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Angle-domain common image gathers for anisotropic migration

Biondo Biondi1

ABSTRACT

I present a general methodology for computing Angle-DomainCommon Image Gathers
(ADCIGs) in conjunction with anisotropic wavefield-continuation migration. The method
is based on the transformation of the prestack image from thesubsurface-offset domain
to the angle domain by use of slant stacks. The processing sequence is the same as for
the computation of ADCIGs for the isotropic case, though theinterpretation of the rela-
tionship between the slopes measured in the prestack image and the aperture angles are
more complex. I demonstrate that the slopes measured by performing slant stack along the
subsurface-offset axis of the prestack image are a good approximation of the phase aper-
ture angles, and that they are exactly equal to the phase aperture angles for flat reflectors
in Vertical Transverse Isotropic (VTI) media. In the general case of dipping reflectors,
the true aperture angles can be easily computed as a functionof the reflector dip and
anisotropic slowness at the reflector.
I derive the relationships between phase angles and slopes measured in the prestack image
from both a “plane-wave” viewpoint and a “ray” viewpoint. The two derivations are
consistent with each other, as demonstrated by the fact thatin the special case of flat
reflectors they lead to exactly the same expression. The ray-theoretical derivation is based
on a novel generalization of kinematic migration to the computation of prestack images
as a function of the subsurface offset. This theoretical development leads to the linking of
the kinematics in ADCIGs with migration-velocity errors, and thus it enables the use of
ADCIGs for velocity estimation.
I apply the proposed method to the computation of ADCIGs fromthe prestack image
obtained by anisotropic migration of a 2-D line extracted from a Gulf of Mexico 3-D
data set. The analysis of the error introduced by neglectingthe difference between the
true phase aperture angle and the angles computed through slant stack shows that these
errors are negligible and can be safely ignored in realisticsituations. On the contrary,
group aperture angles can be quite different from phase aperture angles and thus ignoring
the distinction between these two angles can be detrimentalto practical applications of
ADCIGs.
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INTRODUCTION

Angle-Domain Common Image Gathers (ADCIGs) have become a common tool for analyzing
prestack images obtained by wavefield-continuation migration. They can be used for both
updating migration velocity after wavefield-continuationmigration (Biondi and Sava, 1999;
Clapp and Biondi, 2000), as well as the analysis of amplitudes as a function of aperture angle
(Wang et al., 2005).

All the present methods for computing ADCIGs in conjunctionwith wavefield migration
are limited to isotropic migration; this is true for both themethods applied during downward
continuation before imaging (Prucha et al., 1999), and the methods applied on the prestack
migrated image as a post-processing operator (Sava and Fomel, 2003; Rickett and Sava, 2002;
Biondi and Tisserant, 2004). Similarly, the quantitative analysis of the residual moveout mea-
sured in ADCIGs caused by migration-velocity errors is alsolimited to the isotropic case
(Biondi and Symes, 2003; Biondi and Tisserant, 2004).

In this paper I generalize the methodologies for computing and analyzing ADCIGs to
prestack images obtained by wavefield-continuation anisotropic migration. In a companion
paper (Biondi, 2005) I derive the expressions for computingresidual moveout in ADCIGs as
a function of errors in the anisotropic parameters used for migration. This work is practically
motivated by two current trends in the seismic exploration industry: 1) data are recorded with
increasingly longer offsets, widening the range of propagation angles and thus making the
inclusion of anisotropic effects crucial to the complete focusing of reflections, 2) anisotropic
prestack depth migration is increasingly being used in areas, like near or under salt bodies,
where the image quality, and consequently the velocity estimation process, could benefit from
the use of wavefield-continuation migration (Bear et al., 2003; Sarkar and Tsvankin, 2004).

The main conceptual differences between isotropic ADCIGs and anisotropic ADCIGs are
related to the fact that in anisotropic wave propagation thephase angles and velocities are
different from the group angles and velocities (Tsvankin, 2001). Therefore, I will first address
the question of which aperture angles we are measuring in theADCIGs. I demonstrate that
the transformation to angle domain maps the reflection into the phase-angle domain. Strictly
speaking, this mapping is exact only for events normal to theisotropic axis of symmetry
(e.g. flat events for Vertical Transverse Isotropic (VTI) media), because the presence of dips
biases the estimates. This bias is caused by the difference in propagation velocity between
the incident and the reflected waves, and thus for VTI media itis small unless the anisotropy
is strong and the dips steep. The real-data example shown in this paper indicates that, for
realistic values of anisotropy, the errors caused by the geological dips are small and can be
neglected. This approximation greatly simplifies the computation of ADCIGs and thus makes
their application more attractive. When the accuracy of this approximation is not sufficient, the
true aperture angles can be easily computed from the measured slopes in the prestack image
by iteratively solving a system of two non-linear equations, which usually converge to the
solution in only few iterations.

The methodology developed in this paper is limited to the theimaging of acoustic data and
thus is limited to the acoustic approximation of elastic anisotropic wave propagation. Further-
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more, the numerical examples are limited to VTI media definedby their vertical velocity and
two of the three Thomsen parameters:ε, δ,andη. However, the basic concepts have a general
validity and the generalization to more general anisotropic media, such as Tilted Transverse
Isotropic (TTI) media should be fairly straightforward, though outside the scope of this paper.

