat in Figure 12c, whereas it is smiling upward in Figure 12d.
For comparison, Figures 12a and 12b show a zoom of Figures 11aand 11b into the same
window of the ADCIGs as the one displayed in Figures 12c and 12d. The curve superimposed
onto both Figures 12b and 12d was computed using the generalized RMO functions expressed
in equations 24–26. The computed RMO function perfectly overlaps the event in the ADCIG



SEP–123 RMO in anisotropic ADCIGs 43

Figure 12: ADCIGs taken at the surface location of 3,725 meters and with the layer be-
low the sea floor being: a) anisotropic and heterogeneous, b)isotropic and heterogeneous,
c) anisotropic and homogeneous (VV = 1,750 m/s, ε = 0.11, δ = 0.04, andη = .065), d)
isotropic and homogeneous (VV = 1,750 m/s). The RMO curve that is superimposed onto
panels b) and d) is computed using equations 24–26.biondo2-Quad-Aniso-shallow-overn
[CR]

in Figure 12d. In contrast, the computed RMO function overestimates the moveout in the
ADCIG obtained by migrating the data using the original isotropic model (Figure 12b). The
cause of this discrepancy is the ray bending induced by the vertical gradient in the original
heterogeneous model. Because of ray bending the events propagate more vertically, and thus
more slowly, in the heterogeneous medium than in the homogeneous one. In cases when
explicit raytracing though the background velocity is necessary to compute the RMO function,
equation 27 provides the necessary link between the traveltime perturbations accumulated
along the rays and the depth perturbations measured in the ADCIGs.

The ADCIGs shown in Figure 13 display a behavior similar to the ones shown in Figure 12.
Since the reflection of interest is now deep, the half-space below the sea floor is characterized
by higher average parameters than for the shallow reflection; that is: VV = 2,000 m/s, ε =

0.143,δ = 0.045, andη = .09. As before, the reflection of interest in ADCIG migrated using
these parameters (Figure 13c) is flat, whereas the same reflection in the ADCIG migrated
with isotropic migration with the same vertical velocity (VV = 2,000 m/s) is smiling upward
(Figure 13d). As before, the RMO curve computed using equations 24–26 perfectly overlaps
the event in the ADCIG shown in Figure 13d, whereas it overestimates the moveout in the
ADCIG obtained by migrating the data using the original isotropic model (Figure 13b).
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Figure 13: ADCIGs taken at the surface location of 3,725 meters and with the layer be-
low the sea floor being: a) anisotropic and heterogeneous, b)isotropic and heterogeneous,
c) anisotropic and homogeneous (VV = 2,000 m/s, ε = 0.143,δ = 0.045, andη = .09), d)
isotropic and homogeneous (VV = 2,000 m/s). The RMO curve that is superimposed onto
panels b) and d) is computed using equations 24–26.biondo2-Quad-Aniso-deep-overn
[CR]

CONCLUSIONS

The methodology presented in this paper enables the use of ADCIGs to iteratively estimate
anisotropic velocity parameters in conjunction with anisotropic wavefield-continuation migra-
tion. This advancement should enable the performance of MVAin areas where the overburden
is both anisotropic and complex to require anisotropic wavefield-continuation migration.

The linearized analysis of depth perturbations in ADCIGs obtained by anisotropic migra-
tion shows that the RMO function observed when the migrationvelocity is inaccurate is a
function of both the phase aperture angle and the group aperture angle. The synthetic-data ex-
amples show that the linearized expression of the RMO function accurately predicts the actual
RMO function measured after wavefield migration.

The real data results confirm the accuracy of the theory developed in this paper. The
RMO curves predicted by the theory match extremely well the RMO functions observed in the
ADCIG migrated according to the assumptions underlying thetheory. We observe fairly large
differences in RMO functions observed between the ADCIGs computed assuming an isotropic
homogeneous half-space hanging from the sea floor and the ADCIGs computed assuming an
isotropic heterogeneous model. These discrepancies demonstrate the sensitivity of the RMO
analysis to the accuracy with which the background velocitypredicts the actual ray bending.
This sensitivity is higher for anisotropic media because ofthe velocity dependence on the
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propagation angle, suggesting that a tomographic MVA mightbe even more necessary for
anisotropic media than for isotropic ones.

Tomographic updating of the anisotropic parameters from ADCIGs can be based on the
same fundamental concepts used to derive the RMO functions presented and tested in this
paper. I therefore derive the linearized relationship between depth errors measured in AD-
CIGs and traveltime errors accumulated along the wavepaths. This relationship should lead to
the development of anisotropic MVA methods based on tomographic velocity-updating pro-
cedures.
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APPENDIX A

PHASE AND GROUP ANGLES AND VELOCITIES

In anisotropic wave propagation the phase angles and velocities are different from the group
angles and velocities. In this appendix I briefly review the concepts of phase and group angles
and velocities and the relationships between these physical quantities.