PHASE AND GROUP ANGLES AND VELOCITIES

In anisotropic wave propagation the phase angles and velocities are different from the group
angles and velocities. In this section I briefly review the concepts of phase and group an-
gles and velocities and the relationships between these physical quantities. I also define the
particular approximation to a VTI medium that I use in the numerical examples.

The transformation from phase velocitỹV to group velocityV is conventionally defined
as the following (Tsvankin, 2001):

V =

√
Ṽ2 +

(
dṼ

dθ̃

)
, (1)

whereθ̃ is the phase propagation angle. The associated transformation from phase angles to
group anglesθ is defined as:

tanθ =
tañθ + 1

Ṽ
dṼ
dθ̃

1− 1
Ṽ

dṼ
dθ̃

tañθ
. (2)

Notice that throughout this paper I use the tilde symbol to distinguish between phase quantities
(with a tilde) and group quantities (without a tilde).

Dellinger and Muir (1985) propose, and heuristically motivate, the following symmetric
relations for the inverse transforms:

S̃=

√
S2+

(
dS

dθ

)
, (3)

whereS̃andSare respectively the phase slowness and the group slowness,and

tañθ =
tanθ + 1

S
dS
dθ

1− 1
S

dS
dθ

tanθ
. (4)

I use the heuristic relation in equation 4 to derive some of the analytical results presented in
this paper. Furthermore, I use all the above relationships to compute the kinematic numerical
results presented in this paper.

The numerical results, though not the analytical results, are also dependent on the choice
of a specific approximation of the anisotropic phase-velocity function. I used the following
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VTI approximation for the phase velocity:

Ṽ2
VTI (θ ) =

VV
2cos2θ + VH

2sin2θ +

√(
VV

2cos2θ + VH
2sin2θ

)2
+ VV

2
(
VN

2 − VH
2
)
sin22θ

2
,

(5)

whereVV , VH , VN, are respectively the vertical velocity, the horizontal velocity and the NMO
velocity. Following Fowler (2003), the corresponding approximation for the group velocity is
the following:

S2
VTI (θ ) =

SV
2cos2θ + SH

2sin2θ +

√(
SV

2cos2θ + SH
2sin2θ

)2
+ SV

2
(
SN

2 − SH
2
)
sin22θ .

2
,

(6)

where SV , SH , SN, are respectively the vertical slowness, the horizontal slowness and the
NMO slowness.

The numerical results obtained by modeling and migrating synthetic seismic data and by
migrating the real data were obtained by source-receiver depth continuation (upward for mod-
eling and downward for migration) using the following dispersion relation:

kz =
ω

VV

√
ω2 − VH

2k2
x

ω2 +
(
VN

2 − VH
2
)
k2

x

, (7)

whereω is the temporal frequency, andkx andkz are respectively the horizontal and vertical
wavenumbers. The dispersion relation shown in equation 7 corresponds to the velocity and
slowness functions in equations 5 and 6 (Fowler, 2003).

ANGLE GATHERS BY ANISOTROPIC DOWNWARD-CONTINUATION
MIGRATION

In this section I develop the theory for anisotropic ADCIGs from the “plane-wave” viewpoint.
I assume that in the proximity of the reflection point the source wavefield and the receiver
wavefield are plane waves and I derive the relationships between the propagation angles of
these plane waves and the slopes computed in the prestack image. This assumption is not
restrictive because the source and receiver wavefields can always be considered as the super-
position of plane waves.

In anisotropic media, when the reflector is dipping with respect to the normal to the
isotropic axis of symmetry (horizontal direction for VTI) the incident and reflected aperture
angles differ. This difference is caused by the fact that, although the phase slowness is func-
tion of the propagation angle, Snell law requires that the components parallel to the reflector
of the incident and reflected slowness vectors must match at the interface. However, we can
still define an “average” aperture anglẽγ and “average” dip anglẽαx using the following
relationships:

γ̃ =
β̃r − β̃s

2
, and α̃x =

β̃s + β̃r

2
, (8)
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Figure 1: Sketch representing the reflection of a plane wave from a planar reflector in an
anisotropic medium. The angles marked in the figure are all phase angles. They are defined
as follows: β̃s and β̃r are the propagation angles of the incident and reflected plane waves,
γ̃s and γ̃r are the true aperture angles for the the incident and reflected plane waves,Sαx is
the true geological dip angle,̃γ areα̃x the average aperture angle and the average dip angle.
biondo1-cig-aniso-v3[NR]

where thẽβs andβ̃r are the phase angles of the incident and reflected plane waves, respectively.

Figure 1 shows the geometric interpretation of these angles. Notice that the average dip
anglẽαx is different from the true geological dip angleSαx, and that the average aperture angle
γ̃ is obviously different from the true aperture anglesγ̃s and γ̃r . However, these five angles
are related and, if needed, the true angles can be derived from the average angles, as shown in
Appendix A.

Prestack images defined in the subsurface-offset (hξ ) domain are transformed into the
angle domain by applying slant stacks. The transformation axis is thus the physical dip of the
image along the subsurface offset; that is,∂zξ/∂hξ . The dip angles can be similarly related
to the midpoint dips in the image; that is,∂zξ/∂mξ . Following the derivation of acoustic
isotropic ADCIGs by Sava and Fomel (2003) and of converted-waves ADCIGs by Rosales
and Rickett (2001), we can write the following relationships between the propagation angles
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and the derivative measured from the wavefield:

∂t

∂zξ

∣∣∣∣
(mξ =Smξ , hξ=Shξ )

= S̃scos (̃αx − γ̃ )− S̃r cos (̃αx + γ̃ ) , (9)

∂t

∂mξ

∣∣∣∣
(zξ=Szξ , hξ=Shξ )

= S̃ssin (̃αx − γ̃ )+ S̃r sin (̃αx + γ̃ ) , (10)

∂t

∂hξ

∣∣∣∣
(zξ =Szξ , mξ =Smξ )

= S̃ssin (̃αx − γ̃ )− S̃r sin (̃αx + γ̃ ) , (11)

whereS̃s andS̃r are the phase slownesses for the source and receiver wavefields, respectively.
We obtain the expression for the offset dip by taking the ratio of equation 11 with equation 9,
and similarly for the midpoint dips by taking the ratio of equation 10 with equation 9, and
after some algebraic manipulations, we obtain the following expressions:

∂zξ

∂hξ

∣∣∣∣
(mξ =Smξ )

=
tanγ̃ + S̃r −S̃s

S̃r +S̃s
tañαx

1− S̃r −S̃s
S̃r +S̃s

tañαx tanγ̃
, (12)

∂zξ

∂mξ

∣∣∣∣
(hξ=Shξ )

=
tañαx + S̃r −S̃s

S̃r +S̃s
tanγ̃

1− S̃r −S̃s
S̃r +S̃s

tanγ̃ tañαx

. (13)

In contrast with the equivalent relationships valid for isotropic media, these relationships de-
pend on both the aperture anglẽγ and the dip anglẽαx. The expression for the offset dip
(equation 9) simplifies into the known relationship valid inisotropic media when either the
difference between the phase slownesses is zero, or the dip angleα̃x is zero. In VTI media this
happens for flat geological dips. In a general TTI medium thiscondition is fulfilled when the
geological dip is normal to the axis of symmetry.

Solving for tañγ and tañαx we obtain the following:

tanγ̃ =

∂zξ

∂hξ
−1S̃tañαx

1+
∂zξ

∂hξ
1S̃tañαx

, (14)

tañαx =

∂zξ

∂mξ
−1S̃tanγ̃

1+
∂zξ

∂mξ
1S̃tanγ̃

, (15)

where for convenience I substituted the symbol1S̃ for the “normalized slowness difference”
(S̃r − S̃s)/(S̃r + S̃s).

Substituting equation 15 in equation 14, and equation 14 into equation 15, we get the
following two quadratic expressions that can be solved to estimate the angles as a function of
the dips measured from the image:

[
∂zξ

∂mξ

1S̃−
∂zξ

∂hξ

12
S̃

]
tan2 γ̃ +

[
1−12

S̃

]
tanγ̃ +

∂zξ

∂mξ

1S̃−
∂zξ

∂hξ

= 0, (16)
[

∂zξ

∂hξ

1S̃−
∂zξ

∂mξ

12
S̃

]
tan2 α̃x +

[
1−12

S̃

]
tañαx +

∂zξ

∂hξ

1S̃−
∂zξ

∂mξ

= 0. (17)



SEP–123 Anisotropic ADCIGs 7

These are two independent quadratic equations in tanγ̃ and tañαx that can be solved indepen-
dently. If the “normalized slowness difference”1S̃ between the slowness along the propaga-
tion directions of the source and receiver wavefields are known, we can directly computẽγ
andα̃x, and then the truẽβs and β̃r . One important case in this category is when we image
converted waves.

For anisotropic velocities, the slownesses depend on the propagation angles, and thus the
normalized difference depends on the unknownγ̃ andα̃x. In practice, these equations can be
solved by a simple iterative process that starts by assumingthe “normalized difference” to be
equal to zero. In all numerical test I conducted this iterative process converges to the correct
solution in only a few iterations, and thus is not computationally demanding.

If the anisotropic slowness function were spatially homogeneous, equations 16 and 17
could be solved iteratively in the Fourier domain, and the transformation to the average angles
γ̃ andα̃x could be computed exactly without the need of estimating theapparent reflector dip
in the space domain. When the anisotropic parameters are a function of the spatial variables;
that is, in the majority of the real situations, the solutionof equations 16 and 17 requires the
estimation of the local reflector dip in the space domain. If necessary, the reflectors’ dip can
be either extracted from the interpretation of the horizonsof interest, or can be automatically
estimated from the image by applying one of the several methods that have been presented
in the literature (see for example Fomel (2002)). In practice, the estimation of the reflector
dip is seldom necessary. The numerical and real-data examples shown below indicate that
for practical values of the anisotropy parameters the dependency of the estimate from the dip
angles can be safely ignored for small dips, and it is unlikely to constitute a problem for steep
dips.