The transformation from phase velocitỹV to group velocityV is conventionally defined
as the following (Tsvankin, 2001):

V =

√
Ṽ2 +

(
dṼ

dθ̃

)
, (A-1)

whereθ̃ is the phase propagation angle. The associated transformation from phase angles to
group anglesθ is defined as:

tanθ =
tañθ + 1

Ṽ
dṼ
dθ̃

1− 1
Ṽ

dṼ
dθ̃

tañθ
. (A-2)

Dellinger and Muir (1985) propose, and heuristically motivate, the following symmetric
relations for the inverse transforms:

S̃=

√
S2+

(
dS

dθ

)
, (A-3)

whereS̃andSare respectively the phase slowness and the group slowness,and

tañθ =
tanθ + 1

S
dS
dθ

1− 1
S

dS
dθ

tanθ
. (A-4)

I use the heuristic relation in equation A-4 to derive some ofthe analytical results presented in
this paper. Furthermore, I use all the above relationships to compute the kinematic numerical
results presented in this paper.
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APPENDIX B

INDEPENDENCE OF DEPTH PERTURBATIONS FROM ANGLE
PERTURBATIONS

In this appendix I demonstrate that the terms in equation 13 multiplying the partial derivatives
with respect to the angles; that is,∂γ /∂ρi and∂γ̃ /∂ρi , are zero when evaluated at the point
when the events are correctly migrated at zero subsurface offset. We are interested in estimat-
ing the RMO function measured for an incorrect velocity. That RMO function can be seen as
a perturbation around the image obtained with the correct velocity.

After simple evaluation of partial derivatives the term multiplying ∂γ /∂ρi in equation 13
can be written as the following:
(

∂zγ

∂L

∂L

∂S(γ )

∂S(γ )

∂γ
+

∂zγ

∂γ

)
= −

zξ (cosγ +sinγ tanγ̃ )

S(γ )cosγ

∂S(γ )

∂γ
− L (sinγ −cosγ tanγ̃ )

= −zξ

[
(1+ tanγ tanγ̃ )

∂S(γ )

∂γ
+ tanγ − tanγ̃

]
, (B-1)

that can be easily demonstrated to be equal to zero after substitution of the relationship be-
tween phase angles and group angles presented in equation A-4.

The term multiplying∂γ̃ /∂ρi is equal to

∂z

∂γ̃
= −hξ

1

cos2 γ̃
, (B-2)

which is obviously equal to zero when the subsurface offset is zero, the point around which
we are interested in expanding the RMO function.

APPENDIX C

DERIVATIVES OF VTI SLOWNESS FUNCTION WITH RESPECT TO THE
PERTURBATION PARAMETERS

In this Appendix I present the analytical expressions for the derivatives of the group slowness
function with respect to the velocity-perturbation parameters

(
ρVV ,ρVH ,ρVN

)
. These deriva-

tives depend on the particular form chosen to approximate the slowness function. In this paper
I use following approximation of the VTI slowness function (Fowler, 2003):

S2
VTI (θ ) =

SV
2cos2θ + SH

2sin2θ +

√(
SV

2cos2θ + SH
2sin2θ

)2
+ SV

2
(
SN

2 − SH
2
)
sin22θ

2

=
S2

Ell (θ )+
√

S4
Ell (θ )+ SV

2
(
SN

2 − SH
2
)
sin22θ

2
, (C-1)
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where

S2
Ell (θ ) = SV

2cos2θ + SH
2sin2θ (C-2)

is the elliptical component.

The derivatives are then written as:

∂SVTI (θ )

∂ρVV

∣∣∣∣
ρ=1

=
SEll (θ )

2SVTI (θ )

∂SEll (θ )

∂ρVV

+

2∂SEll (θ )
∂ρVV

S3
Ell (θ )− SV

2
(
SN

2 − SH
2
)
sin22θ

4SVTI (θ )
√

S4
Ell (θ )+ SV

2
(
SN

2 − SH
2
)
sin22θ

,(C-3)

∂SVTI (θ )

∂ρVH

∣∣∣∣
ρ=1

=
SEll (θ )

2SVTI (θ )

∂SEll (θ )

∂ρVH

+

2∂SEll (θ )
∂ρVH

S3
Ell (θ )+ SV

2SH
2sin22θ

4SVTI (θ )
√

S4
Ell (θ )+ SV

2
(
SN

2 − SH
2
)
sin22θ

,(C-4)

∂SVTI (θ )

∂ρVN

∣∣∣∣
ρ=1

=
−SV

2SN
2sin22θ

4SVTI (θ )
√

S4
Ell (θ )+ SV

2
(
SN

2 − SH
2
)
sin22θ

, (C-5)

where the derivatives of the elliptical component with respect toρVV andρVH are:

∂SEll (θ )

∂ρVV

∣∣∣∣
ρ=1

=
−SV

2cos2θ

SEll (θ )
(C-6)

∂SEll (θ )

∂ρVH
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ρ=1

=
−SH

2sin2θ

SEll (θ )
. (C-7)