KINEMATIC ANALYSIS OF ADCIGS BY INTEGRAL MIGRATION

The analysis shown in the previous section provides the fundamental equations to relate the
offset and midpoint dips measured from prestack images to the phase angles at the reflection
point. However, the previous analysis is not directly applicable to the analysis of the kinematic
properties of events in the ADCIGs because it is based on plane waves. An important applica-
tion of ADCIGs is the measurements of residual moveout alongthe aperture angle (i.e. depar-
ture from flatness) caused by velocity errors. To achieve this goal we must relate traveltime
errors accumulated during the propagation in the overburden to movements of the migrated
events in the ADCIG. This task is easier in the ray domain thanin the plane-wave domain be-
cause traveltime errors are naturally evaluated along rays, which are related to group velocity
and angles. To overcome this obstacle toward the use of ADCIGs for velocity estimation, in
this section I introduce an integral formulation of the methodology to compute angle gathers
that enables a simple link between ADCIGs and kinematics. The following analysis has also
the theoretical value of being independent from the migration method applied to compute the
prestack images (integral method or wavefield-continuation method) and thus of providing a
conceptual link between the angle gathers obtained using different migration methods.

My analysis is based on the conceptual generalization of integral (Kirchhoff) migration to
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Figure 2: Geometry used for eval-
uating the impulse response of
the generalized integral migration.
biondo1-imp-resp[NR]
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the computation of sub-surface offset gathers. Integral migration is defined by the summation
surfaces over which the data are integrated to compute the image at every point in the image
space. The shapes of these summation surfaces are usually computed as the sum of the time
delays from the image point (zξ ,mξ ) in the subsurface to the source and receiver locations at
the surface. The basic idea underlying the generalization Iintroduce in this paper, is that we
can compute the summation surfaces by evaluating the time delays starting not from the same
point in the subsurface for both the source and receiver rays, but starting from two points hor-
izontally shifted by±hξ with respect to the image point. The summation of data along these
surfaces produces a prestack image as a function of the subsurface offset that is kinematically
equivalent to the image created by wavefield-continuation migrations such as source-receiver
downward continuation, or shot-profile migration in conjunction to the generalized imaging
condition discussed by Rickett and Sava (2002). Therefore,the kinematic analysis that fol-
lows, and its conclusions, are independent from the migration method applied to compute the
prestack images. An interesting observation is that the ADCIGs computed using this gener-
alization of integral migration should be immune from the artifacts that affect angle gathers
computed by conventional integral migration and discussedby Stolk and Symes (2003).

Generalized migration impulse response in parametric form

Integral migration can be conceptually performed by spreading the data along spreading sur-
faces as well as by summing data along the summation surfacesdiscussed above. The spread-
ing surfaces are duals of the summation surfaces and represent the impulse response of the
migration operator. In homogeneous anisotropic medium theshape of the impulse responses
of the generalized integral migration can be easily evaluated analytically as a function of the
subsurface offsethξ , in addition to the usual image depthzξ and midpointmξ . Figure 2 il-
lustrates the geometry used to evaluate this impulse response. Notice that the angles in this
figure (αx andγ ) are missing a tilde because they are group angles, and not phase angles as
in the previous section. In an isotropic medium these anglesare the dip and aperture angles,
but in an anisotropic medium these angles are not easily related to the geological dip and the
reflection aperture angles. They can be thought of as convenient parameters to evaluate the
impulse response.

Simple trigonometry applied to Figure 2 allows us to expressthe impulse response in para-
metric form, as a function ofαx andγ . If we migrate an impulse recorded at timetD, midpoint
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mD and surface offsethD, the migration impulse response can be expressed as follows:

zξ = L (αx,γ )
cos2αx −sin2γ

cosαx cosγ
, (18)

mξ = mD − L (αx,γ )
sinαx

cosγ
, (19)

hξ = hD − H = hD − L (αx,γ )
sinγ

cosαx
, (20)

with

L (αx,γ ) =
Ls + Lr

2
. (21)

In a isotropic medium the half path-lengthL would be simply given bytD/2S, but in an
anisotropic medium it is function of the angles. Its two componentsLs andLr can be calcu-
lated by solving the following system of linear equations:

tD = SsLs + Sr Lr , (22)

zs − zr = Ls cos(αx −γ )− Lr cos(αx +γ ) = 0. (23)

Equation 22 constraints the total traveltime to be equal to the impulse time, and equations 23
constraints the depth of the end point of the two rays (zs andzr ) to be equal, since the sub-
surface offset is assumed to be horizontal. The solution of this system of equation yields the
following for the half path-length:

L (αx,γ ) =
Ls + Lr

2
=

tD

(Sr + Ss)+ (Sr − Ss) tanαx tanγ
. (24)

The combination of equation 24 and equations 18–20 enables the evaluation of the generalized
migration impulse response in a arbitrary homogeneous anisotropic medium.

Figure 3 shows a 3-D rendering of the impulse response computed using the previous
equations for an impulse withtD = .9 seconds,mD = 0 kilometers, andhD = .4 kilome-
ters, and vertical slownessSV = 1 s/km. The anisotropic parameters correspond to the Taylor
Sand as described by Tsvankin (2001) using the three Thomsenparameters:ε = 0.110,δ =

−0.035, andη = .155. The gray line (green in color) superimposed onto the impulse response
is the result of cutting the surface at zero subsurface offset, and thus corresponds to the conven-
tional impulse response of prestack migration. The black line superimposed onto the impulse
response is the result of cutting the surface at zero midpoint. In Figure 4 these two lines are
superimposed onto the corresponding vertical sections cutfrom the images computed by an
anisotropic wavefield source-receiver migration applied with the same parameters described
above. Figure 4b shows the conventional migration impulse response, whereas Figure 4a
shows the zero-midpoint section. The lines computed by applying the kinematic equations
perfectly match the impulse responses computed using wavefield migration, confirming the
accuracy of the kinematic equations.
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Figure 3: Impulse response of generalized anisotropic prestack migration. The gray line (green
in color) superimposed onto the impulse response corresponds to the conventional impulse
response of prestack migration.biondo1-surf_taylor_hxd_dot_4[CR]

Figure 4: Vertical sections cut from
the impulse response computed by an
anisotropic wavefield source-receiver
migration. The lines superimposed
onto the images correspond to the
lines superimposed onto the surface
shown in Figure 3 and are computed
by applying the kinematic expres-
sions presented in equations 18–24.
biondo1-Surf-taylor_hxd_.4-overn
[CR]
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Analytical evaluation of the tangent plane to the impulse response

The expression for the generalized impulse response of prestack anisotropic migration leads
to the analytical evaluation of the offset dip and midpoint dip along the planes tangent to the
impulse response, as a function of the group angles and velocity. In this section I demonstrate
that in the simple case of flat reflectors this analysis leads to exactly the same results as the
phase-space analysis presented in the previous section. The derivation of the general relation-
ships expressed in equations 13 and 12, which are valid for anarbitrary reflector’s dip, is left
to the reader.

By applying elementary analytical geometry, I demonstratein Appendix B that the deriva-
tive of the depth with respect to the subsurface offset, at constant midpoint, is given by:

∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

= −

∂zξ

∂αx

∂mξ

∂γ
−

∂zξ

∂γ

∂mξ

∂αx

∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

, (25)

and the derivative of the depth with respect to the midpoint,at constant subsurface offset, is
given by:

∂zξ

∂mξ

∣∣∣∣
hξ=Shξ

= −

∂zξ

∂αx

∂hξ

∂γ
−

∂zξ

∂γ

∂hξ

∂αx

∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

. (26)

In the special case of flat reflectors the∂zξ/∂αx and∂hξ/∂γ vanish, and thus equation 25
simplifies into the following expression:

∂zξ

∂hξ

∣∣∣∣
(mξ =Smξ , αx=0)

=

(
∂zξ

∂γ

∣∣∣
L=SL

+ ∂L
∂γ

cosγ
)

∂mξ

∂αx(
∂hξ

∂γ

∣∣∣
L=SL

− ∂L
∂γ

sinγ

)
∂mξ

∂αx

=

∂zξ

∂γ

∣∣∣
L=SL

+ ∂L
∂γ

cosγ

∂hξ

∂γ

∣∣∣
L=SL

− ∂L
∂γ

sinγ
. (27)

By substituting into equation 27 the appropriate derivative of the image coordinates and of the
half path-length with respect to the angles, all provided inAppendix A, I further simplify the
expression into the following:

∂zξ

∂hξ

∣∣∣∣
(mξ =Smξ , αx=0)

=
tanγ + 1

S
∂S
∂γ

1− 1
S

∂S
∂γ

tanγ
. (28)

Finally, by applying the transformation from group angles into phase angles expressed in
equation 4, I obtain the final result that for flat reflectors the subsurface-offset dip is exactly
equal to the tangent of the phase aperture angleγ̃ ; that is:

∂zξ

∂hξ

∣∣∣∣
(mξ =Smξ , αx=0)

= tanγ̃ . (29)
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Numerical examples of aperture angle along impulse responses

The analytical kinematic results can be verified by numerical computations of impulse re-
sponses by wavefield migration and transformation of the resulting prestack image cubes into
the angle domain. Figure 5 shows four zero subsurface-offset sections cut through the impulse
responses computed by wavefield-continuation anisotropicmigration for three anisotropic
rocks and for an isotropic rock. The first anisotropic rock isthe Taylor Sand defined above.
The second is the Mesa Clay Shale as defined by Tsvankin (2001)using the three Thomsen
parameters:ε = 0.189,δ = 0.204, andη = −.01. The third is derived from the Green River
Shale as described by Tsvankin (2001) by halving the anisotropic parameters (ε andδ); that
is, it is defined by the three Thomsen parameters:ε = 0.0975,δ = −0.11, andη = .266. The
strong anelliptic nature of the original Green River Shale (η = .74) causes the group-slowness
approximation in equation 6 to break down, and makes the kinematic computations based on
ray tracing, and thus on group velocity and angles, inconsistent with wavefield migrations
based on the dispersion relation in equation 7. Hereupon I will refer to this rock, for obvious
reasons, as the GreenLight River Shale. Notice that the GreenLight River Shale is still strongly
elliptical.

The other parameters defining the impulse responses are the same as for Figure 3; that
is, tD = .9 seconds,mD = 0 kilometers, andhD = .4 kilometers, and vertical slownessSV =

1 s/km. Figure 5a shows the isotropic case, Figure 5b shows the Taylor Sand case, Figure 5c
shows the Mesa Clay Shale case, and Figure 5d shows the GreenLight River Shale case. As
in Figure 4, the line superimposed onto the images representthe impulse response computed
using the kinematic expressions in equations 18–24. The kinematic curves perfectly predict
the shape of the images even for very steep dips.

Figure 6 shows two-dimensional slices cut through the cube obtained by the transformation
to the angle domain of the impulse responses shown in Figure 5. The slices are cut at the
midpoint and depth corresponding to the expected location of the impulse responses; that is, at
the location tracked by the lines shown in Figure 5. There arethree lines superimposed onto the
angle-domain images. The solid lines display the numericalcomputation of arctan(∂zξ/∂hξ )
by applying equation 25. They perfectly track, as expected,the results of the transformation
of the prestack images to angle domain. The dotted lines display the phase aperture angle
γ̃ . As expected, they overlap with the solid line around the zero midpoint (i.e. flat reflector),
and depart from them at larger midpoints, which correspond to steeper reflections. However,
the error introduced by ignoring the difference between arctan(∂zξ/∂hξ ) andγ̃ is small, and
likely to be negligible in most practical situations. Finally, the dashed lines display the group
aperture angleγ . The differences betweenγ andγ̃ are substantial, up to 20% in some cases.
Ignoring them might be detrimental to the application of ADCIGs. Notice that in the isotropic
case the three lines perfectly overlap and all of them match the image.
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Figure 5: Impulse responses evaluated at zero subsurface offset for four rock types: a)
Isotropic, b) Taylor Sand, c) Mesa Clay Shale, and d) GreenLight River Shale. Superimposed
onto the images are the impulse responses computed by the kinematic expressions presented
in equations 18–24.biondo1-Quad_hxd_.4-overn[CR]
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Figure 6: Slices of the impulse responses transformed into the angle-domain for four
rock types: a) Isotropic, b) Taylor Sand, c) Mesa Clay Shale,and d) GreenLight River
Shale. Superimposed onto the images there are the curves computed by applying the
kinematic analysis: γ (dashed line),γ̃ (dotted line), and arctan(∂zξ/∂hξ ) (solid line).
biondo1-Quad_Mx-Ang_hxd_.4-overn[CR]
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GULF OF MEXICO DATA EXAMPLE

To illustrate the proposed methodology for computing ADCIGs from prestack images ob-
tained by anisotropic migration, I migrated a 2-D line extracted from a 3-D data set that was
kindly provided to SEP by ExxonMobil. I chose the location ofthe 2-D line in an area where
the sediments are mostly flat in the cross-line direction andwhere the salt flanks are mostly
perpendicular to the in-line direction.

The data set was acquired in the Gulf of Mexico over an existing reservoir. Therefore
several borehole seismic data sets were available in addition to the surface data to constraint the
estimation of the anisotropic parameters. ExxonMobil provided SEP with three anisotropic-
parameter cubes resulting from a joint inversion of the surface data and the borehole data
(Krebs et al., 2003). Figure 7 shows the vertical slices cut through these cubes at the cross-line
location corresponding to the 2-D line that I migrated. Panel a) displays the vertical velocity,
panel b) displays the values ofδ, and panel c) displays the values ofη. To avoid artifacts
caused by sharp parameter contrasts, for migration I removed the salt body from the functions
displayed in Figure 7. I “infilled” the salt body with sediment-like values by interpolating the
functions inward starting from the sediment values at the salt-sediment interface.

Figure 8 shows the result of anisotropic prestack depth migration. All the reflectors are
nicely imaged, including the steep salt flank on the right-hand side of the salt body. The
shallow tract of the salt flank on the left-hand side of the body is poorly imaged because it has
large cross-line dip components. The two vertical lines superimposed onto the image identify
the surface location of the ADCIGs displayed in Figure 9. Thetwo black bars superimposed
onto the image identify the reflections for which I analyzed the ADCIG in details. Figure 9
shows two ADCIGs computed by slant stacking the prestack image along the subsurface axis.
Both CIGs show fairly flat moveout, indicating that the anisotropic velocity model used for
migration is accurate, though not perfect. The shallow reflections show the most noticeable
departure from flatness (they frown downward) because thesereflectors were not the focus
of the velocity model-building efforts. The CIGs are taken at the location indicated by the
vertical black lines in Figure 8; the CIG shown in panel a) is taken at the surface location of
3,725 meters and the CIG shown in panel b) is taken at the surface location of 11,625 meters.
Within these two CIGs, I selected for detailed analysis the reflections corresponding to the
black bars superimposed onto the image because they represent two ‘typical’ cases where the
accuracy of the estimation of the reflection-aperture anglemight be important. The shallow
black bar on the left identifies a flat reflector illuminated with a wide range of aperture angles,
up to 60 degrees. The wide angular range is potentially useful for constraining the value of the
anisotropic parameters in the sediments. The deep black baron the right identifies one of the
potential reservoir sands, and thus it is a potential targetfor Amplitude Versus Angle (AVA)
analysis using ADCIGs.

The plots in Figure 10 show the differences between the true phase aperture angle com-
puted by iteratively solving the system of equations 16 and 17 and the aperture angle es-
timated by slant stacks (solid line) and the group aperture angle (dashed line). The group
angles are computed by applying equation 2. The plot in panela) corresponds to the shal-
low black bar on the left. The reflector is flat and the velocityparameters at the reflector are:
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Figure 7: Vertical slices cut through the anisotropic velocity parameters cubes. Panel a) shows
the vertical velocity field, panel b) shows theδ field, and panel c) shows theη field. I removed
the salt body from the parameters functions used for migration, to avoid artifacts caused by
sharp parameter discontinuities.biondo1-Par-Sections-overn[CR]
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Figure 8: Image obtained by anisotropic prestack migration. The two vertical lines superim-
posed onto the image identify the surface location of the ADCIGs displayed in Figure 9. The
two black bars superimposed onto the image identify the reflections analyzed in Figure 10.
biondo1-Bar-Section-overn[CR]

VV = 1,995 m/s, ε = 0.058,δ = 0.0524, andη = .0905. As expected, the aperture angles
estimated by slant stack are exactly the same as the true onesbecause the reflector is flat. The
maximum difference between the group aperture angle and thephase aperture angle is at 60
degrees, where the group angle is smaller by about 9 degrees than the phase angle; that is,
about an error of about 15%.

The plot in panel b) corresponds the reservoir reflector (thedeep black bar on the right).
The dip of the reflector is about 25 degrees and the velocity parameters at the reflector are:
VV = 3,060 m/s, ε = 0.028, δ = 0.0133, andη = .0144. This area is weakly anisotropic
(black in Figure 7b in Figure 7c) and thus the angular errors are small (≤ 1 degree) even if
the reflector is dipping. Finally, the plot in panel c) corresponds to the hypothetical situation
in which the reservoir was located in a more strongly anisotropic area than it actually is.
To test the accuracy limits of approximating the phase aperture angles with the subsurface-
offset slopes in the prestack image, I set the anisotropic parameters to be the highest value
in the section; that is: ;ε = 0.172,δ = 0.07, andη = .09, and kept the vertical velocity and
reflector’s dip the same as in the previous case. The reflectoris dipping and consequently the
aperture angle estimated by slant stacks is lower than the true aperture angle. However, the
error is small (≤ 2 degree) even at large aperture angle, and even smaller (≤ 1 degree) within
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the angular range actually illuminated by the data (0≤ γ̃ ≤ 30◦). Even in this “extreme” case
the angular error is unlikely to have any significant negative effect on the accuracy of the AVA
analysis of the reservoir reflection.

CONCLUSIONS

The methodology for computing and analyzing ADCIGs that hasbeen recently developed for
isotropic media can be generalized to prestack images computed using anisotropic prestack
migration. This generalization opens the possibility of performing residual moveout velocity
analysis and AVA analysis after anisotropic wavefield-continuation migration.

The transformation to angle domain performed by slant-stacking the prestack image along
the subsurface-offset axis generates angle gathers that are approximately function of the phase
aperture angle. When the accuracy of this approximation is not sufficient, the computation of
the true aperture angles requires the measurement from the image of the geological dips of the
reflections.

The differences between the true phase angle and the subsurface-offset slopes measured
by slant stacks are caused by the difference in propagation velocity between the incident and
the reflected waves. In a general TTI medium, the differencesvanish for events normal to the
isotropic axis of symmetry. In a VTI medium the differences vanish for flat reflectors and they
are small unless the anisotropy is strong, the dips steep, and the aperture angle wide. This
conclusion is supported by the detailed analysis of the ADCIGs generated my migrating a real
data set in the presence of fairly strong anisotropy and steep salt flanks.
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APPENDIX A

CONVERSION FROM AVERAGE ANGLES TO TRUE APERTURE ANGLES

In this appendix I present the expressions for evaluating the true reflection angles̃γs and
γ̃r for the incident and reflected plane waves, from the ‘normalized slowness difference”
1S̃ = (S̃r − S̃s)/(S̃r + S̃s) and from the average aperture anglesγ̃ computed by solving equa-
tions 16 and 17.

Rosales and Biondi (2005) derived these relationships as follows:

tanγ̃s =

1+1S̃
1−1S̃

sin 2̃γ

1+
1+1S̃
1−1S̃

cos2̃γ
(A-1)

tanγ̃r =
sin 2̃γ

1+1S̃
1−1S̃

+cos 2̃γ .
(A-2)

It is easy to verify that when1S̃ = 0 (isotropic case) we get, as expected,γ̃s = γ̃r = γ̃r .

APPENDIX B

ANALYTICAL EVALUATION OF THE TANGENT PLANE TO THE IMPULSE
RESPONSE

In this appendix I derive the expressions for evaluating thederivatives of image depthzξ with
respect to the subsurface offsethξ and the midpointmξ ; these derivatives are computed along
the tangent plane to the impulse response of the generalizedmigration operator, which is
defined in equations 18–24.

I start by deriving the equation for the vector normal to the impulse-response surface,En:

En =

∣∣∣∣∣∣∣

Ezξ Emξ
Ehξ

∂zξ

∂αx

∂mξ

∂αx

∂hξ

∂αx
∂zξ

∂γ

∂mξ

∂γ

∂hξ

∂γ

∣∣∣∣∣∣∣

=

(
∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

)
Ezξ +

(
−

∂zξ

∂αx

∂hξ

∂γ
+

∂zξ

∂γ

∂hξ

∂αx

)
Emξ +

(
∂zξ

∂αx

∂mξ

∂γ
−

∂zξ

∂γ

∂mξ

∂γ

)
Ehξ ,

(B-1)

whereEzξ , Emξ , andEhξ are respectively the unit vectors along the three dimensions zξ , mξ , and
hξ .

The equation of the tangent plane at the image point with coordinates
(
Szξ , Smξ ,Shξ

)
is given
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by:

T
(
zξ ,mξ ,hξ

)
=

(
∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

)(
zξ −Szξ

)

+

(
−

∂zξ

∂αx

∂hξ

∂γ
+

∂zξ

∂γ

∂hξ

∂αx

)(
mξ − Smξ

)

+

(
∂zξ

∂αx

∂mξ

∂γ
−

∂zξ

∂γ

∂mξ

∂αx

)(
hξ −Shξ

)
= 0. (B-2)

The derivative of the depth with respect o the subsurface offset, at constant midpoint, is given
by:

∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

= −

∂T
∂hξ

∣∣∣
mξ =Smξ

∂T
∂zξ
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∂zξ
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∂mξ

∂αx

∂mξ

∂αx

∂hξ

∂γ
−

∂mξ

∂γ

∂hξ

∂αx

. (B-3)

and similarly the derivative of the depth with respect to themidpoint, at constant subsurface
offset, is given by:

∂zξ

∂mξ

∣∣∣∣
hξ=Shξ

= −

∂T
∂mξ

∣∣∣
hξ=Shξ

∂T
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. (B-4)

To evaluate equations B-3–B-4. we need to evaluate the following partial derivatives,
obtained by differentiating the expressions in equations 18–20:

∂zξ

∂αx
= −L (αx,γ )

tanαx

cosαx cosγ

(
cos2αx +sin2γ

)
+
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. (B-5)

The derivative of path length are evaluated as follows:

∂L
∂αx

= −tD
[(Sr +Ss)+(Sr −Ss) tanαx tanγ ]2

[(
∂Sr
∂αx

+ ∂Ss
∂αx

)
+

(
∂Sr
∂αx
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)
tanαx tanγ +

(Sr −Ss) tanγ

cos2αx

]
, (B-6)
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and

∂L
∂γ

= −tD
[(Sr +Ss)+(Sr −Ss) tanαx tanγ ]2

[(
∂Sr
∂γ

+ ∂Ss
∂γ

)
+

(
∂Sr
∂γ

− ∂Ss
∂γ

)
tanαx tanγ + (Sr −Ss) tanαx

cos2γ

]
. (B-7)

Application to the isotropic case

The application to the isotropic case is simpler than the anisotropic case because the deriva-
tive of the path length is zero, but it is instructive since itverifies known results through a
completely different derivation. Substituting equationsB-5 into equation B-3, I obtain:

∂zξ

∂hξ

∣∣∣∣
mξ =Smξ

= −
L2 tanγ

[
tan2αx
cos2γ

(
cos2αx +sin2γ

)
− 1
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)]

L2
[
1− tan2αx tan2γ

]

= −
L2 tanγ
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(
1

cos2γ
− 1

cos2γ

)
+ tan2αx tan2γ

]

L2
[
1− tan2αx tan2γ

]

= tanγ , (B-8)

which shows that∂zξ/∂hξ is independent from the dip angleαx. This expression is consis-
tent with the 2-D analysis by Sava and Fomel (2003) and the 3-Danalysis by by Biondi and
Tisserant (2004).
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Figure 9: ADCIGs computed from
the prestack image by slant stacking
along the subsurface offset axis. The
CIG shown in panel a) is taken at the
surface location of 3,725 meters, and
the CIG shown in panel b) is taken at
the surface location of 11,625 meters.
biondo1-Duo-aniso-overn[CR]

Figure 10: Differences between the true phase aperture angle and the aperture angle estimated
by slant stacks (solid line) and the group aperture angle (dashed line). The plot in panel a)
corresponds to the reflection identified with the shallow black bar on the left in Figure 8. The
plot in panel b) corresponds the reservoir reflector (the deep black bar on the right). The plot in
panel c) corresponds to the hypothetical situation in whichthe reservoir reflector was located
in a more strongly anisotropic area than it actually is.biondo1-Trio-Ang-overn[CR]


